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Abstract: Computational analysis is performed for turbulent free convection and surface thermal
radiation in an air-filled cavity with solid obstacle on the bottom wall. A partition of finite thickness
is considered, the position, length, and heat conductivity of which vary for certain values of the
Rayleigh number. The coupled heat transmission by thermal radiation, free convection and heat
conduction through the solid obstacle and walls is studied. The governing equations are solved by
the finite difference method. This work also contains a detailed description of the computational
grid thickening procedure. Temperature patterns and airflow field are scrutinized for some specific
conditions using streamlines and isotherms. The overall heat transfer within the cavity is analyzed in
terms of the mean convective and radiative Nusselt numbers, and many of the data are presented
in detail for various partition positions, heat conductivities of the partition and walls of the cavity,
and Rayleigh numbers. The results report that the participation of partitions within the cavities in
the heat exchange processes decreases the overall heat transfer rate compared to the simpler case of
cavities without partitions.

Keywords: numerical simulation; coordinate transformation; finite difference technique; coupled
heat transfer

MSC: 35Q30; 76F60; 76R10

1. Introduction

Free convection is the most economical type of convection compared to other types
of convection. The characteristic advantages of this mode of energy transfer include
its noiselessness and reliability. In some cases, when the characteristic dimensions of
the cavity are significant or a significant temperature drop is observed, the flow regime
becomes turbulent. There are many studies of turbulent convection in enclosures [1–18], as
indicated and summarized in [19], as this is the main form that can be found in various
engineering systems.

The effect of turbulent free convection on heat transfer in shallow cavity was inves-
tigated by Qaddah et al. [20]. They aimed to analyze in detail the various phenomena of
heat transport in a cavity with seasonal fluctuations in ground temperature. Turbulent
free convection in a cave, radiative heat transfer between walls and heat conduction inside
walls were analyzed. The results showed that the horizontal temperature drop determines
the average direction of flow rotation. It was also established that the intensity of flow
and the level of turbulence have a weak effect on the magnitude of the heat transport
parameter. Numerical analysis of turbulent free convection in heated from below cavity
was performed by Chai et al. [21]. Such processes occurring in a small reactor affect the
removal of residual thermal energy from the top header of the pressure vessel in severe
accidents. The authors used least squares regression analysis to construct correlations for
the average Nu as a function of Ra. So, the average Nusselt number is proportional to
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Ra0.2. Benyahia et al. [22] studied the complex heat transfer by turbulent natural convection,
conduction and heat radiation in an enclosure having high aspect ratio. The enclosure
had the shape of a parallelepiped and sides length was 0.076 × 2.18 × 0.52 m. The im-
pact of surface radiation on heat transfer and airflow was investigated through various
values of surface emissivity of internal walls. As a result of the research, it was found
that the emissivity of the inner surfaces significantly affects the velocity patterns near the
horizontal surfaces, without affecting the flow in the core of the enclosure. Fabregat and
Pallares [23] investigated heat transfer via both laminar and turbulent natural convection
in differently heated cube. Using the method of direct numerical simulation, the authors
obtained correlations for the mean Nu depending on Ra ranged from 105 to 5.5 × 108.

The intensity of heat transfer inside the cavity can be changed either by taking into
account the temperature difference between the walls, or by creating obstacles (various
blocks, fins and partitions). Such obstacles can essentially affect the fluid motion and
therefore the heat transport within the entire cavity. Thermophysical properties of ob-
stacles, location, geometry, length are the main parameters to consider when studying
such problems. Experimental analysis of turbulent free convection in non-partitioned or
partitioned cavity was carried out by Ampofo [24]. The scale dimensions of the study area
were 0.75 × 0.75 × 1.5 m3. Cold and hot enclosure walls were isothermal at temperatures
50 and 10 ◦C, respectively. Five baffles were installed on the hot isothermal wall made of a
material with a higher thermal conductivity than that of the enclosure. The experiments
carried out with a sufficiently high accuracy helped to establish experimental reference
results and will undoubtedly be useful in testing numerical algorithms.

Priam et at. [25] performed a computational analysis of conjugate thermal convection
within a cavity separated by a wavy obstacle filled with air and water. As an obstacle, the
authors used a corrugated thermally-conducting block with three various thicknesses and
three various materials. They have investigated the impact of the corrugation frequency
and amplitude, heat conductivity, location and thickness of the corrugated obstacle on
fluid and air flow and heat transfer. The outcomes presented that a growth of the heat
conductivity of the obstacle increases the heat transport strength up to 25%. The use of a
low frequency corrugation allowed a slight improvement in heat transfer, but this effect is
negligible. Saha and Gu [26] studied heat transfer in a triangular cavity having a conducting
obstacle. The authors received outcomes for a wide range of control characteristics such
as Ra (105–108) and aspect ratio (0.2–1.0). It was established that for a fixed Ra, the energy
transport is higher for small values of the aspect ratio. However, if aspect ratio is fixed, then
the intensity of energy transport can be raised with a growth of Ra. The influence of aspect
ratio on energy transport in a cavity having mutually orthogonal warmed partitions was
investigated by Kandaswamy et al. [27]. The enclosure had two isothermal thin partitions
(horizontal and vertical). All surfaces of the cavity were kept at a constant temperature,
namely, they were isothermal. It was found that energy transport in the enclosure can
be significantly improved by raising the length of the vertical partition, regardless of its
location. At the same time, a growth of the length of the horizontal partition increases the
intensity of heat transfer only in the case when the partition is located below the center of
the cavity.

It is very useful to highlight that the effect of surface radiation on heat transfer in a
chamber has been experimentally studied in [28,29]. In these papers, the average Nusselt
number correlations for combined convection and radiation are presented in terms of
Grashof number. As a result of the research, it has been found that surface thermal
radiation is important in a chamber. Percentages of the contribution of each heat transfer
mechanism for the case of heat transfer through hollow building element is presented
in [30]. It has been shown that the contribution of the radiation heat transfer is about 25.5%
while the convection contribution does not exceed 15.4%.

Some of the leading studies on heat transfer in a partitioned enclosures are presented
in Table 1. The presented studies show that the main attention was paid mainly to laminar
problems and partitions with infinite thermal conductivity. In this paper, all the main
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mechanisms of heat transfer (thermal conduction in the baffle and walls, convection inside
the cavity, and thermal radiation between the surfaces) will be considered.

Table 1. Several studies on heat transfer in partitioned enclosures.

Authors Number of Partitions Flow Regime Aspect Ratio Medium

Ampofo [24] 5 Turbulent 2 Air

Priam et at. [25] 1 Laminar 1 Air and water

Saha and Gu [26] 1 Laminar 0.2, 0.5, 1 Air

Kandaswamy et al. [27] 2 Laminar 1 Air

Khatamifar et al. [31] 1 Laminar 1 Air

Wu and Ching [32] 2 Laminar 0.6–0.1 Air

Costa [33] 2 Laminar 1 Air

Said et al. [34] 1 Turbulent 10 Air

Xu [35] 1 Laminar 1 Water

Famouri and
Hooman [36] 1 Laminar 1 Air

Khatamifar et al. [37] 1 Laminar 1 Air

Al-Farhany et al. [38] 1 Laminar 1 Nanofluid

2. Governing Equations and Numerical Method

Two-dimensional square air-filled cavity having a partition is depicted in Figure 1
together with boundary limitations. Cartesian coordinates (x, y) combined corresponding
velocity projections (u1, u2) are considered. The heat-conducting partition is placed verti-
cally for various heights inside the cavity (h/L = 0.2, 0.5 and 0.7). A cavity with characteristic
size of L is heated by setting a fixed temperature Th for the wall x = 0 and cooled by setting
a fixed temperature Tc for the wall x = 1 + 2l/L. Bottom and top walls at y = 0 and y = 1 + 2l/L
respectively are considered adiabatic. Boussinesq approximation was employed, assuming
an incompressible viscous Newtonian fluid. As assumptions used in modeling radiative
heat transfer, the following can be noted, namely, the inner walls are gray, and the radiation
is diffuse. Physical properties of air at reference temperature T0 = (Th + Tc)/2 presented in
Table 2.
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Table 2. Physical properties of air at T0 = 15 ◦C.

Physical Properties Symbol Value

Thermal expansion coefficient β 3.67 × 10–3 K−1

Kinematic viscosity ν 14.61 × 10–6 m2·s−1

Thermal diffusivity α 20.72 × 10–6 m2·s−1

Density ρ 1.226 kg·m−3

The control equations can be written in following form

∂S
∂t

+
∂R1

∂x1
+

∂R2

∂x2
= G (1)

S =



0

u1

u2

T

k

ε

T


(2)

Ri =



ui
pδi 1 − (ν + νt)σi 1 + uiu1

pδi 2 − (ν + νt)σi 2 + uiu2

−(α + αt)∂T/∂xi + uiT

−(ν + νt/σk)∂k/∂xi + uik

−(ν + νt/σε)∂ε/∂xi + uiε

αw∂T/∂xi


, ∀ i = 1, 2 (3)

G =



0

0

gβ∆T

0

Pk + Gk − ε

(c1ε(Pk + c3εGk)− c2εε)
ε
k

0


(4)

σij =
∂ui
∂xj

+
∂uj

∂xi
(5)

The system of Equations (1)–(4) is formulated in terms of “velocity-pressure” variables.
One of the approaches to solving the equations of natural convection is the transition to
the variables “stream function-vorticity”. The implementation of this approach makes it
possible to diminish the number of equations to be solved, and also eliminates the pressure
field definition.

The stream function and vorticity are given as follows:

ω =
∂v
∂x
− ∂u

∂y
, u =

∂ψ

∂y
, v = −∂ψ

∂x
. (6)
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In a number of theoretical studies, as well as in modeling physical processes, the
transition to dimensionless dependences between parameters provides great convenience.
For dimensionless values, the coordinates and parameters of the object are divided into
characteristic dimensions and parameters chosen as measurement scales and having the
same dimensions. The scales of distance L, time

√
gβ∆T/L, temperature ∆T = Th − Tc,

velocity
√

gβ∆TL, stream function
√

gβ∆TL3, kinetic energy of turbulence gβ∆TL, dissi-

pation rate of turbulence kinetic energy
√

g3β3(∆T)3L and vorticity
√

L/gβ∆T are used
in this work.

The initial restrictions for the control equations in variables “stream function-vorticity” are:

Ψ(X, Y, 0) = Ω(X, Y, 0) = K(X, Y, 0) = E(X, Y, 0) = Θ(X, Y, 0) = 0 at τ = 0 (7)

The border limitations are shown in Table 3.

Table 3. Border limitations.

∂Θ/∂n = 0 Y = 0, Y = 1 + 2l/L.

Θ = 0.5 X = 0.

Θ = −0.5 X = 1 + 2l/L.

Ψ = 0, ∂Ψ
∂Y = 0, Θ1 = Θ2, ∂Θw

∂n =
λ f
λw

∂Θ f
∂n − NradQrad at internal solid-fluid interfaces

The boundary-value problem was worked out by the finite difference technique on
a nonuniform mesh. The mesh thickening within the heat boundary layer was specified
using a relation of the form [39]

ξ = a + b−a
2

{
1 + tg

[
π$
b−a

(
X− a+b

2

)]
/tg
[

π
2$
]}

,

η = a + b−a
2

{
1 + tg

[
π$
b−a

(
Y− a+b

2

)]
/tg
[

π
2$
]}

.
(8)

Here $ is a compaction parameter, a, b are the shape coefficients. Computational
region and used grid are presented in Figure 2.
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The average Nusselt numbers (convective and radiative) are taken as dimensionless
heat transfer coefficients. These numbers are defined in the following form:

Nuconv =
∫ 1+l/L

l/L

∣∣∣∣ ∂ξ

∂X
∂Θ
∂ξ

∣∣∣∣
X=l/L

dY, Nurad = Nrad

∫ 1+l/L

l/L
|Qrad|

X=l/L
dY. (9)
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Here Nuconv is an average convective Nusselt number that illustrates a ratio of the
heat transfer by convection to the heat transfer by conduction, while Nurad is an average
radiative Nusselt number that illustrates a ratio of the heat transfer by radiation to the
heat transfer by conduction. Qrad is dimensionless net radiative heat flux. The dimensional
form of Qrad is defined as the difference between the effective and incident radiation.
Nrad is a radiation parameter. The radiation of real bodies differs from the radiation of
a completely black body. At equal temperatures, real bodies radiate less thermal energy
than a completely black body. To describe the radiation of real bodies, the concept of the
surface emissivity is introduced, which characterizes the ratio of the flux density of the
own radiation of a real body to the flux density of its own radiation of an absolutely black
body. The wall emissivity varies between 0 and 1. The radiation of real bodies in this work
is modeled by the radiation of a gray body.

To find the dimensionless net radiative heat flux Qrad, the following equations should
be solved

Qrad,k = Rk −
N

∑
i=1

Fk−iRi, (10)

Rk = (1− ε̃k)
N

∑
i=1

Fk−iRi + ε̃k(1− ζ)4
(

Θk + 0.5
1 + ζ

1− ζ

)4
(11)

The view factor Fk−i of radiation is called the value that determines the proportion of
radiant energy coming to a given body from another body. The view factor Fk−i of radiation
depends only on the relative position of the bodies in space and therefore it is a purely
geometric quantity. In this paper, to find the view factors, the Hottel crossed string method
is used [40].

In this work, an in-house computational procedure was developed using C++ pro-
gramming language to analyze the influence of different parameters on energy transport
and airflow in a cavity having partition on the bottom solid wall. The problem of free
convection in a differentially-heated cavity is studied to validate the developed computa-
tional algorithm. As a part of the validation, the computed outcomes were checked using
the experimental work [41]. Figure 3 demonstrates the temperature and vertical velocity
patterns at the middle section.
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Figure 3. Thermal profiles (a) and vertical velocity (b) in comparison with outcomes from [41].

In order to make the obtained numerical solutions independent on the mesh, an
additional analysis was conducted using three various grids (96 × 96, 120 × 120, 180 × 180)
for the case of Ra = 109, Pr = 0.7, λw,air = 10,000, h/L = 0.2, ε̃ = 0.9. The resulting time series
of the average Nurad at the heated surface are shown in Figure 4. Moreover, the difference
of outcomes between the grids of 120 × 120 elements and 180 × 180 elements is less than
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2.5% for the average convective Nu and the 120 × 120 elements grid is chosen as the grid
for numerical analysis in present research.

Axioms 2023, 12, x FOR PEER REVIEW 7 of 15 
 

Figure 3. Thermal profiles (a) and vertical velocity (b) in comparison with outcomes from [41]. 

In order to make the obtained numerical solutions independent on the mesh, an 
additional analysis was conducted using three various grids (96 × 96, 120 × 120, 180 × 180) 
for the case of Ra = 109, Pr = 0.7, λw,air = 10000, h/L = 0.2, 0.9  . The resulting time series 
of the average Nurad at the heated surface are shown in Figure 4. Moreover, the difference 
of outcomes between the grids of 120 × 120 elements and 180 × 180 elements is less than 
2.5% for the average convective Nu and the 120 × 120 elements grid is chosen as the grid 
for numerical analysis in present research. 

 
Figure 4. Dependences of the average radiative Nusselt number at left wall vs. various grids and 
dimensionless time. 

3. Results 
A total of 33 runs were performed in this study for three partitions heights (i.e., h/L = 

0.2, 0.5, and 0.7), four magnitudes of wall emissivity (i.e., 0  , 0.3, 0.6, and 0.9), three 
Rayleigh numbers (i.e., Ra = 109, 1.5∙109, and 1010), four values of thermal conductivity ratio 
(i.e., λw,air = 10, 100, 1000, and 10000). For all these runs, Pr = 0.7 and L1 = 0.7L are used. The 
thermal conductivity of materials λw,air chosen for this study corresponds to a wide range 
of materials with various industrial applications. Insulating materials such as foam con-
crete, aerated concrete or wood modeling by selecting λw,air ≈ 10. Sandstone and granite 
are among the materials that have λw,air ≈ 100. Aluminum nitride, aluminum, silicon have 
λw,air ≈ 1000. 

An influence of inner wall emissivity on energy transport and airflow at Ra = 109, Pr 
= 0.7, λw,air = 10000, h/L = 0.2 is shown in Figure 5. The obtained patterns are considered in 
the steady state, which corresponds to the dimensionless time 10000  . In the central 
part of the cavity, the isotherms take a horizontal position. Near solid vertical walls, one 
can see an appearance of a heat boundary layer (thickening of temperature isolines close 
to walls). 
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3. Results

A total of 33 runs were performed in this study for three partitions heights (i.e.,
h/L = 0.2, 0.5, and 0.7), four magnitudes of wall emissivity (i.e., ε̃ = 0, 0.3, 0.6, and 0.9),
three Rayleigh numbers (i.e., Ra = 109, 1.5·109, and 1010), four values of thermal conductivity
ratio (i.e., λw,air = 10, 100, 1000, and 10,000). For all these runs, Pr = 0.7 and L1 = 0.7L are
used. The thermal conductivity of materials λw,air chosen for this study corresponds to a
wide range of materials with various industrial applications. Insulating materials such
as foam concrete, aerated concrete or wood modeling by selecting λw,air ≈ 10. Sandstone
and granite are among the materials that have λw,air ≈ 100. Aluminum nitride, aluminum,
silicon have λw,air ≈ 1000.

An influence of inner wall emissivity on energy transport and airflow at Ra = 109,
Pr = 0.7, λw,air = 10,000, h/L = 0.2 is shown in Figure 5. The obtained patterns are considered
in the steady state, which corresponds to the dimensionless time τ = 10, 000. In the central
part of the cavity, the isotherms take a horizontal position. Near solid vertical walls, one
can see an appearance of a heat boundary layer (thickening of temperature isolines close
to walls).
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A growth of the emissivity of the inner walls does not lead to significant changes
in the thermal field in the cavity. The streamlines demonstrate that the flow nature is
not complicated.

The contribution of the radiative mechanism of energy transfer in problems of natural
convection in closed cavities is quite significant [42]. An influence of walls emissivity
values on Nurad can be seen in Figure 6. Numerical results show that, as expected, a growth
of the values of ε̃ results to a significant intensification of the radiative mechanism of energy
transfer. At τ = 10, 000 the mean radiative Nu raises up to 3.46 times at changing of surface
emissivity values from 0.3 to 0.9. It should be noted that when solving the boundary-
value problem, the internal medium (air) was considered diathermic, that is, transparent
to radiation.
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Table 4 shows the values of two various parameters considered, namely, maximum
absolute value of Ψ and mean convective Nu for Ra = 109, Pr = 0.7, λw,air = 10,000, h/L = 0.2.
According to the presented tabular data, it can be found that with a growth of the surface
emissivity values, a slight reduction of the strength of convective energy transport is shown.
The mean convective Nu diminishes up to 0.16% as the surface emissivity changes from
0 to 0.9. Maximum absolute value of Ψ also decreases with increasing surface emissivity
values. This is due to a reduction of the temperature gradient, and a growth of the radiative
thermal flux. A similar effect of the parameter ε̃ on convective energy transport in closed
cavities for the case of laminar flow was studied by Martyushev and Sheremet [43] and
Miroshnichenko et al. [44].

Table 4. Variations of various considered parameters.

Surface Emissivity Value |ψ|max Nuconv

ε̃ = 0.0 0.011325 56.02

ε̃ = 0.3 0.011316 55.99

ε̃ = 0.6 0.011301 55.96

ε̃ = 0.9 0.011292 55.93

The impact of Ra on the patterns of local parameters (streamlines and isotherms) for
ε̃ = 0.9, Pr = 0.7, λw,air = 10,000, h/L = 0.2 can been seen in Figure 7. A single convective
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cell is appeared within the cavity, regardless of the Rayleigh number. The occurrence of
this recirculation air flow is due to the geometric features of the problem, as well as the
formulated boundary conditions. A growth of Ra manifests itself in a characteristic increase
in the thickness of the heat boundary layer near the inner vertical borders. Visually, the
isotherms are similar, but the difference in the distribution of temperature isolines can be
traced by the isotherm of Θ = −0.2.
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Figure 8 demonstrates Nuconv and Nurad at the left internal wall for different Rayleigh
numbers and heat-conducting partition heights. The outcomes show that an increase in Ra
results to an increase in the time required for the flow in the cavity become stationary.
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The presence of a heat-conducting obstacle results to a reduction of the intensity of
energy transport in the cavity. It can be seen that changing the height of the partition from
h/L = 0.2 to h/L = 0.7 results to a diminution of the integral energy transport coefficients. For
thermal radiation, the partition plays the role of an obstacle, forming shading zones. The
in-house numerical code includes the calculation of the view factors. This represents some
mathematical complexity due to the need to calculate the view factors for each elementary
surface area. The correctness of the calculation was checked by the main property of the
view factors (property arising from the law of conservation of energy). The results show
that when the height of the partition changes from h/L = 0.2 to h/L = 0.7 the average
convective Nu reduces up to 14.8% at 1010, and decreases up to 12.2% at 109. The mean
radiative Nu also reduces up to 13.6% and 11.2% respectively. An increment of Ra from 109

to 1010 results in an increment of the mean convective Nu up to 31.4% at h/L = 0.7 and up
to 34.12% at h/L = 0.2.

Figure 9 presents the snapshots of temperature contours and streamlines for the case
of ε̃ = 0.9, Ra = 109, Pr = 0.7, h/L = 0.7. A growth of the heat conductivity ratio by a factor
of 10 due to a raise of the heat conductivity of the solid wall material results to both more
intensive cooling and heating of the analyzed area. At τ = 10, 000 and λw,air = 100 the flow
in the cavity does not yet correspond to a stationary position. This can be seen from the
temperature patterns within the heat-conducting walls.
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An increase in of an air circulation rate is observed with a growth of the heat conduc-
tivity ratio:

|Ψ|λw,air=100
max = 0.0096 < |Ψ|λw,air=1000

max = 0.0108 < |Ψ|λw,air=10,000
max = 0.0113.

Figure 10 presents the time series of mean convective Nu on the left border for different
thermal conductivity ratio values at ε̃ = 0.9, Ra = 109, Pr = 0.7, h/L = 0.2. According to the
values of the mean convective Nu depending on Ra, two facts can be noted, namely, with a
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growth of heat conductivity ratio, the time required to achieve a steady flow in the cavity
decreases significantly, and a growth of λw,air results to a raising the values of the average
convective Nusselt number. A similar dependence is also found for the average radiative
Nu at the characteristic boundary.
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4. Conclusions

In this study, turbulent free convection combined with surface thermal radiation in
a cavity with a solid obstacle was computationally studied for a wide range of partition
heights, surface emissivity values, Rayleigh numbers and thermal conductivity values.
The heat flux in the cavity arises due to the temperature difference at the outer surfaces of
vertical walls. The problem was worked out by the finite difference algorithm on a non-
uniform mesh. The presence of a partition has an essential influence on the temperature and
velocity properties of the considered cavity. Mean convective Nu is an increasing function
of heat conductivity and Ra but it is a decreasing function of surface emissivity. It was
shown that by changing the height of the partition it is possible to manage the processes
of energy transport in the solution area. This work demonstrates a significant impact of
surface thermal radiation on the fluid flow and heat transport within the bounded cavity.
In this regard, it is necessary to include in thermal analysis the radiation as one of the main
phenomenon of heat transport.
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Nomenclature

Fk–i view factor between k-th and i-th elements of a cavity
L size (m)
g gravity acceleration (m/s2)
k turbulence kinetic energy (m2/s2)
h partition heights (m)
K non-dimensional turbulent kinetic energy
Gk = − νt

Prt
∂T
∂y generation/destruction of buoyancy turbulent kinetic energy

E non-dimensional dissipation rate of turbulent kinetic energy
Ra = gβ(Th − Tc)L3/ναair Rayleigh number
Nucon average convective Nusselt number
Nrad = σT4

h L/[λair(Th − Tc)] radiation parameter
Pr = ν/αair Prandtl number
Nurad average radiative Nusselt number

Pk = νt

[
2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+
(

∂u
∂y + ∂v

∂x

)2
]

shearing production

Prt = νt/αt turbulent Prandtl number
Rk non-dimensional radiosity of the k-th element of an enclosure
Qrad non-dimensional net radiative heat flux
Th temperature at the left border (K)
t time (s)
Tc temperature at the right border (K)
T temperature (K)
Θf non-dimensional temperature of fluid
Θ non-dimensional temperature
u1, u2 velocity components for x and y axis (m/s)
U1, U2 non-dimensional velocity components for X and Y axis
Θw non-dimensional temperature of walls
X, Y non-dimensional Cartesian coordinates
ε dissipation rate of turbulent kinetic energy (m2/s3)
ζ = Tc/Th temperature parameter
β factor of volumetric heat expansion (1/K)
αw thermal diffusivity of the wall material (m2/s)
αair air thermal diffusivity (m2/s)
αi,j = αi/αj thermal diffusivity ratio
ε̃ surface emissivity of inner surfaces
λair air heat conductivity (W/mK)
λw heat conductivity of the wall material (W/mK)
λi,j = λi/λj heat conductivity ratio
ν kinematic viscosity (m2/s)
ψ stream function (m2/s)
ω vorticity (s−1)
νt = cµk2/ε turbulent viscosity (m2/s)
Ψ non-dimensional stream function

ξ = a + b−a
2

{
1 + tg

[
π$
b−a

(
X− a+b

2

)]
/tg
[

π
2$
]}

,

η = a + b−a
2

{
1 + tg

[
π$
b−a

(
Y− a+b

2

)]
/tg
[

π
2$
]} new dimensionless independent variables

Ω non-dimensional vorticity
τ non-dimensional time
σ Stefan–Boltzmann constant (W/m2K4)
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