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Abstract: The overlap function, a particular kind of binary aggregate function, has been extensively
utilized in decision-making, image manipulation, classification, and other fields. With regard to
overlap function theory, many scholars have also obtained many achievements, such as pseudo-
overlap function, quasi-overlap function, semi-overlap function, etc. The above generalized overlap
functions contain commutativity and continuity, which makes them have some limitations in practical
applications. In this essay, we give the definition of pseudo-quasi overlap functions by removing the
commutativity and continuity of overlap functions, and analyze the relationship of pseudo-t-norms
and pseudo-quasi overlap functions. Moreover, we present a structure method for pseudo-quasi
overlap functions. Then, we extend additive generators to pseudo-quasi overlap functions, and we
discuss additive generators of pseudo-quasi overlap functions. The results show that, compared
with the additive generators generated by overlap functions, the additive generators generated by
pseudo-quasi overlap functions have fewer restraint conditions. In addition, we also provide a
method for creating quasi-overlap functions by utilizing pseudo-t-norms and pseudo automorphisms.
Finally, we introduce the idea of left-continuous pseudo-quasi overlap functions, and we study fuzzy
inference triple I methods of residual implication operators induced by left-continuous pseudo-quasi
overlap functions. On the basis of the above, we give solutions of pseudo-quasi overlap function
fuzzy inference triple I methods based on FMP (fuzzy modus ponens) and FMT (fuzzy modus
tollens) problems.

Keywords: fuzzy logic; overlap function; additive generator; triple I method; residual implication
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1. Introduction

To better classify the background and objects in images, Bustine [1] proposed the
definition of overlap functions in 2009. Based on the overlap function, some academics
have conducted extensive research and widely applied it to image processing, classification,
and decision-making problems [2–4]. Overlap functions are only applicable to two variables.
In 2016, Gómez extended such functions to more than two variables and proposed the idea
of n-dimensional overlap functions [5]. Because there are not enough samples with fuzzy
rules that have a high degree of compatibility with the previous section of fuzzy rules in
the system, some categorization issues do not perform well when the matching degree
is calculated by using n-dimensional overlap functions. In view of the above factors, in
2019, Miguel replaced the constraint on boundaries in the notion of n-dimensional overlap
functions, that is, the necessary and sufficient conditions, with a sufficient condition.
Miguel also gave the notion of n-dimensional general overlap functions [6], and gave the
construction method of such functions. Furthermore, the continuity in overlap functions
are not particularly necessary, and the lattice is the theoretical basis for the development of
image-processing technology and application. Therefore, in 2019, Paiva et al. [7] removed
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the continuity in overlap functions, proposed the quasi-overlap functions on bounded
lattices, and focused on the study of their construction on bounded posets. For the purpose
of getting a more comprehensive conclusion regarding the fuzzy operator caused by the
aggregate function, Zhang et al. [8] broadened the scope of the general overlap function
by deleting its right continuity, introduced the new semi-overlap function, and discussed
a few of their correlative algebraic features and the associated operator with residual
implications. In recent years, in order to better apply overlap functions and grouping
functions to real life, many scholars have also proposed interval-valued overlap functions,
general interval-valued overlap functions, and interval-valued pseudo-overlap functions,
etc. [9].

In 1965, Zadeh introduced fuzzy sets [10] to better handle the uncertainty, imprecision
and fuzziness of information. Numerous academics have extensively researched fuzzy
set theory and used it in pattern recognition, medical diagnosis, fuzzy control, and other
fields [11–13]. Fuzzy inference is an essential aspect of fuzzy set theory, and acquired many
achievements [14–20]. The core content of fuzzy reasoning are fuzzy modus ponens (FMP)
and fuzzy modus tollens (FMT).

FMP: given rule A −→ B,
and input A∗,
output B∗.

FMT: given rule A −→ B,
and input B∗,
output A∗.

where X, Y are nonempty universe, F(x), F(y) are fuzzy sets on X, Y, separately, that is,
A(x), A∗(x) ∈ F(x), B(y), B∗(y) ∈ F(y). Zadeh proposed the CRI algorithm [21], but it
lacks a strict logic basis and does not have reducibility. Consequently, Wang presented
the full implication triple I algorithm [22], which effectively made up for the shortcom-
ings of the CRI algorithm and brought it into the fuzzy logic system. With regard to
the triple I algorithm, several professors have done in-depth research and had many
achievements [23–28]. Wang and Fu [29] give the expression of triple I method solution
according to left-continuous t-norms and operators with residual implication. Afterward,
Abrusci and Ruet [30] first introduced the definition of nonsymmetric logic, which ex-
tended both linear and cyclic linear logic. As is known to all, noncommutative fuzzy logic
plays significant roles in uncertain fuzzy inference, decision-making problems, and fuzzy
expert database systems, etc. In 2001, Flondor [31] gave the notion of the pseudo t-norm
(i.e., nonsymmetric t-norm), pseudo-BL algebra, and discussed correlation properties of
the pseudo t-norm. Subsequently, Luo [32] structured the triple I methods according to
operators with residual implication produced by left-continuous pseudo-t-norms.

Considering the above background and current state of research both domestically
and internationally, we have the following research motivations.

(1) Currently, overlap functions extended by most scholars contain commutativity or
symmetry, which makes them have some limitations in image processing, multiattribute
decision-making, classification problem, etc. Thus, we delete the symmetry and conti-
nuity of overlap functions, and introduce the concept of pseudo-quasi overlap functions.
Furthermore, we also study its related properties.

(2) There is currently minimal research on the combination of various generalized
overlap functions and fuzzy reasoning methods. Additionally, the properties of pseudo-
quasi overlap functions and pseudo-t-norms are somewhat similar, that is, they do not
satisfy commutativity and continuity. Moreover, some scholars have studied fuzzy rea-
soning algorithms of pseudo-t-norms. Thus, based on the above theoretical basis, we
propose the definition of left-continuous pseudo-quasi overlap functions. In addition, we
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study fuzzy inference triple I methods of residual implications provided by left-continuous
pseudo-quasi overlap functions.

The remaining portions of the essay are organized as follows. In Section 2, we give
some previous knowledge about overlap functions, pseudo-t-norms and implication oper-
ators. In Section 3, we propose the ideal of pseudo-quasi overlap functions, and analyze
the relationship of pseudo-t-norms and pseudo-quasi overlap functions. Furthermore,
we present construction methods of pseudo-quasi overlap functions. In Section 4, we
generalize additive generators to pseudo-quasi overlap functions, and study additive gen-
erators of pseudo-quasi overlap functions. Likewise, we investigate pseudo-quasi overlap
functions produced by pseudo-t-norms and pseudo-automorphisms. Of course, we also
give some of its related properties, such as its migrative, homogeneity, and idempotent
properties. In Section 5, we combine triple I methods with residual implication operators
generated by left-continuous pseudo-quasi overlap functions, and discuss fuzzy inference
triple I methods of pseudo-quasi overlap functions. More importantly, we give solutions of
pseudo-quasi overlap function fuzzy inference triple I methods for FMP and FMT problems.
In Section 6, we give summary of this paper and some prospects for future research.

2. Preliminaries

We summarize some fundamental knowledge and relative notions in this part.

Definition 1 ([33]). Let M be a nondecreasing binary function defined on [0, 1]. M is referred to
as an aggregation function when it satisfies M(1, 1) = 1, and M(0, 0) = 0.

Definition 2 ([31]). Assume PT be a binary operator defined on [0, 1]. PT is referred to as a
pseudo-t-norm when it fulfills
(PT1) PT is associative;
(PT2) PT is nondecreasing; and
(PT3) PT has neutrality property, i.e., PT(x, 1) = PT(1, x) = x.

Definition 3 ([31]). Assume PS be a binary operator defined on [0, 1]. PS is referred to as a
pseudo-t-conorm when it fulfills
(PS1) PS is associative;
(PS2) PS is non-decreasing; and
(PS3) PS has neutrality property, i.e., PS(x, 0) = PS(0, x) = 0.

Definition 4 ([34]). Let I be a binary operator defined on [0, 1]. I is known as a fuzzy implication
when it fulfills ∀x, y ∈ [0, 1], the first variable of I does not increase, the second variable of I does
not decrease, and I satisfies the constraint on boundaries, that is, I(0, 0) = I(1, 1) = 1, I(1, 0) = 0.

Definition 5 ([35]). Assume I to be a fuzzy implication.
(i) I is said to fulfill the neutrality property (i.e., NP) if ∀x ∈ [0, 1] such that I(1, x) = x;
(ii) I is said to fulfill the exchange principle (i.e., EP) if ∀x, y, z ∈ [0, 1] such that I(x, I(y, z)) =
I(y, I(x, z));
(iii) I is said to fulfill the identity principle (i.e., IP) if ∀x ∈ [0, 1] such that I(x, x) = 1;
(iv) I is said to fulfill the left ordering property (i.e., LOP) if ∀x, y ∈ [0, 1], x ≤ y such that
I(x, y) = 1;
(v) I is said to fulfill the right ordering property (i.e., ROP) if ∀x, y ∈ [0, 1], I(x, y) = 1 such that
x ≤ y;
(vi) I is said to fulfill the ordering property (i.e., OP) if x, y ∈ [0, 1], x ≤ y⇔ I(x, y) = 1;
(vii) I is said to fulfill the consequent boundary (i.e., CB) if x, y ∈ [0, 1] such that y ≤ I(x, y);
(viii) I is said to fulfill the the subiterative Boolean law (i.e., SIB) if x, y ∈ [0, 1] such that
I(x, I(x, y)) ≥ I(x, y);
(ix) I is said to fulfill the iterative Boolean law (i.e., IB) if x, y ∈ [0, 1] such that I(x, I(x, y)) =
I(x, y);
(x) I is said to fulfill the strong boundary condition (i.e., SBC) if x ∈ (0, 1] such that I(x, 0) = 0;
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(xi) I is said to fulfill the left boundary condition (i.e., LBC) if x ∈ [0, 1] such that I(0, x) = 1;
(xii) I is said to fulfill the right boundary condition (i.e., RBC) if x ∈ [0, 1] such that I(x, 1) = 1;
(xiii) I is said to fulfill the exchange principle (i.e., EP1) if I(x, I(x, y)) = 1 such that I(y, I(x, z)) = 1;
(xiv) I is said to fulfill the pseudo-exchange principle (i.e., PEP) if I(x, z) ≥ y⇔ I(y, z) ≥ x.

Definition 6 ([1]). A binary function O: [0, 1]2 → [0, 1] is referred to as an overlap function when
it fulfills ∀x, y ∈ [0, 1],
(O1) O is symmetric;
(O2) O(x, y) = 0⇔ x = 0 or y = 0;
(O3) O(x, y) = 1⇔ x = 1 and y = 1;
(O4) O is nondecreasing;
(O5) O is continuous.

Definition 7 ([7]). A binary function QO: [0, 1]2 → [0, 1] is referred to as a quasi-overlap function
when it satisfies (O1)− (O4).

Definition 8 ([1]). A binary function G: [0, 1]2 → [0, 1] is called a group function when it fulfills
∀x, y ∈ [0, 1],
(G1) G is symmetric;
(G2) G(x, y) = 0⇔ x = 0 and y = 0;
(G3) G(x, y) = 1⇔ x = 1 or y = 1;
(G4) G is nondecreasing;
(G5) G is continuous.

Definition 9 ([7]). A binary function QG : [0, 1]2 → [0, 1] is called a quasi-group function when
it satisfies properties (G1)–(G4).

Lemma 1 ([36]). Let f : [a, b]→ [c, d] be a unary function. If f is monotonous, then f−1 is also
monotonous, and f−1, f have monotonicity consistency.

Definition 10 ([37]). Assume A : [0, 1]2 → [0, 1] and B : [0, 1]2 → [0, 1] to be two bivariate
aggregation functions. A is known as B−migrative when it satisfies ∀x, y ∈ [0, 1],

A(B(x, y), z) = A(x, B(y, z)).

3. Pseudo-Quasi Overlap Function and Pseudo-Quasi Group Function

In this part, we propose the definition of pseudo-quasi overlap functions and pseudo-
quasi group functions. More importantly, we propose some properties about pseudo-quasi
overlap functions and pseudo-quasi group functions.

Definition 11. A binary function PQO: [0, 1]2 → [0, 1] is known as a pseudo-quasi overlap
function when it fulfills ∀x, y ∈ [0, 1],

(PQO1) PQO(x, y) = 0⇔ x = 0 or y = 0;
(PQO2) PQO(x, y) = 1⇔ x = 1 and y = 1; and
(PQO3) PQO is non-decreasing.

Example 1. (1) For ∀x, y ∈ [0, 1], a, b ∈ (0, 1), a 6= b, the function PQO : [0, 1]2 → [0, 1]
provided by

PQO(x, y) =
{

xy i f 0 < x < a, 0 < y < b
min{x, y} otherwise

is a pseudo-quasi overlap function.
(2) For ∀x, y ∈ [0, 1], k, l ≥ 1, k 6= l, a ∈ (0, 1), the function PQO : [0, 1]2 → [0, 1] provided by
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PQO(x, y) =

{
xkyl , i f 0 ≤ x ≤ a, 0 ≤ y ≤ a
2xkyl

x+y otherwise

is a pseudo-quasi overlap functions.
(3) For ∀x, y ∈ [0, 1], the function PQO : [0, 1]2 → [0, 1] provided by

PQO(x, y) =

{
1+(2x−1)2(2y−1)4

2 , i f 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1
xy otherwise

is a pseudo-quasi overlap function.
Certainly, we give the graphs of the above three pseudo-quasi overlap functions respectively, as

shown in Figure 1.

Figure 1. Pseudo-quasi overlap functions PQO.

Because properties of pseudo-quasi overlap functions are similar to properties of
pseudo t-norms, they are not commutative and continuous. Thus, the following consider
the relationship between pseudo-quasi overlap functions and pseudo-t-norms.

Definition 12. A pseudo-t-norm is positive if 0 < x ≤ 1, 0 < y ≤ 1 such that PT(x, y) > 0.

Definition 13. An element is known as a nontrivial zero divisor of pseudo-t-norms when x ∈
(0, 1], y ∈ (0, 1] fulfills PT(x, y) = 0.

Theorem 1. Let PQO : [0, 1]2 → [0, 1] be a bivariate function.

(1) If PQO is an associative and continuous pseudo-quasi overlap function, then PQO is a positive
pseudo-t-norm.

(2) If PQO is a positive pseudo t-norm, then PQO is an associative pseudo-quasi overlap function.
(3) If PQO is a pseudo-t-norm and it has no nontrivial zero divisor, then PQO is an associative

pseudo-quasi overlap function.

Proof. (1) Obviously, PQO satisfied (PT1), (PT2). Because PQO is an associative and
continuous pseudo-quasi overlap function, it follows that PQO(0, 1) = 0, PQO(1, 1) = 1.
Then, for ∀x ∈ [0, 1], we can find y, and 0 ≤ y ≤ 1, PQO(y, 1) = x. Consequently,

PQO(x, 1) = PQO(PQO(y, 1), 1) = PQO(y, PQO(1, 1)) = PQO(y, 1) = x.

Analogously, PQO(1, x) = x. Thus, PQO satisfies (PT3). Therefore, PQO is a pseudo-
t-norm. Indeed, PQO is a positive pseudo-t-norm.
(2) Directly, PQO satisfied(PQO2), (PQO3). Because PQO is a pseudo-t-norm. Then

PQO(x, 0) = PQO(0, x) = PQO(0, 0) = 0.

Moreover, PQO is positive, so we know that 0 < x ≤ 1, 0 < y ≤ 1, and PQO(x, y) > 0.
Hence, if PQO(x, y) = 0, then x = 0 or y = 0. Thus, PQO satisfies (PQO1). Therefore, PQO
is a pseudo-quasi overlap function. Moreover, PQO satisfies associativity. Consequently,
PQO is an associative pseudo-quasi overlap function.
(3) In fact, PQO satisfies (PQO2), (PQO3). Suppose that PQO has no nontrivial zero divi-
sor. In that way, if 0 < x ≤ 1, and 0 < y ≤ 1, so PQO(x, y) 6= 0. Hence, if PQO(x, y) = 0,



Axioms 2023, 12, 217 6 of 27

then x = 0 or y = 0. On the other hand, consider that PQO is a pseudo-t-norm, we
know that

PQO(x, 0) = PQO(0, x) = PQO(0, 0) = 0.

Thus, PQO satisfies (PQO1). Therefore, PQO is a pseudo-quasi overlap function.
Indeed, PQO is an associative pseudo-quasi overlap function.

All quasi(pseudo)-overlap function are pseudo-quasi overlap functions. A contin-
uous (commutative) pseudo-quasi overlap function is a quasi(pseudo)-overlap function.
For the following theorem, we consider converting pseudo-quasi overlap functions into
quasi(pseudo)-overlap functions.

Theorem 2. Let QO1 : [0, 1]2 → [0, 1] and QO2 : [0, 1]2 → [0, 1] be two bivariate functions. If
PQO is a pseudo-quasi overlap function such that

QO1(x, y) = PQO(min{x, y}, max{x, y})
QO2(x, y) = PQO(max{x, y}, min{x, y}).

Then, QO1 and QO2 are two quasi-overlap functions.

Proof. If PQO is a pseudo-quasi overlap function. Then,

QO1(x, y) = PQO(min{x, y}, max{x, y}) = PQO(min{y, x}, max{y, x}) = QO1(y, x).

Hence, QO1 satisfies (O1). If

QO1(x, y) = PQO(min{x, y}, max{x, y}) = 0, then, min{x, y}max{x, y} = 0.

Hence, x = 0 or y = 0. Conversely, if x = 0 or y = 0, then, PQO(min{x, y},
max{x, y}) = 0. Hence, QO1(x, y) = 0. Thus, QO1 satisfies (O2). Similarly, QO1 satisfies
(O3). Take ∀x, y, z ∈ [0, 1], y ≤ z, we know that min{x, y} ≤ min{x, z}, and max{x, y} ≤
max{x, z}. Moreover, according to (O2), we know that

QO1(x, y) = PQO(min{x, y}, max{x, y}) ≤ PQO(min{x, z}, max{x, z}) = QO1(x, z).

Therefore, QO1 satisfies (O4). Indeed, QO1 is a quasi-overlap function. Similarly, QO2
is a quasi-overlap function.

Definition 14. An aggregation function is positive if 0 < x ≤ 1, 0 < y ≤ 1 fulfills A(x, y) > 0.

Theorem 3. Let A : [0, 1]2 → [0, 1] be an aggregation function, and PQO is a pseudo-quasi
overlap function such that

PO(x, y) = A(PQO(x, y), PQO(y, x))
(QO(x, y) = A(PQO(x, y), PQO(y, x))).

Then, PO(QO) is a pseudo(quasi)-overlap function when and only when

(1) A is continuous (commutative);
(2) A is positive; and
(3) A(x, y) = 1⇔ x = 1 and y = 1.

Proof. (Necessity) Assume that PO is a pseudo-overlap function, and

PO(x, y) = A(PQO(x, y), PQO(y, x)).

Items (1) is direct. About (2), (3). If A(PQO(x, y), PQO(y, x)) = 0, i.e.,

PQO(x, y) = PQO(y, x) = 0.

Consequently, x = 0 or y = 0. Hence, if x ∈ (0, 1], y ∈ (0, 1], then A(x, y) > 0, that is,
A is positive. Thus, A satisfies (2). Similarly, A satisfies (3).

(Sufficiency) Obviously, PO satisfies (O5). Suppose that A satisfies (2) and
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PO(x, y) = A(PQO(x, y), PQO(y, x)).

If PO(x, y) = A(PQO(x, y), PQO(y, x)) = 0 and A is positive, then PQO(x, y) = 0 or
PQO(x, y) = 0. Consequently, x = 0 or y = 0. Conversely, x = 0 or y = 0, that is,

PQO(x, y) = PQO(y, x) = 0.

Hence, PO(x, y) = A(PQO(x, y), PQO(y, x)) = A(0, 0) = 0. Thus, PO satisfies (O2).
Similarly, if A satisfies (3), we know that PO satisfies (O3). Take ∀x, y, z ∈ [0, 1], y ≤ z. Then,

PO(x, y) = A(PQO(x, y), PQO(y, x)) ≤ A(PQO(x, z), PQO(z, x)) = PO(x, z).

Thus, PO satisfies (O4). Therefore, PO is a pseudo-overlap function. Similarly, we get
that QO is a quasi-overlap function.

Next, we present an expression form of pseudo quasi-overlap functions.

Lemma 2. The function PQO : [0, 1]2 → [0, 1] is a pseudo-quasi overlap function if and only if

PQO(x, y) = f (x,y)
f (x,y)+h(x,y) .

Take two binary functions f , h defined on [0, 1], and fulfilling the following:

(1) f is asymmetric or h is asymmetric;
(2) f is non-decreasing and h is non-increasing;
(3) f (x, y) = 0⇔ x = 0 or y = 0;
(4) h(x, y) = 0⇔ x = 1 and y = 1; and
(5) f is discontinuous or h is discontinuous.

Proof. The proof is analogous to [1].

Example 2. Take a ∈ (0, 1), f : [0, 1]2 → [0, 1], h : [0, 1]2 → [0, 1], separately, given by

f (x, y) = (xy)
1
2

h(x, y) =
{

max(−x + 1,−y2 + 1) i f 0 ≤ x ≤ a, 0 ≤ y ≤ a
max(−x + 1,−y + 1) otherwise

.

Obviously, f is symmetric and continuous and g is asymmetric and discontinuous and satisfies
the conditions of Lemma 2. Thus, ∀x, y ∈ [0, 1], a ∈ (0, 1)

PQO(x, y) =


(xy)

1
2

(xy)
1
2 +max(−x+1,−y2+1)

i f 0 ≤ x ≤ a, 0 ≤ y ≤ a

(xy)
1
2

(xy)
1
2 +max(−x+1,−y+1)

otherwise

is a pseudo-quasi overlap function.
We give the graphs of the above f , h, PQO = f

f+h , respectively, as shown in Figure 2.

Figure 2. f , h, PQO =
f

f+h .

From Figure 2, we know the following.
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(i) The image of f is continuous. The reason why the part indicated by the green arrow appears
is that the differential value of the f at x → 0+ or y → 0+ is too large, i.e., lim

x→0+
∂ f (x,y)

∂x =

lim
y→0+

∂ f (x,y)
∂y = ∞.

(ii) Similarly, the discontinuity in the image of PQO = f
f+h is mainly reflected in the part indicated

by the red arrow, excluding the part indicated by the green arrow. The reason why the part indicated
by the green arrow appears is that the differential value of the PQO = f

f+h at x → 0+ or y→ 0+

is too large, i.e., lim
x→0+

∂PQO(x,y)
∂x = lim

y→0+
∂PQO(x,y)

∂y = ∞.

Corollary 1. If the condition (1) of Lemma 2 is replaced by (1)’: f, h is symmetric. Then, PQO is a
quasi-overlap function.

Corollary 2. If the condition (5) of Lemma 2 is replaced by (5)’: f, h is continuous. Then, PQO is a
pseudo-overlap function.

Corollary 3. If the condition (1), (5) of Lemma 2 is replaced by (1)’: f, h is symmetric, (5)’: f, h is
continuous. Then, PQO given by [1] is an overlap function.

Definition 15. A binary function PQG : [0, 1]2 → [0, 1] is a pseudo-quasi group function if
∀x, y ∈ [0, 1], such that
(PQG1) PQG(x, y) = 0⇔ x = 0 and y = 0;
(PQG2) PQG(x, y) = 1⇔ x = 1 or y = 1;
(PQG3) PQG is nondecreasing.

Example 3. (1) For ∀x, y ∈ [0, 1], a, b ∈ (0, 1), a 6= b, the function PQG : [0, 1]2 → [0, 1]
provided by

PQG(x, y) =
{ x+y−xy

2 i f x ∈ [0, a], y ∈ [0, b]
max(x, y) otherwise

is a pseudo-quasi group function.
(2) For ∀x, y ∈ [0, 1], a ∈ (0, 1), the function PQG : [0, 1]2 → [0, 1] provided by

PQG(x, y) =

{
x+y−2xy

2−x−y i f x, y ∈ [0, a]
x + (1− x)(2y− y2) otherwise

is a pseudo-quasi group function.
(3) For ∀x, y ∈ [0, 1], a, b ∈ (0, 1), the function PQG : [0, 1]2 → [0, 1] provided by

PQG(x, y) =

{
1−(1−2x)2(1−2y)4

3 i f x ∈ [0, a], y ∈ [0, b]
max(x, y) otherwise

is a pseudo-quasi group function.
We give the graphs of the above three pseudo-quasi group functions in Figure 3.

Figure 3. Pseudo-quasi group functions PQG.
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Indeed, the properties of pseudo-quasi group functions are similar to properties of
pseudo t-conorms. They are not commutative and continuous. Consequently, the following
consider the relationship between pseudo-quasi group functions and pseudo t-conorms.

Theorem 4. Let PQG : [0, 1]2 → [0, 1] be a bivariate function.

(1) If PQG is an associative and continuous pseudo-quasi group function, then PQG is a positive
pseudo t-conorm.

(2) If PQG is a pseudo-t-conorm, and xy < 1, PQO(x, y) < 1, then PQG is an associative
pseudo-quasi overlap function.

Proof. (1) Obviously, PQG satisfies (PS1), (PS2). Because PQG is an associative and
continuous pseudo-quasi overlap function, it follows that PQG(0, 0) = 0, PQG(1, 0) = 1.
Then, for ∀x ∈ [0, 1], we can find y fulfills 0 ≤ y ≤ 1, and PQG(y, 0) = x. Consequently,

PQG(x, 0) = PQG(PQG(y, 0), 0) = PQG(y, PQG(0, 0)) = PQG(y, 0) = x.

Analogously, PQG(0, y) = y. Thus, PQG satisfied (PS3). Therefore, PQG is a pseudo-
t-conorm.
(2) Directly, PQG satisfies (PQG1), (PQG3). Because PQG is a pseudo-t-conorm, then

PQG(1, x) = PQG(x, 1) = PQG(1, 1) = 1.

Moreover, if xy < 1, then PQO(x, y) < 1. Hence, if PQG(x, y) = 1, then x = 1 and
y = 1. Thus, PQG satisfies (PQG2). Therefore, PQG is a pseudo-quasi group function.
Besides, PQG satisfies associativity. Consequently, PQG is an associative pseudo-quasi
group function.

Obviously, all quasi(pseudo)-group functions are pseudo-quasi group functions. A
continuous (commutative) pseudo-quasi group function is a quasi(pseudo)-group function.
For the following theorem, we consider converting pseudo-quasi overlap groups into
quasi(pseudo)-overlap groups.

Theorem 5. Assume QG1 : [0, 1]2 → [0, 1] and QG2 : [0, 1]2 → [0, 1] to be two bivariate
functions. If PQG is a pseudo-quasi group function such that

QG1(x, y) = PQG(min{x, y}, max{x, y})
QG2(x, y) = PQG(max{x, y}, min{x, y}),

then, QG1 and QG2 are two quasi-overlap group functions.

Proof. The proof is analogous to Theorem 2.

Theorem 6. Let A : [0, 1]2 → [0, 1] be an aggregation function, and PQG be a pseudo-quasi
group function, such that

PG(x, y) = A(PQG(x, y), PQG(y, x))
(QG(x, y) = A(PQG(x, y), PQG(y, x))).

Then, PG(QG) is a pseudo(quasi)-group function if and only if

(1) A is continuous (commutative);
(2) A(x, y) = 0⇔ x = 0 and y = 0; and
(3) A(x, y) = 1⇒ x = 1 or y = 1.

Proof. The proof is analogous to Theorem 3.

Next, we present an expression form of pseudo-quasi group functions.

Lemma 3. Let f : [0, 1]2 → [0, 1] and h : [0, 1]2 → [0, 1] be two unary functions, and PQG :
[0, 1]2 → [0, 1] provided by
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PQG(x, y) = − f (x,y)
f (x,y)+h(x,y) + 1.

Then, PQG is a pseudo-quasi group function if and only if it fulfills the following requirements:

(1) f is asymmetric or h is asymmetric;
(2) f is increasing and h is decreasing;
(3) f (x, y) = 0⇔ x = 1 or y = 1;
(4) h(x, y) = 0⇔ x = 0 and y = 0; and
(5) f is discontinuous or h is discontinuous.

Proof. The proof is analogous to Lemma 2.

Example 4. Take a ∈ (0, 1), f : [0, 1]2 → [0, 1], h : [0, 1]2 → [0, 1], respectively, given by

f (x, y) = (1− x− y + xy)1/2

h(x, y) =
{

max(x, y2) i f 0 ≤ x ≤ a, 0 ≤ y ≤ a
max(x, y) otherwise

.

Obviously, f is symmetric and continuous, and h is asymmetric and discontinuous and
satisfies the conditions of Lemma 3. Thus, ∀x, y ∈ [0, 1], a ∈ (0, 1),

PQG(x, y) =

 −
(1−x−y+xy)1/2

(1−x−y+xy)1/2+max(x,y2)
+ 1 i f 0 ≤ x ≤ a, 0 ≤ y ≤ a

− (1−x−y+xy)1/2

(1−x−y+xy)1/2+max(x,y) + 1 otherwise

is a pseudo-quasi group function.
We give the graphs of the above f , h, PQG = − f

f+h + 1, respectively, as shown in Figure 4.

Figure 4. f , h, PQG = − f
f+h + 1.

From Figure 4, we know the following.

(i) The image of f is continuous. The reason why the part indicated by the green arrow appears

is that the differential value of the f at x → 0+ or y → 0+ is too large, i.e., lim
x→0+

∂ f (x,y)
∂x =

lim
y→0+

∂ f (x,y)
∂y = ∞.

(ii) Similarly, the discontinuity in the image of PQG = − f
f+h + 1 is mainly reflected in the part

indicated by the red arrow, excluding the part indicated by the green arrow. The reason why the
part indicated by the green arrow appears is that the differential value of the PQG = − f

f+h + 1

at x → 1− or y→ 1− is too large, i.e., lim
x→1−

∂PQG(x,y)
∂x = lim

y→1−
∂PQG(x,y)

∂y = ∞.

Corollary 4. If the condition (1) of Lemma 3 is replaced by (1)’: f, h is symmetric. Then, PQG is a
quasi-overlap group.

Corollary 5. If the condition (5) of Lemma 3 is replaced by (5)’: f, h is continuous. Then, PQG is
a pseudo-overlap group.
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Corollary 6. If the condition (1), (5) of Lemma 3 is replaced by (1)’: f, h is symmetric, (5)’: f, h is
continuous. Then, PQG is a group function.

Finally, we gain a means to structure pseudo-quasi overlap (group) functions by
negative functions and pseudo-quasi group (overlap) functions.

Theorem 7. Assume N : [0, 1] → [0, 1] to be a negation function and PQO is a pseudo-quasi
overlap function. Then, there exists a pseudo-quasi group function PQG such that ∀x, y ∈ [0, 1],

PQG(x, y) = N(PQO(N(x), N(y))).

Proof. Suppose that N is a fuzzy negation, and PQO is a pseudo-quasi overlap function.
We need to prove that the function PQG : [0, 1]2 → [0, 1], defined by

PQG(x, y) = N(PQO(N(x), N(y))),

is a pseudo-quasi group function. If x = y = 0, then N(x) = N(y) = 1. Consequently,

PQO(N(x), N(y)) = PQO(1, 1) = 1.

Thus, PQG(0, 0) = N(PQO(N(x), N(y))) = N(1) = 0. Contrarily, if

PQG(x, y) = N(PQO(N(x), N(y))) = 0,

then PQO(N(x), N(y)) = 1. Consequently, N(x) = N(y) = 1. Thus, x = y = 0. Hence,
PQG satisfies (PQG1). Similarly, PQG satisfies (PQG2). Consider y, z ∈ [0, 1] and y ≤ z.
Then, N(z) ≤ N(y). So, PQO(N(x), N(z))) ≤ PQG(N(x), N(y))). Thus,

PQG(x, y) = N(PQO(N(x), N(y))) ≤ N(PQO(N(x), N(z))) = PQG(x, z).

Hence, PQG satisfies (PQG3). Therefore, PQG is a pseudo-quasi group function.

Theorem 8. Let N : [0, 1] → [0, 1] be a negation function, and PQG be a pseudo-quasi group
function. Then, there exists a pseudo-quasi overlap function PQO, such that ∀x, y ∈ [0, 1],

PQO(x, y) = N(PQG(N(x), N(y))).

Proof. The proof is analogous to Theorem 7.

Theorems 7 and 8 demonstrate the dual property of the pseudo-quasi overlap function
and pseudo-quasi group function with regard to the negation function.

4. Additive Generators of Pseudo-Quasi Overlap Functions

In [38], an overlap function is constructed by two continuous and decreasing univariate
functions. Thus, in this section, we give a method to structure pseudo-quasi overlap
functions by two decreasing univariate functions θ, ϑ, where θ satisfies discontinuity and ϑ
satisfies discontinuity.

4.1. Additive Generators for Pseudo-Quasi Overlap Functions

First and foremost, we give the notion of additive generators based on pseudo-quasi
overlap functions.

Definition 16. Let θ : [0, 1] → [0, ∞] and ϑ : [0, ∞] → [0, 1] be two decreasing functions,
where θ is discontinuous and ϑ is discontinuous. If a function PQO : [0, 1]2 → [0, 1] given
by PQO(x, y) = ϑ(pθ(x) + qθ(y)), for ∀x, y ∈ [0, 1], p 6= q, p, q ∈ (0, ∞), is a pseudo-quasi
overlap function, then, a pair (ϑ, θ) is said to be an additive generator of pseudo-quasi overlap
functions PQOϑ,θ . More specifically, PQOϑ,θ is called a pseudo-quasi function additively generated
by the pair (ϑ, θ).



Axioms 2023, 12, 217 12 of 27

Theorem 9. Let θ : [0, 1]→ [0, ∞] and ϑ : [0, ∞]→ [0, 1] be two decreasing functions, and let θ
be discontinuous or ϑ be discontinuous. For ∀x, y ∈ [0, 1], p 6= q, p, q ∈ (0, ∞), satisfying

(1) x = 0 when and only when θ(x) = ∞;
(2) x = 1 when and only when θ(x) = 0;
(3) x = 0 when and only when ϑ(x) = 1; and
(4) x = ∞ when and only when ϑ(x) = 0.

Then, PQO : [0, 1]2 → [0, 1] provided by

PQO(x, y) = ϑ(pθ(x) + qθ(y))

is a pseudo-quasi overlap function.

Proof. Suppose that θ, ϑ are decreasing functions, and fulfill (1), (2), (3), (4). If

PQO(x, y) = ϑ(pθ(x) + qθ(y)) = 0,

then pθ(x) + qθ(y) = ∞. Consequently, θ(x) = ∞ or θ(y) = ∞. Thus, x = 0 or y = 0.
Conversely, if x = 0 or y = 0, then PQO(x, y) = ϑ(pθ(x) + qθ(y)) = 0. Thus, PQO satisfies
(PQO1). In addition, if PQO(x, y) = ϑ(pθ(x) + qθ(y)) = 1; that is, pθ(x) + qθ(y) = 0,
and then θ(x) = 0 and θ(y) = 0. Hence, x = 1 and y = 1. Thus, PQO satisfies (PQO2).
Consider ∀x, y, z ∈ [0, 1], y ≤ z, i.e., θ(y) ≥ θ(z). Then, pθ(x) + qθ(y) ≥ pθ(x) + qθ(z).
Hence,

PQO(x, y) = ϑ(pθ(x) + qθ(y)) ≤ ϑ(pθ(x) + qθ(z)) = PQO(x, z).

Thus, PQO satisfies (PQO3). Therefore, PQO is a pseudo-quasi overlap function.

Example 5. Take θ : [0, 1]→ [0, ∞] and ϑ : [0, ∞]→ [0, 1], respectively, given by

θ(x) =
{

∞ i f x = 0
−2lnx otherwise

ϑ(x) =


0 i f x = ∞
( 1

e )
x i f 2 < x < ∞

1− x
e otherwise

.

Obviously, θ(x) is continuous, ϑ(x) is discontinuous, and satisfies the conditions of Theorem 9.
Then, for ∀x, y ∈ [0, 1], p 6= q, p, q ∈ (0, ∞),

PQO(x, y) = ϑ(pθ(x) + qθ(y)) =


0 i f xy = 0
x2py2q i f 0 < xpyq < 1

e
1 + 1

e ln(x2py2q) otherwise

is a pseudo-quasi overlap function.
We give the graphs of the above θ, ϑ, PQO = ϑ(pθ + qθ), in Figure 5.

Figure 5. θ, ϑ, PQO = ϑ(pθ + qθ).

Corollary 7. If p = q = 1 of Theorem 9, then, PQO is a quasi-overlap function.

Corollary 8. If θ, ϑ is continuous of Theorem 9, then, PQO is a pseudo-overlap function.
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Corollary 9. If p = q = 1, and θ, ϑ is continuous of Theorem 9. Then, PQO given by [38] is an
overlap function.

Table 1 shows that compared with the additive generators generated by overlap
functions, the additive generators generated by pseudo-quasi overlap functions have fewer
restriction conditions.

Table 1. Additive generators of overlap functions and pseudo-quasi overlap functions.

Function Additive Generators of
Overlap Functions

Additive Generators of Pseudo-Quasi
Overlap Functions

formula O = ϑ(pθ + qθ) PQO = ϑ(pθ + qθ)

p, q p = q = 1 p 6= q, p, q ∈ (0, ∞)

θ, ϑ decreasing decreasing

θ, ϑ continuous θ is discontinuous or ϑ is discontinuous

According to the above Theorem 9, we gain the following conclusions.

Corollary 10. Let θ : [0, 1]→ [0, ∞] and ϑ : [0, ∞]→ [0, 1] be two decreasing functions, and θ is
continuous, ϑ is discontinuous, and

(i) x = 1 when and only when θ(x) = 0; and
(ii)x = 0 when and only when θ(x) = ∞.

If a function PQO : [0, 1]2 → [0, 1] given by PQO(x, y) = ϑ(pθ(x) + qθ(y)) is a pseudo-
quasi overlap function, then the conditions listed below are true:

(1) x = ∞ when and only when ϑ(x) = 0; and
(2) x = 0 when and only when ϑ(x) = 1.

Proof. (1) Suppose thatPQO(x, y) = ϑ(pθ(x)+ qθ(y)) is a pseudo-quasi overlap function.
(Sufficiency) Considering that pθ is continuous, and pθ(1) = 0, pθ(0) = ∞. Then, for
∀x ∈ [0, ∞], we can find x′, 0 ≤ x′ ≤ 1, and satisfying pθ(x′) = x. More importantly,
according to (i), we know that

PQO(x′, 1) = ϑ(pθ(x′) + qθ(1)) = ϑ(pθ(x′)) = ϑ(x) = 0.

Then, x′ = 0. Thus, x = pθ(x′) = pθ(0) = ∞. (Necessity) If x = ∞, by item (ii), so

ϑ(x) = ϑ(∞) = ϑ(∞ + ∞) = ϑ(pθ(0) + qθ(0)) = PQO(0, 0) = 0.

Therefore, ϑ(x) = 0⇐⇒ x = ∞. (2) Analogous to item (1).

Corollary 11. Let θ : [0, 1]→ [0, ∞] and ϑ : [0, ∞]→ [0, 1] be two decreasing functions, and θ is
discontinuous or ϑ is discontinuous, and

(i) x = ∞ when and only when ϑ(x) = 0; and
(ii) x = 0 when and only when ϑ(x) = 1.

If the function PQO : [0, 1]2 → [0, 1] given by PQO(x, y) = ϑ(pθ(x) + qθ(y)) is a pseudo-
quasi overlap function, then the conditions listed below are true:

(1) x = 1 when and only when θ(x) = 0; and
(2) x = 0 when and only when θ(x) = ∞.

Proof. Suppose that PQO(x, y) = ϑ(pθ(x) + qθ(y)) is a pseudo-quasi overlap function.
(1) (Sufficiency) If θ(x) = 0. So, PQO(x, x) = ϑ(pθ(x) + qθ(x)) = ϑ(0) = 1. Thus, x = 1.
(Necessity) If x = 1, then PQO(x, x) = ϑ(pθ(x) + qθ(x)) = 1. Furthermore, according to
(ii), we know that, pθ(x) + qθ(x) = 0. Thus, θ(x) = 0.



Axioms 2023, 12, 217 14 of 27

(2) (Sufficiency) If θ(x) = ∞, then PQO(x, x) = ϑ(pθ(x) + qθ(x)) = ϑ(∞) = 0. Thus,
x = 0. (Necessity) If x = 0. So, PQO(x, 1) = ϑ(pθ(x) + qθ(1)) = 0. Moreover, according to
(i), (1), we know that, ∞ = pθ(x) + qθ(1) = pθ(x) + 0 = pθ(x). Thus, θ(x) = ∞.

Corollary 12. Let PQO1 : [0, 1]2 → [0, 1] and PQO2 : [0, 1]2 → [0, 1] be two pseudo-quasi func-
tions additively generated by the pair (ϑ1, θ1), (ϑ2, θ2), separately. Consider the following states:

(1) If θ1 ≤ θ2 and ϑ2 ≤ ϑ1, then PQO2 ≤ PQO1; and
(2) If θ2 ≤ θ1 and ϑ1 ≤ ϑ2, then PQO1 ≤ PQO2.

Proof. We presume that PQO1(x, y) = ϑ1(pθ1(x) + qθ1(y)),

PQO2(x, y) = ϑ2(pθ2(x) + qθ2(y)).

(1) If θ1 ≤ θ2, then pθ1(x) + qθ1(y) ≤ pθ2(x) + qθ2(y). Moreover ϑ2 ≤ ϑ1, we know that,

ϑ2(pθ2(x) + qθ2(y)) ≤ ϑ1(pθ2(x) + qθ2(y)) ≤ ϑ1(pθ1(x) + qθ1(y)).

Thus, PQO2 ≤ PQO1. (2) This is analogous to item (1).

4.2. Pseudo-Quasi Overlap Functions Generated by Pseudo-t-Norms and Pseudo Automorphisms

We recall the concept of pseudo automorphisms. Moreover, we introduce a method to con-
struct pseudo-quasi overlap functions generated by pseudo-t-norms and pseudo automorphisms.

Definition 17 ([38]). A unary function H : [0, 1]→ [0, 1] is a pseudo automorphism if

(1) H is non-decreasing;
(2) H fulfills continuity;
(3) x = 1 when and only when H(x) = 1; and
(4) x = 0 when and only when H(x) = 0.

Lemma 4 ([38]). A pseudo automorphism H is an automorphism if it is strictly increasing.

Theorem 10. Let H be a pseudo automorphism, and PT is a positive pseudo t-norm, and H is
discontinuous or PT is discontinuous. Then, a function PQOH,PT : [0, 1]2 → [0, 1] provided by

PQOH,PT(x, y) = H(PT(x, y))

is a pseudo-quasi overlap function.

Proof. Suppose that H is a pseudo automorphism, PT is positive, and H is discontinuous
or PT is discontinuous. So, ∀x ∈ [0, 1], PT(x, 0) = PT(0, x) = PT(0, 0) = 0. If x = 0 or
y = 0, then PQOH,T(x, y) = H(PT(x, y)) = H(0) = 0. Conversely, if

PQOH,T(x, y) = H(PT(x, y)) = 0,

then PT(x, y) = 0. More importantly, PT is positive. Hence, x = 0 or y = 0. Thus, PQOH,T
satisfies (PQO2). Similarly, PQOH,T satisfies (PQO3). In addition, PT and H are increasing
functions, and then PQOH,T is also an increasing function. Thus, PQOH,T satisfied (PQO1).
Therefore, PQO is a pseudo-quasi overlap function.

Example 6. (1) Take 0 < c < e < d < 1, 0 < a < 1, PT : [0, 1]2 → [0, 1], H : [0, 1] → [0, 1],
respectively, given by

PT(x, y) =
{

c i f c < x ≤ d, c < y ≤ e
min(x, y) otherwise

H(x) =
{

x i f 0 ≤ x < a
0.8x + 0.2 otherwise

.
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Obviously, H is a pseudo automorphism, PT is a positive and discontinuous pseudo-t-norm,
and satisfies the conditions of Theorem 10. Then, ∀x, y ∈ [0, 1], 0 < a < 1,

PQO(x) = H(PT(x, y)) =
{

PT(x, y) i f 0 ≤ PT(x, y) < a
0.8PT(x, y) + 0.2 otherwise

is a pseudo-quasi overlap function.
We give the graphs of the above PT, H, PQO = H(PT), individually, in Figure 6.

Figure 6. PT, H, PQO = H(PT).

PQOH,PT of Theorem 10 is said to be a pseudo-quasi overlap function generated by a pseudo-
t-norm PT and a pseudo automorphism H, or a pseudo-quasi overlap function generated by a
(H, PT)−distortion.

Corollary 13. If “H is discontinuous or PT is discontinuous” of Theorem 10 is replaced by “H, PT
are continuous,” then, PQO is a pseudo-overlap function.

Corollary 14. If “PT is a positive pseudo-t-norm” of Theorem 10 is replaced by “PT is a positive
t-norm,” then, PQO is a quasi-overlap function.

Corollary 15. If “H is discontinuous or PT is discontinuous” and “PT is a positive pseudo-t-norm”
of Theorem 10 is replaced by “H, PT are continuous” and “PT is a positive t-norm”. Then, PQO
given by [38] is a overlap function.

Table 2 shows that pseudo-quasi overlap functions created by pseudo-t-norms and
pseudo isomorphisms have fewer limitation conditions than overlap functions generated
by t-norms and pseudo automorphisms.

Table 2. Overlap functions created by t-norms and pseudo isomorphisms and pseudo-quasi overlap
functions created by pseudo-t-norms and pseudo isomorphisms.

Function
Overlap Functions Created by

t-Norms and Pseudo
Isomorphisms

Pseudo-Quasi Overlap Functions Created
by Pseudo-t-Norms and Pseudo

Isomorphisms

Formula O = H(T(x, y)) PQO = H(PT(x, y))

T/PT T is commutative PT is noncommutative

H non-decreasing non-decreasing

H, T/H, PT continuous H is discontinuous or PT is discontinuous

Corollary 16. Let H : [0, 1] → [0, 1] be an automorphism, PT : [0, 1]2 → [0, 1] is a pseudo-
t-norm, and H is discontinuous or PT is discontinuous. Then, a function PQOH,T given by
PQOH,PT(x, y) = H(PT(x, y)) is a pseudo-quasi overlap function if only and if PT is positive.

Proof. (Necessity) If PT(x, y) = 0, then PQOH,T(x, y) = H(PT(x, y)) = H(0) = 0. Be-
cause PQOH,T is a pseudo-quasi overlap function, we are aware that x = 0 or y = 0. Thus,
PT is positive. (Sufficiency) This is analogous to Theorem 10.
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Corollary 17. Let PQOH,PT be a pseudo-quasi overlap function generated by pseudo-t-norms PT
and pseudo automorphisms H. Then,

H(x) = PQOH,PT(x, 1) = PQOH,PT(1, x)

Proof. PQOH,PT(x, 1) =H(PT(x, 1)) = H(x) = H(PT(1, x)) = PQOH,PT(1, x).

Corollary 17 provides a way to define a pseudo-automorphism H by a pseudo-quasi
overlap function PQOH,PT ; that is, H(x) = PQOH,PT(x, 1) = PQOH,PT(1, x).

Corollary 18. Let PQO : [0, 1]2 → [0, 1] be a pseudo-quasi overlap function. If PQO is associative
and continuous, then PQO is a pseudo-quasi overlap function generated by a (H, PQO)−distortion.

Proof. If PQO is associative and continuous, according to Theorem 1, we know that PQO
is a positive pseudo-t-norm. Consequently, PQO(x, y) = H(PT(x, y)) = H(PQO(x, y)).
Thus, PQO is a pseudo-quasi overlap function generated by a (H, PQO)−distortion.

Theorem 11. Let PQO : [0, 1]2 → [0, 1] be a pseudo-quasi overlap function, and H : [0, 1] →
[0, 1] be a pseudo automorphism. PQO is generated by a (H, PT)−distortion ⇔ PT = H−1 ·
PQO, H(x) = PQO(x, 1) = PQO(1, x).

Proof. (Necessity) Suppose that PQO is a pseudo-quasi overlap function generated by a
(H, PT)−distortion, i.e., PQO = H · PT. Then, PT = H−1 · PQO. Thus, by Corollary 17,
H(x) = PQO(x, 1) = PQO(1, x). Indeed, PT is a discontinuous pseudo-t-norm. (Suffi-
ciency) Directly, PT satisfies (PT1). Because H−1 and PQO are increasing, it follows that
PT = H−1 · PQO is also increasing. Then, PT satisfies (PT2). Moreover,

PT(x, 1) = H−1(PQO(x, 1)) = H−1(H(x)) = x,

and PT(1, x) = H−1(PQO(1, x)) = H−1(H(x)) = x. Thus, T satisfies (PT3). Therefore, PT
is a pseudo-t-norm. Moreover, if PT(x, y) = H−1(PQO(x, y)) = 0. Then, PQO(x, y) = 0.
Thus, x = 0 or y = 0. Therefore, PT is positive. Indeed, PT is discontinuous. Finally, by
Theorem 10, and PQO = H · PT, we know that PQO is a pseudo-quasi overlap function
generated by a (H, PT)−distortion.

4.3. The Related Properties of Pseudo-Quasi Overlap Functions Generated by Additive Generators
or (H, PT)−Distortions

We discuss the migrativity property of pseudo-quasi overlap functions generated by
(H, PT)−distortions.

Theorem 12. Let H : [0, 1]→ [0, 1] be a pseudo automorphism, PT : [0, 1]2 → [0, 1] be a positive
pseudo-t-norm, and H be discontinuous or PT be discontinuous. Then, PQO : [0, 1]2 → [0, 1]
is a pseudo-quasi overlap function generated by a (H, PT)−distortion if and only if PQO is
PT-migrative, and H(x) = PQO(x, 1).

Proof. (Necessity) Suppose that PQO is a pseudo-quasi overlap function generated by
additive generator and a (H, PT)−distortion, i.e., PQO = H · PT. Then,

PQO(PT(x, y), z) = H(PT(PT(x, y), z) = H(PT(x, PT(y, z)))
= PQO(x, PT(y, z)).

Thus, PQO is PT-migrative. Moreover, according to Corollary 17, we know that,
H(x) = PQO(x, 1). (Sufficiency) If PQO is PT-migrative, and H(x) = PQO(x, 1), then

PQO(x, y) = PQO(x, PT(y, 1)) = PQO(PT(x, y), 1) = H(PT(x, y)).

Moreover, according to Theorem 10, we know that PQO is a pseudo-quasi overlap
function generated by a (H, PT)−distortion.
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We introduce the homogeneity property of pseudo-quasi overlap functions generated
by (H,PT )−distortions.

Lemma 5 ([38]). Let H : [0, 1] → [0, 1] be a pseudo automorphism, and k ∈ [0, ∞]. H is
homogeneous of order k⇔ H(x) = xk.

Lemma 6 ([38]). Assume H : [0, 1]→ [0, 1] to be a pseudo automorphism, and k ∈ [0, ∞]. If H is
homogeneous of order k, then H−1 is also homogeneous of order 1

k , and H−1 = x
1
k .

Theorem 13. Assume PQO to be a pseudo-quasi overlap function obtained by a (H, PT)−distortion,
and k1 ∈ [0, ∞], H is a pseudo automorphism and homogeneous of order k1. PT is discontinuous
and homogeneous of order k2, where k2 ∈ [0, ∞] if and only if PQO is homogeneous of order k1k2.

Proof. The proof is analogous to [38].

Theorem 14. Let PQOϑ,θ be a pseudo-quasi overlap function additively generated by the pair
(ϑ, θ). If ϑ and θ are homogeneous of order k1, k2, separately. Then, PQOϑ,θ is homogeneous of
order k1k2.

Proof. Suppose that PQOϑ,θ is a pseudo-quasi overlap function additively created by the
pair (ϑ, θ); that is, PQO(x, y) = ϑ(pθ(x) + qθ(y)). Because ϑ and θ are homogeneous of
order k1, k2, separately, then, ϑ(αx) = αk1 ϑ(x), and θ(αx) = αk2 θ(x). Consequently,

PQO(αx, αy) = ϑ(pθ(αx) + qθ(αy)) = ϑ(αk2(pθ(x) + qθ(y))) = αk1k2 ϑ(pθ(x) + qθ(y)).

Thus, PQOϑ,θ is homogeneous of order k1k2.

We study the idempotent property of a pseudo-quasi overlap function obtained by a
(H, PT)−distortion.

Lemma 7 ([38]). If H : [0, 1] → [0, 1] is an identity function, then, H−1 is also an identity
function, and H−1(x) = H(x) = x.

Theorem 15. Let PQO be a pseudo-quasi overlap function acquired by a (H, PT)−distortion, and
H be an identity function. If T is idempotent⇔ PQO is idempotent.

Proof. (Necessity) Suppose PQO is a pseudo-quasi overlap function acquired by a (H, PT)−
distortion; that is, PQO(x, y) = H(PT(x, y)). Then,

PQO(x, x) = H(PT(x, x)) = H(x) = x.

Thus, PQO is idempotent. (Sufficiency) According to Lemma 7, we know that

T(x, x) = H−1(PQO(x, x)) = H−1(x) = x.

Thus, PT is idempotent.

5. Fuzzy Inference Triple I Methods Based on Pseudo-Quasi Overlap Functions

In this section, we give the definition of left-continuous pseudo-quasi overlap func-
tions and the corresponding residual implication operator. In particular, we extend triple
I algorithms to pseudo-quasi overlap functions, and study fuzzy inference triple I algo-
rithms of residual implication operators provided by left-continuous pseudo-quasi overlap
functions. Moreover, we give the solutions of expressions of the fuzzy inference triple I
algorithms based on pseudo-quasi overlap functions for FMP and FMT problems.

Definition 18. Let PQO be a pseudo-quasi overlap function. PQO is left-continuous when it
fulfills ∀x, y ∈ [0, 1],
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PQO(
∨
i∈I

xi, y) =
∨
i∈I

PQO(xi, y) (left-continuous in the first variate)

PQO(x,
∨
j∈J

yj) =
∨
j∈J

PQO(x, yi) (left-continuous in the second variate).

As we know, a left-continuous pseudo-quasi overlap function can be continuous or
discontinuous. If it is continuous, then it is a pseudo-overlap function. The left-continuous
pseudo-quasi overlap function mentioned in this paper is discontinuous.

Definition 19. Let PQO be a left-continuous pseudo-quasi overlap function. Then, two residual
implication operators R(1)

PQO : [0, 1]2 → [0, 1], R(2)
PQO : [0, 1]2 → [0, 1] defined by

R(1)
PQO(x, y) =

∨{z ∈ [0, 1] | PQO(z, x) ≤ y}
R(2)

PQO(x, y) =
∨{z ∈ [0, 1] | PQO(x, z) ≤ y}.

Theorem 16. Let PQO be a left-continuous pseudo-quasi overlap function. Then, the first residual
implication operator R(1)

PQO and the second residual implication operator R(2)
PQO fulfill the conditions

listed below:

(i) PQO(z, x) ≤ y when and only when z ≤ R(1)
PQO(x, y), and also that R(1)

PQO is provided by

R(1)
PQO(x, y) =

∨{z ∈ [0, 1] | PQO(z, x) ≤ y};

(ii)PQO(x, z) ≤ y when and only when z ≤ R(2)
PQO(x, y), and also that R(2)

PQO is provided by

R(2)
PQO(x, y) =

∨{z ∈ [0, 1] | PQO(x, z) ≤ y}.

Proof. (i) (Necessity) Suppose that R(1)
PQO is provided by

CR(1)
PQO(x, y) =

∨{u ∈ [0, 1] | PQO(z, x) ≤ y}.

If PQO(z, x) ≤ y, So z ≤ R(1)
PQO(x, y). (Sufficiency) If z ≤ R(1)

PQO(x, y), then

z ≤ ∨{u ∈ [0, 1] | PQO(u, x) ≤ y}.

In addition, PQO is left-continuous in the first variate, we know that,

PQO(z, x) ≤ PQO(
∨{z ∈ [0, 1] | PQO(z, x) ≤ y}, x)

=
∨{PQO(z, x) | PQO(z, x) ≤ y} = y.

Consequently, PQO(z, x) ≤ y, and (ii) is analogous to (i).

Corollary 19. Let PQO be a left-continuous pseudo-quasi overlap function, R(1)
PQO be the first

residual implication operator and R(2)
PQO be the second residual implication operator of the PQO.

The following conditions hold.

(i) R(1)
PQO, R(2)

PQO satisfies (NP)⇔ PQO has 1 as the neutral element;

(ii) R(1)
PQO(R(2)

PQO) satisfies (EP)⇔ PQO satisfies

PQO(PQO(x, y), z) = PQO(PQO(x, z), y)

(PQO(x, PQO(y, z)) = PQO(y, PQO(x, z)));

(iii) R(1)
PQO(R(2)

PQO) satisfies (IP) ⇔ PQO fulfills x ≥ PQO(1, x)(x ≥ PQO(x, 1)) whenever
x ∈ [0, 1];
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(iv) R(1)
PQO(R(2)

PQO) satisfies (LOP)⇔ PQO fulfills x ≥ PQO(1, x)(x ≥ PQO(x, 1)) whenever
x ∈ [0, 1];

(v) R(1)
PQO(R(2)

PQO) satisfies (ROP)⇔ PQO fulfills x ≤ PQO(1, x)(x ≤ PQO(x, 1)) whenever
x ∈ [0, 1];

(vi) R(1)
PQO(R(2)

PQO) satisfies (OP) ⇔ PQO fulfills x = PQO(1, x)(x = PQO(x, 1)) whenever
x ∈ [0, 1];

(vii) R(2)
PQO satisfies (CB)⇔ PQO fulfills x

∧
y ≥ PQO(x, y) whenever x, y ∈ [0, 1];

(viii) R(1)
PQO(R(2)

PQO) satisfies (SIB)⇔ R(1)
PQO(R(2)

PQO) satisfies (CB);

(ix) R(1)
PQO, R(2)

PQO satisfies (IB)⇔ x
∧

y = PQO(x, y);

(x) R(1)
PQO, R(2)

PQO satisfies (SBC), (LBC), and (RBC); and

(xi) PQO has 1 as neutral element⇒ R(1)
PQO, R(2)

PQO satisfies (CB).

Proof. The proof is direct.

Example 7. The following are three left-continuous pseudo-quasi overlap functions PQO and its
corresponding residual implication operators R(1)

PQO, R(2)
PQO.

First, we give three important pseudo-quasi left-continuous overlap functions:

(i) PQO(x, y) =
{

xy i f 0 ≤ x ≤ a, 0 ≤ y ≤ a, and 0 < a < 1, a 6= b
min{x, y} otherwise

(ii) PQO(x, y) =

{
xy2 i f 0 ≤ x ≤ a, 0 ≤ y ≤ a, and 0 < a < 1
2xy
x+y otherwise

(iii) PQO(x, y) =

{
(2x−1)2(2y−1)4+1

2 i f 0.5 < x ≤ 1, 0.5 < y ≤ 1
xy otherwise

.

As we know, the image of the left-continuous pseudo-quasi overlap function in (i), (ii), and (iii)
is similar to Figure 1.

Obviously, we know that

(i) PQO(1, x) = min{1, x} = x. Thus, R(1)
PQO satisfies (LOP), (ROP), i.e., x ≤ y when and

only when R(1)
PQO(x, y) = 1. Similarly, R(2)

PQO satisfies (LOP), (ROP), that is, x ≤ y when and

only when R(2)
PQO(x, y) = 1.

(ii) PQO(1, x) = 2x
x+1 ≥ x. Thus, R(1)

PQO satisfies (ROP), that is, R(1)
PQO(x, y) = 1 ⇒ x ≤ y.

Similarly, R(2)
PQO satisfies (ROP), that is, R(2)

PQO(x, y) = 1⇒ x ≤ y.

(iii) If 0 ≤ x ≤ 0.5, then PQO(1, x) = x. Thus, R(1)
PQO satisfies (LOP), (ROP), i.e., x ≤ y ⇔

R(1)
PQO(x, y) = 1. If 0.5 < x ≤ 1, then PQO(1, x) = 1+(2x−1)2

2 . Hence, PQO(1, x) ≤ x.

Thus, R(1)
PQO satisfies (LOP), that is, x ≤ y ⇒ R(1)

PQO(x, y) = 1. Similarly, if 0 ≤ x ≤ 0.5,

then PQO(x, 1) = x. Thus, R(2)
PQO satisfies (LOP), (ROP); that is, x ≤ y⇔ R(2)

PQO(x, y) = 1.

If 0.5 < x ≤ 1, then PQO(1, x) ≤ x. Thus, R(2)
PQO satisfies(LOP), that is, x ≤ y ⇒

R(2)
PQO(x, y) = 1.

Thus, we obtain residual implication operators (i)′, (ii)′, (iii)′ induced by the above left-
continuous pseudo-quasi overlap functions (i), (ii), and (iii). We have the following Figures 7–9.

(i)’ R(1)
PQO =


y
x i f y < x ≤ b
max{a, y} i f x > y, and x > b
1 otherwise

R(2)
PQO =


y i f y < x ≤ a
max{ y

x , y} i f x > y, and x > a
1 otherwise
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Figure 7. The graphs of (i)′ R(1)
PQO, R(2)

PQO.

(ii)’ R(1)
PQO =


y
x2 i f y < x ≤ a

xy
2x−y i f x > y, and x > a
1 otherwise

R(2)
PQO =


√

x
y i f y < x ≤ a

xy
2x−y i f x > y, and x > a
1 otherwise

Figure 8. The graphs of (ii)′ R(1)
PQO, R(2)

PQO.

(iii)’ R(1)
PQO =


y
x i f y < x ≤ 0.5√

2y−1
2(2x−1)2 +

1
2 i f x > y, and x > 0.5

1 otherwise

R(2)
PQO =


y
x i f y < x ≤ 0.5
4
√

2y−1
√

2x−1
4x + 1

2 i f x > y, and x > 0.5
1 otherwise
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Figure 9. The graphs of (iii)′ R(1)
PQO, R(2)

PQO .

Definition 20. Assume R(1)
PQO and R(2)

PQO be two operators with residual implications, X, Y
are nonempty universes, F(x), F(y) are fuzzy sets on X, Y, separately, i.e., A(x), A∗(x) ∈
F(x), B(y) ∈ F(y), 0 ≤ α ≤ 1,

α ≤ R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(A∗(x), B∗(y))) (1)

α ≤ R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO(A∗(x), B∗(y))). (2)

If B∗(y) is referred to as the tiniest fuzzy set on F(y) by fulfill ing (1) or (2), then B∗(y) is a
solution of pseudo-quasi overlap function fuzzy inference α-triple I methods for FMP problem.

Theorem 17. Let R(1)
PQO be an operator with residual implications produced by a left-continuous

pseudo-quasi overlap function PQO in the first variate. Then, a solution B∗(α1)
(y) of pseudo-quasi

overlap function fuzzy inference α-triple I algorithms for FMP(α1)
problem is provided by

B∗(α1)
(y) =

∨
x∈X
{PQO(PQO(α, R(1)

PQO(A(x), B(y))), A∗(x))}.

Proof. Obviously, B∗(α1)
(y) ≥ PQO(PQO(α, R(1)

PQO(A(x), B(y))), A∗(x)). Assume that

R(1)
PQO is an operator with residual implications produced by a left-continuous pseudo-

quasi overlap function PQO in the first variate. Then, according to Theorem 16 (i),

PQO(α, R(1)
PQO(A(x), B(y))) ≤ R(1)

PQO(A∗(x), B∗(α1)
(y)).

Then,

α ≤ R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(A∗(x), B∗(y))).

Additionally, assume that C(1)(y) is a fuzzy set on F(y), and it satisfies (1), i.e.,

α ≤ R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(A∗(x), C(1)(y))).

Because of Theorem 16 (i), we know that

R(1)
PQO(A∗(x), C(1)(y)) ≥ PQO(α, R(1)

PQO(A(x), B(y)));

that is,

C(1)(y) ≥ PQO(PQO(α, R(1)
PQO(A(x), B(y))), A∗(x)).

Thus, B∗(α1)
(y) ≤ C(1)(y). Consequently, B∗(α1)

(y) is a solution of pseudo-quasi overlap
function fuzzy inference α-triple I methods for FMP(α1)

problem.
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Corollary 20. If α = 1 of Definition 20, and R(1)
PQO satisfies (LOP). Then, a solution B∗(1)(y)

of pseudo-quasi overlap function fuzzy inference α-triple I algorithms for FMP(1) problem is
provided by

B∗(1)(y) =
∨

x∈X
{PQO(PQO(R(1)

PQO(A(x), B(y))), A∗(x))}.

Theorem 18. Let R(2)
PQO be an operator with residual implications produced by a left-continuous

pseudo-quasi overlap function PQO in the second variate. Then, a solution B∗(α2)
(y) of pseudo-quasi

overlap function fuzzy inference α-triple I algorithms for FMP(α2)
problem is provided by

B∗(α2)
(y) =

∨
x∈X
{PQO(A∗(x), PQO(R(2)

PQO(A(x), B(y)), α))}.

Proof. Obviously, B∗(α2)
(y) ≥ PQO(A∗(x), PQO(R(2)

PQO(A(x), B(y)), α)). We presume that

R(2)
PQO is an operator with residual implications produced by a left-continuous pseudo-quasi

overlap function PQO in the second variate. Then, by Theorem 16 (ii), we know that

R(2)
PQO(A∗(x), B∗(2)(y)) ≥ PQO(R(2)

PQO(A(x), B(y)), α);

that is,

α ≤ R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO(A∗(x), B∗(2)(y))).

Moreover, assume that C(2)(y) is a fuzzy set on F(y), and it satisfies (2); i.e.,

α ≤ R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO A∗(x), C(2)(y))).

Because of Theorem 16 (ii), we know that

R(2)
PQO(A∗(x), C(2)(y)) ≥ PQO(R(2)

PQO(A(x), B(y)), α).

Then,

PQO(A∗(x), PQO(R(2)
PQO(A(x), B(y)), α)) ≤ C(2)(y).

Consequently, C(2)(y) ≥ B∗(α2)
(y). Thus, B∗(α2)

(y) is a solution of pseudo-quasi overlap
function fuzzy inference α-triple I methods for FMP(α2)

problem.

Corollary 21. If α = 1 of Definition 20, and R(2)
PQO satisfies (LOP). Then, a solution B∗(2)(y)

of pseudo-quasi overlap function fuzzy inference α-triple I algorithms for FMP(2) problem is
provided by

B∗(2)(y) =
∨

x∈X
{PQO(A∗(x), R(2)

PQO(A(x), B(y)))}.

Example 8. Assume that X = {x1, x2, x3}, Y = {y1, y2, y3}, take α = 0.5, a = 0.4, b = 0.6, and
A = {A(x1), A(x2), A(x3)} = {0.3, 0.5, 0.7}
B = {B(y1), B(y2), B(y3)} = {0.4, 0.6, 0.2}
A∗ = {A∗(x1), A∗(x2), A∗(x3)} = {0.8, 0.4, 0.1}

By Example 7 (i), (i)’, and Theorem 17, we know that
B∗(α1)

(y1) =
∨

x∈X
{PQO(PQO(0.5, R(1)

PQO(A(x), B(y1))), A∗(x))} = ∨{0.5, 0.4, 0.04} = 0.5

B∗(α1)
(y2) =

∨
x∈X
{PQO(PQO(0.5, R(1)

PQO(A(x), B(y2))), A∗(x))} = ∨{0.5, 0.5, 0.1} = 0.5

B∗(α1)
(y3) =

∨
x∈X
{PQO(PQO(0.5, R(1)

PQO(A(x), B(y3))), A∗(x))} = ∨{0.5, 0.16, 0.1} = 0.5.

Thus, B∗(α1)
= {B∗(α1)

(y1), B∗(α1)
(y2), B∗(α1)

(y3)} = {0.5, 0.5, 0.5}. Indeed, α = 1,
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B∗(1) = {B
∗
(1)(y1), B∗(1)(y2), B∗(1)(y3)} = {0.8, 0.8, 2

3 )}.

Similarly, B∗(α2)
= {B∗(α2)

(y1), B∗(α2)
(y2), B∗(α2)

(y3)} = {0.5, 0.5, 0.1}. Furthermore, α = 1,

B∗(2) = {B
∗
(2)(y1), B∗(2)(y2), B∗(2)(y3)} = {0.8, 0.8, 0.2}.

Definition 21. Let R(1)
PQO and R(2)

PQO be two operators with residual implications, X, Y are nonempty
universes, F(x), F(y) are fuzzy sets on X, Y, separately, i.e., A(x) ∈ F(x), B(y), B∗(y) ∈
F(y), α ∈ [0, 1],

α ≤ R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(A∗(x), B∗(y))) (3)

α ≤ R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO(A∗(x), B∗(y))). (4)

If A∗(x) is called as the biggest fuzzy set on F(x) by satisfying (3) or (4), then A∗(x) is a
solution of pseudo-quasi overlap function fuzzy inference α-triple I methods for the FMT problem.

Theorem 19. Let R(1)
PQO and R(2)

PQO be two residual implication operators generated by a left-
continuous pseudo-quasi overlap function PQO in the first variate and in the second variate,
respectively. Then, a solution A∗(α1)

(x) of a pseudo-quasi overlap function fuzzy inference α-triple I
algorithm for FMT(α1)

problem is provided by

A∗(α1)
(x) =

∧
y∈Y
{R(2)

PQO(PQO(α, R(1)
PQO(A(x), B(y))), B∗(y))}.

Proof. Obviously, R(2)
PQO(PQO(α, R(1)

PQO(A(x), B(y))), B∗(y)) ≥ A∗(α1)
(x). Suppose that

R(1)
PQO and R(2)

PQO are operators with residual implications produced by a left-continuous
pseudo-quasi overlap function PQO in the first variate and in the second variate, respec-
tively. Then, by Theorem 16, we know that

B∗(y) ≥ PQO(PQO(α, R(1)
PQO(A(x), B(y)), A∗(α1)

(x));

that is,

R(1)
PQO(A∗(α1)

(x), B∗(y)) ≥ PQO(α, R(1)
PQO(A(x), B(y))).

Consequently,

R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(A∗(α1)

(x), B∗(y))) ≥ α.

In addition, suppose that D1(x) is a fuzzy set on F(x), it also fulfills (3), i.e.,

R(1)
PQO(R(1)

PQO(A(x), B(y)), R(1)
PQO(D(1)(x), B∗(y))) ≥ α.

By Theorem 16, we know that

R(1)
PQO(D(1)(x), B∗(y)) ≥ PQO(α, R(1)

PQO(A(x), B(y))).

Then,

B∗(y) ≥ PQO(PQO(α, R(1)
PQO(A(x), B(y)), D(1)(x)).

Consequently,

D(1)(x) ≤ R(2)
PQO(PQO(α, R(1)

PQO(A(x), B(y))), B∗(y)).

Hence, A∗(α1)
(x) ≥ D(1)(x). Thus, A∗(α1)

(x) is a solution of pseudo-quasi overlap
function fuzzy inference α-triple I methods for FMT(α1)

problem.
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Corollary 22. If α = 1 in Definition 21, and R(1)
PQO satisfies (LOP). Then, a solution A∗(1)(y)

of a pseudo-quasi overlap function fuzzy inference α-triple I algorithm for FMT(1) problem is
provided by

A∗(1)(x) =
∧

y∈Y
{R(2)

PQO(R(1)
PQO(A(x), B(y)), B∗(y))}.

Theorem 20. Let R(1)
PQO and R(2)

PQO be two operators with residual implications produced by a
left-continuous pseudo-quasi overlap function PQO in the first variate and in the second variate,
respectively. Then, a solution A∗(α2)

(y) of pseudo-quasi overlap function fuzzy inference α-triple
methods for FMT(α2)

problem is provided by

A∗(α2)
(x) =

∧
y∈Y
{R(1)

PQO(PQO(R(2)
PQO(A(x), B(y)), α), B∗(y))}.

Proof. Obviously, A∗(α2)
(x) ≤ R(1)

PQO(PQO(R(2)
PQO(A(x), B(y)), α), B∗(y)). Consider that

R(1)
PQO and R(2)

PQO are operators with residual implications produced by a left-continuous
pseudo-quasi overlap function PQO in the first variate and in the second variate respec-
tively. Then, by Theorem 16, we know that

B∗(y) ≥ PQO(A∗(α2)
(x), PQO(R(2)

PQO(A(x), B(y)), α));

that is,

PQO(R(2)
PQO(A(x), B(y)), α) ≤ R(2)

PQO(A∗(α2)
(x), B∗(y)).

Hence,

R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO(A∗(α2)

(x), B∗(y))) ≥ α.

In addition, assume that D2(x) is a fuzzy set on X, and it satisfies (4), i.e.,

α ≤ R(2)
PQO(R(2)

PQO(A(x), B(y)), R(2)
PQO(D(2)(x), B∗(y))).

According to Theorem 16, we know that,

PQO(R(2)
PQO(A(x), B(y)), α) ≤ R(2)

PQO(D(2)(x), B∗(y));

that is,

B∗(y) ≥ PQO(D(2)(x), PQO(R(2)
PQO.(A(x), B(y)), α))

Then,

D(2)(x) ≤ R(1)
PQO(PQO(R(2)

PQO(A(x), B(y)), α), B∗(y)).

Thus, A∗(α1)
(x) ≥ D(2)(x). Therefore, A∗(α2)

(x) is a solution of pseudo-quasi overlap
function fuzzy inference α-triple I methods for FMT(α2)

problem.

Corollary 23. If α = 1 in Definition 21, and R(2)
PQO satisfies (LOP), then a solution A∗(2)(y) of a

pseudo-quasi overlap function fuzzy inference triple I method for FMT(2) problem is given by

A∗(2)(x) =
∧

y∈Y
{R(1)

PQO(R(2)
PQO(A(x), B(y)), B∗(y))}.
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Example 9. Suppose that X = {x1, x2, x3}, Y = {y1, y2, y3}, taking α = 0.6, a = 0.5, b = 0.3,
A = {A(x1), A(x2), A(x3)} = {0.4, 0.7, 0.5}
B = {B(y1), B(y2), B(y3)} = {0.1, 0.8, 0.6}
B∗ = {B∗(y1), B∗(y2), B∗(y3)} = {0.9, 0.5, 0.2}.

By Example 7 (i), (i)’, and Theorem 19, we know that,
A∗(α1)

(x1) =
∧

y∈Y
{R(2)

PQO(PQO(0.6, R(1)
PQO(A(x1), B(y))), B∗(y))} = ∧{1, 5

6 , 1
3} =

1
3

A∗(α1)
(x2) =

∧
y∈Y
{R(2)

PQO(PQO(0.6, R(1)
PQO(A(x2), B(y))), B∗(y))} = ∧{1, 5

6 , 0.5} = 0.5

A∗(α1)
(x2) =

∧
y∈Y
{R(2)

PQO(PQO(0.6, R(1)
PQO(A(x2), B(y))), B∗(y))} = ∧{1, 5

6 , 1
3} =

1
3 .

Thus, A∗(α1)
= {A∗(α1)

(x1), A∗(α1)
(x2), A∗(α1)

(x3)} = { 1
3 , 0.5, 1

3}. Indeed, α = 1,

A∗(1) = {A∗(1)(x1), A∗(1)(x2), A∗(1)(x3)} = {0.2, 1
3 , 0.2}.

Similarly, A∗(α2)
= {A∗(α2)

(x1), A∗(α2)
(x2), A∗(α2)

(x3)} = {0.5, 0.5, 0.5}. Furthermore,
α = 1,

A∗(2) = {A∗(2)(x1), A∗(2)(x2), A∗(2)(x3)} = {0.5, 0.5, 0.5}.

6. Conclusions

In this paper, we delete the commutativity and continuity of overlap functions, and
propose the definition of pseudo-quasi overlap functions and relative property. Further-
more, we present a structure method of pseudo-quasi overlap functions. Then, based
on the above pseudo-quasi overlap functions, we discuss additive generators of pseudo-
quasi overlap functions. Additionally, we construct an expression of pseudo-quasi overlap
functions through pseudo-t-norms and pseudo automorphisms. Finally, we combine
pseudo-quasi overlap functions with triple I algorithms, and investigate fuzzy inference
triple I methods of residual implication operators provided by left-continuous pseudo-quasi
overlap functions.

The research findings in this paper have some guiding significance for the selection of
various generalized overlap functions. Furthermore, it provides theoretical foundations
for the practical application of overlap functions. Zhang [39] studied partial triangular
norms and their corresponding residual implication operators, which are very meaningful
topics. In future research work, we will study the partial triangular norm and implication
operators on intuitionistic fuzzy sets. On the other hand, the research results in [40,41]
have good application prospects, which not only lays a theoretical foundation for Takagi—
Sugeno (T-S) fuzzy system with successive time-delay (STD), but also provide new ideas
for our future research direction. In the next research process, we discuss the application of
pseudo-quasi overlap function fuzzy inference methods in T-S fuzzy system.
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