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Abstract: In this paper, we define three subclasses MZ:Z(U, A, B), Iy u (A7), RZ’”’()\, H,7) con-
nected with a g-analogue of linear differential operator DZ’Z g Which consist of functions 7 of the form

!

o DM F
F@) =07+ L af (p € N)satisfying the subordination condition p — % §< ST

——mr = T <
i Fe P

pii—gé Also, we study the various properties and characteristics of this subclass MZZ* (n,A, B) such
as coefficients estimate, distortion bounds and convex family. Also the concept of § neighborhoods

and partial sums of analytic functions to the class MZZ (1, A, B).
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1. Introduction

Let M, is the class of p-valently meromorphic functions of the form:
FQ)=t7P+ Y o (peN={12..}), (1)
j=1=p

which are analytic in the punctured open unit disk A* := {{ € C: 0 < || <1} = A\{0}.
Let F and & are analytic functions in A, we say that F is subordinate to £ if there exists an
analytic function @(¢) with @(0) = 0and |@({)| <1 ({ € A) such that F = E(@()). We
denote by F < & (see [1,2]):

Let the functions F({) € M, defined by (1) and G({) € M defined by

il (peN). @)
p

G =07+ f
L

]_
The Hadamard product or convolution of F({) and G({) is defined by
(FxG) Q) ="+ Y apdl = (GxF)(©0). ®)
j=1=-p

In this paper, we define some concepts of fractional derivative, for any non-negative integer
j- the g—factorial [f] ! is defined by (see [3]):
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Assume that 0 < g < 1, the g-number [j] 4 are defined by (see [3-9]). where

TS L o @
]q_l_q_ rzlq‘

El-Deeb et al. [10] defined the g-derivative operator for F * G as follows (see [11])

(F%G)(q0) = (F*G)(2)
= ¢#0
* = ( )
Dy(F *6) () {f,(o)wl o ©)
Also, we have
- (FxG)(q0) — (FxG)(©Q) _ '
Jim Dy(F+G)(0) = lim M = (F*9)(@)
From (1) and (5), we get
DA(F6)@) =t [l ¢ A0 ©

j=1=p

Also, we define the linear differential operator DZ,’Z,g : My — M, as follows:

DY F(Q) = (F+G)(Q),

P
DeF(@) = %Cﬂq@gi%,gf(é))+(1—a)(f*g)(g)+zagP
J=1=p
DUGFE) = GrEPi(PiF©) + (1D RO 2
2
= 2 <q” [p]l )[p]q> a]b]C]
D" F(]) = i D 117; ) (1—04)Dn_1"7]-"(§)+2(x€—l7
a,p,G [ ocpg w,p.g

il 4 n ;
- [Py ; <W> a;b;f/ @)
(pGN,neNofNU{O},O<q<1,tx>0).

From (7), we obtain the following relations:

O DL = £0 Dy (DL (0) + (- D@ 12007, L8 @

(1) 35,7 (8) 1= lim Dy 67 (0) :5“],_;}7(W)n”ibf€jl Len. ©)
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Remark 1. (i) By taking G({) = % (or bj = 1) in this operator DZ’Z G- we have the linear
differential operator Dy , , defined by El-Deeb and El-Matary ([12], With A = 1);

(ii) Put o« = 1 in the operator DZ:Z@’ we get the (p, q)-analogue of the operator ng defined
as follows:

DZ:E}'(@)Zé”Jrj_;pC[p]U > bt (PeN, neN), 0<g<1,fe€A"); (10)

(iii) Let &« = 1 and q — 1 in the operator D s have the operator D" g defined as follows:

DI gF(C) = lim D}, F() = {7+ lzlz_p(;)"ajbjgf, (peN, neNy, €A A1)

q—1"

(iv) Taking &« = 1 and G({) = % (or bj = 1) in the operator DZ:Z,Q’ we have the (p, q)-
analogue of Salagean operator Dy, , defined as follows:

) P r; n .
DhF@) ="+ ) (ﬂ,,ﬁ?) 0l (peN, neNy, 0<q<1,0€h); (12
J=1=p

(v) Putting q — 1~ and o = 1 in the operator D p,r e get the operator in meromorphic
DZ g defined as follows:

D} F(g) = Jim DYNGF@) =P+ ¥ ( i )najb].gf, (peN, neNy, 7 €A*). (13)
- j=1-p

A function F € M, is said to be in the subclass MS*(7y) of meromorphic starlike functions
of order 7y in A%, if it satisfies the following condition (see [13-16]):

%(C]__f(g)><—7 (CeAs; 0<y<]). (14)

A function F € M, is said to be in the subclass MC(7y) of meromorphic convex functions
of order v in A*, if it satisfies the following condition (see [17]):

%<1+€;__:(g)><—'y (CeN;0<y<1). (15)

It is easy to observe from (14) and (15) that
FeMC(y) & —(F € MS*(y). (16)

We will generalize these classes by using the new operator D) ., we define the new

w,p,G’
class MW (A, u,v) and study some theorems for this class.

Definition 1. Assume that F € M be in the class M;jg(iy, A,B) if

!’

1 g( zxpg}—(o) 1+ AT
S BT R REae

(17)
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or, equivalently, to

!

C( apgf<é>)
oc D, g]:(g)

C( wgf@))
Dy G F(0)

+p
<1 (18)

+ pl(A—B)n + B

(reN,neNy, 0<g<1,a>0,7eC’, -1<B<ALI, €A

Let M3} is subclass of M, which contains functions on the form:
F@Q)=C0P+Y a7 (peN). (19)
j=p

Also, we can write

My (n, A, B) = Myi(n, A, B) N M;,

Remark 2. (i) Taking g — 1~, we get lim MZ’Z(A, woy) =t L (A w,y), where Iy (A, 1, 7y)

represents the function 7 € M, that satzsﬁes (18) for D N P g replaced with T p g §iven by (9);

(ii) Putting o = 1, we get the subclass Rp (A, u, ) represents the function F € M, that

satisfies (18) for DZ:Z g replaced with DZ’qg given by (10).

2. Basic Properties of the Subclass M, %" (3, A, B)
Theorem 1. The function F defined by (19) belongs to the subclass M” (7, A, B) ifand only if

& Pl (-l \ "
LiG+pa - 8) = plal(A— )] (L) | < plyla-B). Qo

Proof. Let (20) holds true, we get

!

((PL6F©) + PR (@) - B (P F @) + B0~ )+ ApyID 6T (@

o agPli] +(1—a n .
= 2(]+P)< d mq [P(i]q )[P]g) lljbjéﬁrp

j=p

A= Jé[B(J' +p)+pn(A—B) (aqpmﬁv(}lq_a)[p]q)n”fbjé””
< i(]‘ +p) (W)nb]‘!ﬂj\ﬂ“’ —pn(A—B)
=P
- f 8-+ p) + pr(a — B) (e =k e
=P
i )(j+p) = pi(A—B)] (Mpmﬁpia)[p]qybf!ﬂf\f”” —pi(A—-B). (21)
j=p

Since (21) holds for all r € (0,1). Letting r — 17, we obtain
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(D117 ©) +pPF@)| - |BE (DL F@) + 1By =)+ ApIIDL G F ()

Y11= 8+ p) — py(a - B) (LLGEIY g — py(a-p)
J=P
0 (by (20)).

IN

IN

Hence, we get F({) € M}(n, A, B).

Conversely, Let F(¢ ) belongs to MZ:Z(U, A, B) with F({) of the form (19), we find
from (18), that

¢(p MF(C)) +pD GF ()

B (DI F(©)) +[Bp(1— b) + ApbIDY 7 (Q)

X+ p)(W) ajbig*r

- = K 1@
B ® aq?[j],+(1-)[p], \ " i+ = 22
p(A—B)+ L[B(j+p)+py(A=B){ = p—") abd""
=p
Using the fact that R{{} < || for all {, we get
¢(D 67 () .
ZZGHQ *
)14 <1, e (23)

B (00,7 (D)) -
ot 7y T BP(L—n)+ Apr]

!/

DM F
If we take { on real axis, so that w

70 is real. Upon clearing the denominator in (23)
a 0.G

and letting { — 17, we get
= Pl =) lpl, \ "
LG+ 1-8) - phil(a — B) (LG ) bl < plrla-B), @

which we’ve got the assertion (20) of Theorem 1. [

Corollary 1. The function F () be defined by (19) belongs to My/k" (11, A, B), then

‘ pln|(A—B) ,
il < [+ p)(1— B) — ply|(A—B) ag?[f],+(1-a)[p], nb, G=p) =
j+p) plil W) b

This result is sharp for F given by

plnl(A —B)

¢ (=P (0)
G+ 7)1 = B) — plyl(a — B ()

F@Q) =07+

Theorem 2. The function F () defined by (19) belongs My&" (1, A, B), then for [{| = r < 1,
we have
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{<p+m —1)! p!ln|(A—B) er}r(mm)
(-1 20-B)—[jl(A-B)(+alg —1))(p —m),
(m) (p+m—1)! p!ly|(A —B) 2 (pm)
<|F (C)‘S{ -1 208 [yl(A—B)(1+al’ —1)(p —m)ib, p}r e @

This result is sharp for F given by

_ [n|(A—B)
F@) =07+ P 28
O = BBy — (A B+ al@ — 1), 8)
Proof. Let F({) € My%"(y, A, B), then
p[2(1—B) = [7[(A = B)J(1 +a(g’ —1))"(p —m)lby & |
. >y yila
p! =0
< 07+ p-) - plriea - B by fa] < plria B
which yields
S nl(A —B) p 2
L S BB A - Bl T =y G )
Differentiating both sides of (19) m times with respect to {, we get
Fm () = (—1)m wg (p-+m) +Z ya]\gf " (peN,0<m<p) (30)

(p—1)!

and Theorem 2 follows easily from (29) and (30), and it is easy to have the bounds in (27)
are attained for F given by (28). O

Theorem 3. The function F defined by (19) belings to MZ:Z'*(U, A, B), then
(i) F is meromorphically p-valent q-starlike of order p (0 < p < [p],) in the disc || <y,

that is, -
%{_C }‘Z(ggg)}m (15l <n, 0<p<[pl, peN), (1)
where
1
G+ )1~ B) = plyl(a - B) (L) (I gy TP
ry = inf 1_B ! , (32)
i>p plil(A - B) (1, +¢)

(ii) F is meromorphically p-valent q-convex of order p (0 < p < [p] q) in the disc || < 1o,

that is,

where
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1
: Pljly(1=a)lply \ " [ [p) j
G+ )1 = B) = plyl(a - By] (= ) (W o) gy | 147
ry = inf — ! . (34)
2 pa?lil, (171, + ) /(A = B)
Each of these results is sharp for the function F({) given by (26).
Proof. (i) From the definition (19), we easily get
D710) | by (1l + o ajlig*”
F(g) 1 < =p (35)
{DyF() Iy = ol S Ll nzitr
#—q—;’up 2(#*p)*Ep([ﬂq*qfﬁﬁp)\ﬂ;!lél’”
We have the inequality
{DyF(g) L
F(2) i <
1(0<p< ; pEN), 36
DFQ W, | (0<p<[plypeN) (36)
Foy T
if
L ( ﬂfp) ja|Ig/ P < 1. (37)
J=P \ P
Hence, by Theorem 1, (37) will be true
, aq?[jlg+(1—a) [l \ "
(1, +6) . LG+p=8)=plylca—B) (T
q7|€|]+i7 < q
([p}q B ply|(A—B)
ql’ p
1
, Pl =a)lpl \ ", ([P '
G+ (1= B) — plyla - 5y) (Lol )y () ) Ty
7 < : , (38)
plnl(A—B) (L]]q—}—p)

the inequality leads us immediately to the disc || < 71, where rq is given by (32).
(ii) To prove the second assertion of Theorem 3, we get from the definition (19) that

DD E) | I 0, (0, + 0 g 177
q < =P (39)
Dy({DyF [p] ) s [p] o
DlEDTE) Wy gp) ™ 2 Wa( e ) - 00, 5 + 20l
Thus, we have the desired inequality
DyEDy7 @) | Iy
Dy F(8) q <1(0< 4

b, FQ) @ T2
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if
< qPjl, [ i, +e ,
»Z [p] : mq |aj|[Z)FF < 1. (41)
=P q qT’ —p

From Theorem 1, (41) will be true if

; aq? [jly+(1=e)lply \ ",
70, Uy +e |€|j+p<[(1+P)(1B)P|’7|(AB)]([p]q) Y
vl [%_p - pln|(A—B)

The inequality (42) readily yields the disc || < rp, where r; defined by (34), and the proof
of Theorem 3 is completed. O

3. Neighborhoods and Partial Sums

By following the earlier works based upon the familiar concept of neighborhoods of
analytic functions by Goodman [15] and Ruscheweyh [18] and (more recently) by Altintas
et al. [19-21], Liu [22], Liu and Srivastava [23] and El-Ashwah et al. [24], we introduce here
the J-neighborhoods of a function F € M, has the form (1) by means of the definition
given by:

Ns(F) = {h: he M,, h(Q)=0"+ i cjzj and
j=1-p

V1= B) — plnl(a — By (Ut A0l )"y
[(j+p)(1=B) —ply|( )]

[r], ]
jej —ajl <0

R WA= B)

(neNyp, 0<g<1l,a>03eC*, -1<B<A<LI) } (43)
Using the definition (43), we will obtain the following theorem:

Theorem 4. The function F defined by (1) belongs to MZ:Z(U, A, B). If F satisfies the condition

F(Q) +eC?

e € Myl(n,AB) (e€C, |e] <5, 6>0) (44)

then
Ns(F) € Mpi(y, A, B). (45)

Proof. From (18), we obtain h € MZ:Z(;y,A, B) if, for o € C with |o| = 1, we have

L(Dihgh(@) + PP gh(@)

, 7o (fed), (46)
BZ (DL gh(2)) + [Bp(1 —b) + Apb| D] h(¢)
which is equivalent to
BB 20 genr, )

where, for convenience,
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YO =P+ Y 0

j=1-p
. [(j+P)(1—BCf)—p;7|a(A_B)]("W> b
:C*P_F Z

i (48
=T pio(A—B) ¢ ®

From (48), we get

G+ )(1 = Bo) = plylo(a - ) (FLi= ),

o7l = pno(A—B)

[(j+ p)(1+ |B|) — p|n|(A — B)] [ aq?[jl,+(1-a)[p], \" ,
= pln|(A—B) ( T, ”> bi j=zp peN). (49

HFQQ)=C¢"+ E a](j € M, holds the condition (44), then (47) yields

j=1=-p
’(FZEJZ(Q‘>6 (e A*,6>0). (50)
Let .
D) =P+ Y, dif € Ns(F) (51)
j=1-p
we have
d _ [es]
[ (g) ?(5)]*4) ’ Z d *Ll] ngj 14
j=1-p
_plnl(A=B)] ( 2all+(1-a)[p),
< |g\];£p ]+P)(1;171‘3(\24_P£§|(A B)]( g7 j o p ) bld; o 52)
5 (eA 6§>0).

We have (47), and hence also (46) for any ¢, which implies that ® € Mp “(17, B). This
evidently proves the assertion (45) of Theorem 4. [

Theorem 5. Let F € M defined by (1) and —1 < B < 0, the partial sums S1({) and Sy ()
are given by

m—1 .
SO =07 and Su(@) =0+ Y af (meN\{1}). (53)
j=1-p
Also, suppose that
+p)(1+|B A—B P[j],+(1-a)[p],
Z Yiepla] <1 (pr [G+p)( P|17||<|21 _I;|;1|( )]( aq i p ) b]), (54)

j=1-p
then

(i) F(2) € Mpi(n, A, B)



Axioms 2023, 12, 207

10 of 12

ﬁﬂR% F@)}>1—] (e A meN)

Sm () Yq
(55)
and
Su(Q) Yy
(111)Re{ 70 }>1+}/q (CeN meN).
(56)

The estimates in (55) and (56) are sharp.

P el?
e = =("e M (17,A B), |¢|] < 1, then by Theorem 4, we have

N;(F) C MZ,’Z(iy, A,B), p € N. N;({"?) denoting the 1-neighbourhood). Now since

Proof. Since

L ylal <1, (57)
J=1=p

then F € N1({"7)and F € Mp 1(n, A, B). Since {y;} is an increasing sequence, we get

m—p—1

Z |”J‘+ym Z ’”]’< Z y]+p’”]‘<1 (58)

j=1=p j=m=p

we have used the hypothesis (54). Putting

F 1 vn L g
hi(2) = ym{S (é)) —(1- y)} =1+ ]m:_”l

" ! 1+ |aj| TP

1:1 P
and applying (58), we find that
> |ai]

hy (g) -1 j=m—p
h1(€)+1‘ = m—p- © =1(ed), (59)

which readily yields the assertion (55) of Theorem 5. If we take

m

‘7:(@:) - g—P P (60)

Ym
e FQ) o

1

=1— —-1——, as{ — 17,
Sm(0) Ym Ym ¢
which shows that the bound in (55) is the best possible for each m € N.
If we put
(Ltym) % oletr
_ Sm(0) _Ym 1 ! j=m—p !
I 1+ % o0

j=1-p
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and make use of (58), we can deduce that

(Ltym) T |aj
) 1) ¢ =r <1
)+1|— m—p—1 oo -
2-2 ¥ o =(1-yw) ¥ |a]
j=1-p J=m=p

ho (
ha(

7

)

leads us to the assertion (56) of Theorem 5. The bound in (56) is sharp. The proof of
Theorem 5 is completed. O

4. Concluding Remarks and Observations

In our present investigation, we have introduced and studied the properties of some
new subclasses of the class of meromorphic p-valent functions in the open unit disk A* by
using the combination of g-derivative and convolution and obtain the new operator DZ:Z@.
Among other properties and results such as coefficients estimate, distortion bounds and
convex family. Also the concept of § neighborhoods and partial sums of analytic functions
to the class M,/{ (17, A, B).

Interesting results about meromorphic functions can be found in the works [25-31].
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