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Abstract: Let p 6= 3 be any prime. In this paper, we compute symbol-pair distance of all γ-constacyclic
codes of length 3ps over the finite commutative chain ring R = Fpm + uFpm , where γ is a unit of
R which is not a cube in Fpm . We give the necessary and sufficient condition for a symbol-pair
γ-constacyclic code to be an MDS symbol-pair code. Using that, we provide all MDS symbol-pair γ-
constacyclic codes of length 3ps overR. Some examples of the symbol-pair distance of γ-constacyclic
codes of length 3ps overR are provided.
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1. Introduction

In coding theory, constacyclic codes are important, since many optimal linear codes are
derived from constacyclic codes. The class of constacyclic codes has practical applications
as constacyclic codes are effective for encoding and decoding with shift registers.

A λ-constacyclic code of length n over F is an ideal 〈g(x)〉 of the ambient ring F[x]
〈xn−λ〉

where g(x) is a divisor of xn − λ and λ is a unit in the finite field Fpm . If (n, p) = 1, the
code is called a simple-root code. Otherwise, it is called a repeated-root code . Repeated-root
codes were studied earlier, from the 1960s, in some papers (for example, refs. [1–8]).

After the celebrated results in the 1990s [9–11] by Nechaev and Hammons et al.,
that many important yet seemingly non-linear codes over finite fields are actually closely
related to linear codes over the ring of integers modulo four, codes over Z4 in particular,
and codes over finite rings in general, have received a great deal of attention. The class

of finite rings of the form R =
Fpm [u]

〈u2〉 = Fpm + uFpm have been used widely as alphabets

of certain constacyclic codes. For example, the structure of F2[u]
〈u2〉 is interesting because

this ring lies between F4 and Z4, in the sense that it is additively analogous to F4 and
multiplicatively analogous to Z4. Codes over F2[u]

〈u2〉 have been extensively studied by

many researchers, whose work includes cyclic and self-dual codes [12], decoding of cyclic
codes [13], Type II codes [14], and duadic codes [15]. The most general form of these

rings,
Fpm [u]
〈ua〉 = Fpm + uFpm + · · ·+ ua−1Fpm , has been used as code alphabet as well. For

instance, Ozen and Siap [16] addressed linear codes over this ring with respect to the
Rosenbloom–Tsfasman metric, and Alfaro et al. obtained a construction for self-dual codes
over it [17].

Let σ be the code alphabet consisting of q elements. Then, each element v ∈ σ is
called a symbol. In symbol-pair read channels, a codeword (v0, v1, . . . , vn−1) is read as
((v0, v1), (v1, v2), . . . , (vn−1, v0)). A q-ary code of length n is a nonempty subset C ⊆ σn.

Axioms 2023, 12, 254. https://doi.org/10.3390/axioms12030254 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030254
https://doi.org/10.3390/axioms12030254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12030254
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030254?type=check_update&version=1


Axioms 2023, 12, 254 2 of 13

Assume that v = (v0, v1, . . . , vn−1) is a vector in σn. Then, π(v) = ((v0, v1), (v1, v2), . . . ,
(vn−1, v0)) is said to be a symbol-pair vector of v. Hence, for each v, we have a unique
symbol-pair vector π(v) ∈ (σ, σ)n. In 2010, Cassuto and Blaum [18] introduced the symbol-
pair distance as the Hamming distance over the alphabet (σ, σ). Given v = (v0, v1, . . . , vn−1),
t = (t0, t1, . . . , tn−1), the symbol-pair distance between v and t is defined as

dsp(v, t) = dH(π(v), π(t)) = |{i : (vi, vi+1) 6= (ti, ti+1)}|.

The symbol-pair distance of C is defined as dsp(C) = minv,t∈C,v 6=t{dsp(v, t)}. The
symbol-pair weight of a vector v, denoted by wtsp(v), is defined as

wtsp(v) = wt(π(v)) =
∣∣∣{i | (vi, vi+1) 6= (0, 0), 0 ≤ i ≤ n− 1, vn = v0}

∣∣∣.
If C is linear, dsp(C) is equal to the minimum symbol-pair weight of nonzero code-

words of C:
dsp(C) = min{wtsp(v) | v 6= 0, v ∈ C}.

With the development of high-density data storage technologies, symbol-pair codes are
proposed to protect efficiently against a certain number of pair-errors. In 2010, Cassuto and
Blaum [18] studied the model of symbol-pair read channels. However, the problem of deter-
mining symbol-pair distance of a code C is very difficult in general. In 2012, lower bound
on the symbol-pair distances for binary cyclic codes are considered by Yaakobi et al. [19].
They proved that the symbol-pair distance of linear code C is at least dH +

⌈
dH
2

⌉
Theorem 4

of [19]. This result is better than the previous result provided by Cassuto and Litsyn.
However, the algorithms in [19,20] must improve because these algorithms can not be
used to decode all symbol-pair codes. Motivated by this, a new algorithm is given by
Hirotomo et al. [21], using the parity-check matrix for decoding symbol-pair codes. By
extending Theorem 10 of [20], Kai et al. [22] provided a new lower bound on simple-root
constacyclic codes. Recently, Dinh et al. [23,24] succesfully established the symbol-pair
distances for all constacyclic codes of length ps and cyclic codes of length 2ps over Fpm . In
addition, refs. [25,26] investigated Hamming and symbol-pair distances of repeated-root
constacyclic codes of length ps overR = Fpm + uFpm .

Motivated by these, in this paper, we determine symbol-pair distance of λ-constacyclic
codes of length 3ps overR, where λ is not a cube inR. As an application, we identify all
the MDS symbol-pair codes among such codes.

The rest of this paper is organized as follows. Section 2 gives some preliminaries.
Section 3 obtains the symbol-pair distance of all λ-constacyclic codes of length 3ps overR,
where λ is not a cube inR. In Section 4, we give the necessary and sufficient condition for
a symbol-pair λ-constacyclic code to be an MDS symbol-pair code, and we identify all such
codes. The conclusion of this paper is given in Section 5.

2. Preliminaries

For a unit λ of R (R is a finite chain ring size pm), the λ-constacyclic (λ-twisted) shift
ρλ on Rn is the shift

ρλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is called λ-constacyclic if ρλ(C) = C. If λ = {1,−1}, then C is a cyclic and
negacyclic code, respectively.

Proposition 1 ([27,28]). Let C be a linear code. Then C is a λ-constacyclic code of length n over R
if C is an ideal of the ring R[x]

〈xn−λ〉 .

Proposition 2 ([29]). The dual of a λ-constacyclic code is a λ−1-constacyclic code.
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Let p be a prime and R be a finite chain ring of size pm.

Proposition 3 ([27,30]). Let C be a linear code C of length n over R. Then |C| = pk, for some
integer k ∈ {0, 1, ..., mn}. In addition, |C| · |C⊥| = |R|n, where C⊥ is the dual code of C.

Assume that α and β are elements in Fpm . It is simple to check that α + uβ is invertible
over R if α 6= 0. Thus, we divide all λ-constacyclic codes of length 3ps over R into
the following cases: λ is a cube and pm ≡ 1 (mod 3), λ is a cube and pm ≡ 2 (mod 3),
λ = α + uβ is not a cube and 0 6= α, β ∈ Fpm , λ is not a cube and 0 6= λ ∈ Fpm . We give all
λ-constacyclic codes of length 3ps overR in the following theorem.

Theorem 1 ([31]). Let p 6= 3 be any prime. Let C be a λ-constacyclic code of length 3ps overR.

(1) Assume that λ is a cube in R and pm ≡ 1 (mod 3). Let λ0 ∈ R such that λ3
0 = λ and

δ, θ ∈ Fpm such that δθ = 1 and δ + θ = −1. Then C = C1 ⊕ C2 ⊕ C3 where C1 is a
λ0-constacyclic code of length ps overR, C2 is a δλ0-constacyclic code of length ps overR
and C3 is a θλ0-constacyclic code of length ps overR. In particular, |C| = |C1||C2||C3|.

(2) Assume that λ is a cube inR and pm ≡ 2 (mod 3). Let λ1 ∈ R such that λ = λ3
1. Then

(a) C = C1 ⊕ C2 where C1 is a λ1-constacyclic code of length ps overR, and C2 is an ideal
of R[x]
〈x2ps

+λ1xps
+λ2

1〉
.

(b) |C| = |C1||C2|, where C1 is determined as in Theorem 2.2 and all ideals of R[x]
〈(x2+λ1x+λ2

1)
ps 〉

are determined as follows:

• Type 1:

〈0〉 and 〈1〉.

Then nC2 = 1 and nC2 = p4mps
, respectively.

• Type 2:

〈u(x2 + λ1x + λ2
1)

j〉,

where 0 ≤ j ≤ ps − 1. Then nC2 = p2m(ps−j)

• Type 3:

〈(x2 + λ1x + λ2
1)

j + u(x2 + λ1x + λ2
1)

tv(x)〉,

where 1 ≤ j ≤ ps − 1, 0 ≤ t < j, and either v(x) is 0 or a unit which can be
represented as v(x) = ∑

j−t−1
i=0 (v1ix + v0i)(x2 + λ1x + λ2

1)
i with v0i, v1i ∈ Fpm

and v10x + v00 6= 0. In this case,

nC2 =

{
• p4m(ps−j), if v(x) is 0, 1 ≤ j ≤ ps − 1 or v(x) is a unit , 1 ≤ j ≤ ps+t

2 ,

• p2m(ps−t), if v(x) is a unit, and ps+t
2 < j ≤ ps − 1.

• Type 4: 〈(x2 + λ1x + λ2
1)

j + u(x2 + λ1x + λ2
1)

tv(x), u(x2 + λ1x + λ2
1)

ω〉, with
v(x) as in Type 3, deg v(x) ≤ ω− r− 1 and ω < R and R is the smallest integer
satisfying u(x2 + λ1x + λ2

1)
R ∈ 〈(x2 + λ1x + λ2

1)
j + u(x2 + λ1x + λ2

1)
tv(x)〉.

In this case, nC2 = p2m(2ps−j−ω)

(3) Assume that λ = α + uβ is not a cube inR. There is an α1 ∈ Fpm satisfying α = α
ps

1 . Then
(α + uβ)-constacyclic codes of length 3ps overR are the ideals 〈(x3 − α1)

i〉 ⊆ Rα,β, where
0 ≤ i ≤ 2ps and each (α + uβ)-constacyclic code 〈(x3 − α1)

i〉 has p3m(2ps−1) codewords.
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(4) Assume that λ ∈ Fpm \ {0} is not a cube in Fpm . Let λ0 ∈ Fpm such that λ
ps

0 = λ. Then
λ-constacyclic codes of length 3ps overR are

• Type 1:

〈0〉 and 〈1〉.

• Type 2:

〈u(x3 − λ0)
i〉,

where 0 ≤ i ≤ ps − 1.
• Type 3:

〈((x3 − λ0)
i + u(x3 − λ0)

t)v(x)〉,

where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and v(x) is 0 or a unit where it can be written as
v(x) = ∑i−t−1

j=0 (h2jx2 + h1jx+ h0j j)(x3−λ0)
j where h0j, h1j, h2j ∈ Fpm and h00 6= 0.

• Type 4:

〈(g(x))i + u(
ω−1

∑
j=0

(t0j(x))(g(x))j), u(g(x))ω〉

where g(x) = x3 − λ0, 1 ≤ i ≤ ps − 1, a0j, b0j, c0j ∈ Fpm , t0j(x) = a0jx2 + b0jx +
c0j, and ω < T, where T is the smallest integer satisfying

u(g(x))T ∈ 〈(g(x))i + u
w−1

∑
j=0

(t0j(x))(g(x))j〉

or equivalently,

〈(g(x))i + u(g(x))th(x), u(g(x))ω〉

with h(x) as in Type 3 and deg h(x) ≤ ω− t− 1.

In addition, the number of codewords of C, denoted by nC, is determined as follows:

◦ If C = 〈0〉 and C = 〈1〉, then nC = 1 and nC = p6mps
, respectively.

◦ If C = 〈u(x3 − λ0)
i〉, where 0 ≤ i ≤ ps − 1, then nC = p3m(ps−i).

◦ If C = 〈(x3 − λ0)
i + u(x3 − λ0)

th(x)〉 where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and h(x) is 0
or a unit, then

nC =

{
• p6m(ps−i), if h(x) is 0, 1 ≤ i ≤ ps − 1 or h(x) is a unit , 1 ≤ i ≤ ps−1 + t

2 ,
• p3m(ps−t), if h(x) is a unit, ps−1 + t

2 < i ≤ ps − 1.

◦ If C = 〈(x3 − λ0)
i + u(x3 − λ0)

th(x), u(x3 − λ0)
κ〉, where 1 ≤ i ≤ ps − 1, 0 ≤ t ≤ i,

either h(x) is 0 or a unit, and

κ < T =

{
i, if h(x) = 0,
min{i, ps − i + t}, if h(x) 6= 0,

then nC = p3m(2ps−i−κ).
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Let b be an integer and b ≥ 1. For a codeword v = (v0, v1, · · · , vn−1) ∈ σn, the
b-symbol read codeword of v is defined as

πb(x) = ((v0, · · · , vb−1), (v1, · · · , vb), · · · , (vn−1, v0, · · · , vb−2)) ∈ (σb)n.

Then the b-symbol distance between two codewords v and t in σn is denoted by
db(v, t) and defined as

db(v, t) = dH(πb(v), πb(t)).

In 2016, [32] generalized the coding framework for symbol-pair read channels to
that for b-symbol read channels, where the read operation is performed as a consecutive
sequence of b > 2 symbols. The authors of [32] also generalized some of the known results
for symbol-pair read channels to those for b-symbol read channels. In [33], Dinh et al.
computed the b-symbol distance for C = 〈(xn − λ0)

j〉 for 0 ≤ j ≤ ps and b ≤ η, where
(xn − λ0) is irreducible. For symbol-pair distance, we have the following theorem.

Theorem 2. Let C = 〈(x3 − λ0)
j〉 ⊆ Fpm [x]

〈x3ps−λ〉 for 0 ≤ j ≤ ps, the symbol-pair distance dsp(C)
is completely given by

dsp(C) =

{
2, if j = 0
2(δ + 1)pξ , if ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ + δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.

3. Symbol-Pair Distance

The authors of [23] obtained the symbol-pair distance of all constacyclic codes of
length ps over Fpm . After that, Dinh et al. [25,26] provided the symbol-pair distance of
all constacyclic codes of length ps over R. In this section, we compute the symbol-pair
distance of all λ-constacyclic codes of length 3ps overR, where λ is not a cube inR. First,
we determine the symbol-pair distance of all λ-constacyclic codes of length 3ps over R,
where λ is not a cube in Fpm . Obviously, if C = 〈0〉, then dsp(C) = 0. If C = 〈1〉, then
dsp(C) = 1. Now, we determine the symbol-pair distance for all λ-constacyclic code of
Types 2,3,4 of length 3ps, where λ is not a cube in Fpm . Note that when λ is not a cube
in Fpm , the structure of λ-constacyclic codes of length 3ps over R is given in part 4 of
Theorem 1. Denote dsp(CF) as the symbol-pair distance of C

∣∣
Fpm

. The symbol-pair distance

of λ-constacyclic code of Type 2 can be determined as follows.

Theorem 3. Let C2 = 〈u(x3 − λ0)
j〉 be a λ-constacyclic code of Type 2 of length 3ps over R,

where 0 ≤ j ≤ ps − 1. Then we have dsp(C2) = dsp(〈(x3 − λ0)
j〉F), and

dsp(C2) =

{
2, if j = 0
2(δ + 1)pξ , if ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ + δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.

Proof. We consider the case j = 0 and ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ +
δps−ξ−1.

Case 1: If j = 0, then dsp(C2) = 1.
Case 2: If ps − ps−ξ + (δ − 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ + δps−ξ−1, then nC2 is

exactly same as n〈(x3−λ0)
j〉 in

Fpm [x]

〈x3ps−λ〉 multiplied by u. Hence, we see that dsp(C2) =

dsp(〈(x3 − λ0)
j〉F) and
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dsp(C2) =

{
2, i f j = 0
2(δ + 1)pξ , i f ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ + δps−ξ−1

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.

In the following theorem, we discuss the symbol-pair distance of λ-constacyclic codes
of Type 3 of length 3ps overR.

Theorem 4. Let C3 = 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x)〉 be a λ-constacyclic code of Type 3 of

length 3ps over R, where 1 ≤ j ≤ ps − 1, 0 ≤ r < j and either v(x) is a unit in
Fpm [x]

〈x3ps−λ〉
or 0. Then, we have dsp(C3) = dsp(〈(x3 − λ0)

T〉F), where T is the smallest integer satisfying
u(x3 − λ0)

T ∈ 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x)〉, and

T =

{
j, if v(x) = 0
min{j, ps − j + r}, if v(x) 6= 0.

Then
dsp(C3) = 2(δ + 1)pξ ,

where ps − ps−ξ + (δ − 1)ps−ξ−1 + 1 ≤ T ≤ ps − ps−ξ + δps−ξ−1, 1 ≤ δ ≤ p − 1 and
0 ≤ ξ ≤ s− 1.

Proof. Since T is the smallest integer satisfying u(x3 − λ0)
T ∈ 〈(x3 − λ0)

j + u(x3 −
λ0)

rv(x)〉, we have

dsp(C3) ≤ dsp(〈u(x3 − λ0)
T〉) = dsp(〈(x3 − λ0)

T〉F).

Let c(x) ∈ C3 be an arbitrary polynomial. Then we see that there are two polynomials
f0(x) and fu(x) over Fpm satisfying

c(x) = [ f0(x) + u fu(x)][(x3 − λ0)
j + u(x3 − λ0)

rv(x)]

= f0(x)(x3 − λ0)
j + u[ f0(x)(x3 − λ0)

rv(x)

+ fu(x)(x3 − λ0)
j].

Now, we consider two cases as follows:
Case 1: Assume that v(x) = 0. Then, we have

wtsp(c(x)) ≥ max
{

wtsp( f0(x)(x3 − λ0)
j), wtsp( fu(x)(x3 − λ0)

j)
}

≥ max
{

wtsp( f0(x)(x3 − λ0)
j), wtsp( f0(x)(x3 − λ0)

j)
}

≥ dsp(〈(x3 − λ0)
j〉F),

= dsp(〈(x3 − λ0)
T〉F),

Case 2: Assume that v(x) 6= 0. Then we see that

wtsp(c(x)) ≥ max
{

wtsp( f0(x)(x3 − λ0)
j), wtsp(h(x))

}
≥ max

{
wtsp( f0(x)(x3 − λ0)

j), wtsp( f0(x)(x3 − λ0)
ps−j+r)

}
≥ dsp(〈(x3 − λ0)

min{j, ps−j+r}〉F),
= dsp(〈(x3 − λ0)

T〉F),



Axioms 2023, 12, 254 7 of 13

where h(x) = f0(x)(x3 − λ0)
rv(x) + fu(x)(x3 − λ0)

j. Hence, by combining both the cases,
we get dsp(〈(x3−λ0)

T〉F) ≤ dsp(C3), which implies that, dsp(〈(x3−λ0)
T〉F) = dsp(C3).

The symbol-pair distance of λ-constacyclic codes of Type 4 is computed in the follow-
ing result.

Theorem 5. Let C4 = 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x), u(x3 − λ0)
ω〉 be a λ-constacyclic code of

Type 4 of length 3ps overR, where v(x) is same as given in Type 3, deg(v) ≤ ω− r− 1, ω < T,
and T is the smallest integer satisfying u(x3−λ0)

T ∈ 〈(x3−λ0)
j + u(x3−λ0)

rv(x)〉; i.e., T = j,
if v(x) = 0 and otherwise T = min{j, ps− j+ t}. Then, we have dsp(C4) = dsp(〈(x3−λ0)

ω〉F),
and is given by

dsp(C4) = 2(δ + 1)pξ ,

where ps − ps−ξ + (δ − 1)ps−ξ−1 + 1 ≤ ω ≤ ps − ps−ξ + δps−ξ−1, 1 ≤ δ ≤ p − 1 and
0 ≤ ξ ≤ s− 1.

Proof. Since ω < T ≤ j, we see that C4 = 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x), u(x3 − λ0)
ω〉 ⊇

〈u(x3 − λ0)
ω〉 ⊇ 〈u(x3 − λ0)

j〉. Hence, dsp(C4) ≤ dsp(〈u(x − λ0)
ω〉) = dsp(〈(x3 −

λ0)
ω〉F). We will prove that dsp(〈(x3 − λ0)

ω〉F) ≤ dsp(C4). Now, taking an arbitrary
polynomial c(x) ∈ C4, we need to prove that wtsp(c(x)) ≥ dsp(〈(x3 − λ0)

ω〉F). Now, the
following polynomials exist f0(x), fu(x), g0(x) and gu(x) over Fpm satisfying

c(x) = [ f0(x) + u fu(x)][(x3 − λ0)
j + u(x3 − λ0)

rv(x)] + u(x3 − λ0)
ω [g0(x) + ugu(x)]

= f0(x)(x3 − λ0)
j + u[ f0(x)(x3 − λ0)

rv(x) + fu(x)(x3 − λ0)
j + g0(x)(x3 − λ0)

ω ]

= f ′0(x)(x3 − λ0)
ω + u[ f0(x)(x3 − λ0)

rv(x) + g′0(x)(x3 − λ0)
ω ],

where f ′0(x) = f0(x)(x3 − λ0)
j−ω ∈ Fpm [x], g′0(x) = fu(x)(x3 − λ0)

j−ω + g0(x) ∈ Fpm [x].
Hence,

wtsp(c(x)) ≥ max
{

wtsp( f ′0(x)(x3 − λ0)
ω), wtsp(h′(x))

}
≥ max

{
wtsp( f ′0(x)(x3 − λ0)

ω), wtsp( f ′0(x)(x3 − λ0)
ω)
}

≥ dsp(〈(x3 − λ0)
ω〉F),

where h′(x) = f0(x)(x3 − λ0)
rv(x) + g′0(x)(x3 − λ0)

ω . Thus, dsp(C4) = 2(δ + 1)pξ , where
ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ ω ≤ ps − ps−ξ + δps−ξ−1, 1 ≤ δ ≤ p− 1 and 0 ≤ ξ ≤
s− 1.

If λ = α + uβ is not a cube in R, then there is an α1 ∈ Fpm satisfying α = α
ps

1 . As
in part 3 of Theorem 1, (α + uβ)-constacyclic codes of length 3ps over R are the ideals
〈(x3 − α1)

i〉 ⊆ Rα,β, where 0 ≤ i ≤ 2ps. When (α + uβ) is not a cube in R, we determine
the symbol-pair distance of all (α + uβ)-constacyclic codes of length 3ps over R in the
following theorem.

Theorem 6. Let C be a (α + uβ)-constacyclic code of length 3ps overR, where (α + uβ) is not a
cube inR, i.e., C = 〈(x3− α1)

j〉 for j ∈ {0, 1, . . . , 2ps}, where α1 ∈ Fpm such that α = α
ps

1 . Then

dsp(C) =


2, if 0 ≤ j ≤ ps

2(δ + 1)pξ , if 2ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ 2ps − ps−ξ + δps−ξ−1

0, if j = 2ps

where 1 ≤ δ ≤ p− 1, 0 ≤ ξ ≤ s− 1.
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Proof. We consider three cases.
Case 1: If j = 0 and j = 2ps, then C = 〈1〉 and C = 〈0〉. It is simple to verify that

dsp(C) = 2 and dsp(C) = 0, respectively.
Case 2: If 1 ≤ j ≤ ps. In Rα+uβ, Rα+uβ = 〈1〉 ) 〈(x3 − α1)〉 ) · · · ) 〈(x3 − α1)

ps〉 )
· · · ) 〈(x3 − α1)

2ps〉 = 〈0〉. Thus, we have u ∈ 〈(x3 − α1)
j〉. It implies that dsp(C) = 2.

Case 3: If ps + 1 ≤ j ≤ 2ps − 1, then we see that 〈(x3 − α1)
j〉 = 〈u(x3 − α1)

j−ps〉.
Hence, n〈(x3−α1)

j〉 inRα+uβ is exactly the same as n〈(x3−α1)
j−ps 〉 in

Fpm [x]

〈x3ps−α〉 multiplied by u.

Hence, wtsp(〈(x3 − α1)
j〉) = wtsp(〈(x3 − α1)

j−ps〉). By Theorem 1, we can determine the
symbol-pair distance of 〈(x3 − α1)

j−ps〉. Therefore, dsp(C) = 2(δ + 1)pξ when 2ps − ps−ξ +

(δ− 1)ps−ξ−1 + 1 ≤ j ≤ 2ps − ps−ξ + δps−ξ−1.

Example 1. We present some examples of symbol-pair λ-constacyclic codes of length 3ps over
Fpm + uFpm , where λ ∈ F∗p and λ is not a cube. In Table 1, we compute the symbol-pair distances
for p = 7, m = 1, s = 1 and in Table 2, symbol-pair distances have been computed by taking
p = 13, m = 1, s = 1.

Table 1. λ-constacyclic codes over F7 + uF7.

n s λ 〈g(x)〉 [n, M, dsp]

21 1 3 〈u(x3 − 3)〉 [21, 718, 4]

21 1 3 〈(x3 − 3)2〉 [21, 730, 6]

21 1 3 〈(x3 − 3)2, u(x3 − 3)〉 [21, 733, 4]

147 2 2 〈u(x3 − 2)44〉 [147, 715, 42]

147 2 2 〈(x3 − 2)44〉 [147, 730, 42]

Table 2. λ-constacyclic codes over F13 + uF13.

n s b λ 〈g(x)〉 [n, M, dsp]

39 1 3 2 〈u(x3 − 2)2〉 [39, 1333, 6]

39 1 3 2 〈(x3 − 2)2〉 [39, 1366, 6]

39 1 3 2 〈(x3− 2)15 + u(x3− 2), u(x3− 2)〉 [39, 1330, 4]

4. MDS Symbol-Pair Codes

In 2018, Ding et al. [34] discussed the Singleton bound with respect to the b-symbol
distance db(C). Following them, the Singleton bound with respect to the b-symbol distance
is given as |C| ≤ qn−db(C)+b. In order to determine MDS symbol-pair codes, we need to
have Singleton Bound with respect to symbol-pair distance.

Theorem 7. Let C be a linear symbol-pair code of length n over R with symbol-pair distance
dsp(C). Then, the Singleton bound with respect to the symbol-pair distance dsp(C) is given by
|C| ≤ p2m(n−dsp(C)+2).

Proof. Let C be a (n, M, dsp(C)) symbol-pair code such that 2 ≤ dsp(C) ≤ n. If we
delete the last dsp(C)− 2 coordinates from all the codewords in C, then any dsp(C)− 2
consecutive coordinates contribute, at most, dsp(C)− 1 to the symbol-pair distance. Since
C has symbol-pair distance dsp(C), the resulting vectors of length n− dsp(C) + 2 are still
distinct. The conclusion follows on from the fact that the maximum number of distinct
vectors of length n− dsp(C) + 2 overR is p2m(n−dsp(C)+2).

Definition 1. Let C be a symbol-pair code of length n over R. Then, C is said to be a MDS
symbol-pair code with respect to the symbol-pair distance if |C| = p2m(n−dsp(C)+2).
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We will identify the MDS symbol-pair codes for each type of λ-constacyclic code, one
by one.

Theorem 8. Let C be a symbol-pair λ-constacyclic code of Type 1 of length 3ps over R. Then
C = 〈1〉 is an MDS symbol-pair code.

Proof. If C = 〈1〉, then dsp(C) = 2. Thus, C is MDS when |C| = p2m(3ps−dsp(C)+2),
i.e., p6mps

= p2m(3ps), which is a contradiction. Therefore, the code C = 〈1〉 is an MDS code.

Now we give the MDS condition for symbol-pair λ-constacyclic codes of Type 2 of
length 3ps overR.

Theorem 9. Let C2 = 〈u(x3 − λ0)
j〉 be a symbol-pair λ-constacyclic code of Type 2 of length 3ps

over R, where 0 ≤ j ≤ ps − 1. Then C2 is not an MDS symbol-pair code λ-constacyclic code of
Type 2 of length 3ps overR.

Proof. Case 1: If j = 0, then dsp(C2) = 2. If C2 is an MDS symbol-pair code, then
|C2| = p2m(3ps−dsp(C2)+2), which is equivalent to p3mps

= p2m(3ps−dsp(C2)+2), i.e., p3mps
=

p6mps
, which is a contradiction. Thus, C2 is not MDS.
Case 2: If ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ j ≤ ps − ps−ξ + δps−ξ−1, then dsp(C2) =

2(δ+ 1)pξ . Thus, C2 is an MDS symbol-pair code if |C2| = p2m(3ps−dsp(C2)+2), i.e., p3m(ps−j) =

p2m(3ps−dsp(C2)+2), i.e., 3j = 2 dsp(C2)− 3ps − 4.
Now,

3j ≥ 3(ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 3pξ+1 − 3p + 3(δ− 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ − 3ps − 3(δ + 1) + 3(δ− 1) + 3

(equality when p− 1 = δ)

≥ 2 dsp(C2)− 3ps − 4 + 1 + 4(δ + 1)pξ

> 2 dsp(C2)− 3ps − 4.

Hence, C2 is not MDS.

Next, we consider the symbol-pair λ-constacyclic codes of Type 3 to verify the MDS
condition for these codes.

Theorem 10. Let C3 = 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x)〉 be a symbol-pair λ-constacyclic code of

Type 3 of length 3ps overR, where 1 ≤ j ≤ ps − 1, 0 ≤ r < j, and either v(x) is a unit in
Fpm [x]

〈x3ps−λ〉
or 0. Then, C3 is not an MDS symbol-pair λ-constacyclic code of Type 3 of length 3ps overR.

Proof. We consider two cases as follows:
Case 1: If v(x) = 0 and ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ T ≤ ps − ps−ξ + δps−ξ−1,

then we have dsp(C3) = 2(δ + 1)pξ . Thus, C3 is an MDS symbol-pair code if |C3| =
p2m(3ps−dsp(C3)+2), i.e., p6m(ps−j) = p2m(3ps−dsp(C3)+2), i.e., 3j = dsp(C3) − 2, i.e., 3T =
dsp(C3)− 2.
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We see that

3T ≥ 3(ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 3(pξ+1 − p + (δ− 1) + 1) (equality when ξ = s− 1)

≥ 3(δ + 1)pξ − 3(δ + 1) + 3(δ− 1) + 3

(equality when p− 1 = δ)

≥ 2(δ + 1)pξ − 3 + (δ + 1)pξ

> 2(δ + 1)pξ − 2.

Thus, C3 is not MDS.
Case 2: If v(x) 6= 0 and ps − ps−ξ + (δ− 1)ps−ξ−1 + 1 ≤ T ≤ ps − ps−ξ + δps−ξ−1,

then we consider two subcases as follows:
Subcase 2.1: If 1 ≤ j ≤ ps+r

2 , then T = j. Thus, C3 is an MDS symbol-pair code
if |C3| = p2m(3ps−dsp(C3)+2), i.e., p6m(ps−j) = p2m(3ps−dsp(C3)+2), i.e., 3j = dsp(C3) − 2,
i.e., 3T = dsp(C3)− 2. We see that

3T ≥ 3(ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 3pξ+1 − 3p + 3(δ− 1) + 3 (equality when ξ = s− 1)

≥ 3(δ + 1)pξ − 3(δ + 1) + 3(δ− 1) + 3

(equality when p− 1 = δ)

> dsp(C3)− 2.

Thus, C3 is not MDS.
Subcase 2.2: If ps+r

2 < j ≤ ps − 1, then T = ps − j + r. Hence, C3 is MDS if |C3| =
p2m(3ps−dsp(C3)+2), i.e., p3m(ps−r) = p2m(3ps−dsp(C3)+2), i.e., 3r = 2 dsp(C3) − 3ps − 4, i.e.,
3ps + 3r = 2 dsp(C3)− 4, i.e., 3ps− 3j+ 3r = 2 dsp(C3)− 3j− 4, i.e., 3T = 2 dsp(C3)− 3j− 4.
We have

3T ≥ 3(ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 3pξ+1 − 3ps + 3(δ− 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ − 3ps − (δ + 1) + 3(δ− 1) + 3

≥ 6(δ + 1)pξ − 3ps + 2δ− 1

≥ 2 dsp(C3)− 3(j + 1) + 2δ− 1 + 2(δ + 1)pξ

≥ 2 dsp(C3)− 3j− 4 + 2δ

> 2 dsp(C3)− 3j− 4.

Therefore, C3 is not MDS.

Next, we explore the MDS λ-constacyclic codes of Type 4.

Theorem 11. Let C4 = 〈(x3 − λ0)
j + u(x3 − λ0)

rv(x), u(x3 − λ0)
ω〉 be a symbol-pair λ-

constacyclic code of Type 4 of length 3ps over R, where 1 ≤ j ≤ ps − 1, 0 ≤ r < j, either

v(x) is a unit in
Fpm [x]

〈x3ps−λ〉 or 0, deg(v) ≤ ω − r − 1, ω < T, and T is the smallest integer

satisfying u(x3 − λ0)
T ∈ 〈(x3 − λ0)

j + u(x3 − λ0)
rv(x)〉, i.e., T = j, if v(x) = 0, otherwise

T = min{j, ps − j + r}. Then, C4 is not MDS.

Proof. If ps − ps−ξ + (δ − 1)ps−ξ−1 + 1 ≤ ω ≤ ps − ps−ξ + δps−ξ−1, then symbol-pair
distance is dsp(C4) = 2(δ + 1)pξ . Thus, C4 is an MDS symbol-pair λ-constacyclic code if
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|C4| = p2m(3ps−dsp(C4)+2), i.e., p3m(2ps−j−ω) = p2m(3ps−dsp(C4)+2), i.e., 3ω = 2 dsp(C)− 3j−
4. Now,

3ω ≥ 3(ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 3pξ+1 − 3p + 3(δ− 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ − 3pξ+1 − 3(δ + 1) + 3(δ− 1) + 3

(equality when p− 1 = δ)

≥ 6(δ + 1)pξ − 3ps − 3

≥ 4(δ + 1)pξ − 3ps − 3 + 2(δ + 1)pξ

> 2 dsp(C)− 3j− 4.

Therefore, C4 is not MDS, as required.

In Theorem 6, we compute the symbol-pair distance of (α + uβ)-constacyclic codes of
length 3ps overR, where (α + uβ) is not a cube inR. Using Theorem 6, as an application,
we have the following theorem.

Theorem 12. Let C be a (α + uβ)-constacyclic code of length 3ps overR, where (α + uβ) is not
a cube in R, i.e., C = 〈(x3 − α1)

j〉 for j ∈ {0, 1, . . . , 2ps}, where α1 ∈ Fpm such that α = α
ps

1 .
Then, C is not an MDS symbol-pair (α + uβ)-constacyclic code of length 3ps overR.

Proof. By using the result in Theorem 1 (part 3), we have |C| = p3m(2ps−j).
Case 1: When 0 ≤ j ≤ ps, by Theorem 6, dsp(C) = 3. Hence, C is an MDS symbol-pair

code if |C| = p2m(3ps−dsp(C)+3) i.e., p3m(2ps−j) = p2m(3ps−3+3), i.e., 6ps − 3j = 6ps, i.e., j = 0.
Thus, C = 〈1〉 is MDS.

Case 2: When 2ps − ps−ξ + (δ − 1)ps−ξ−1 + 1 ≤ j ≤ 2ps − ps−ξ + δps−ξ−1, then
dsp(C) = 2(δ + 1)pξ . Therefore, C is an MDS symbol-pair code if |C| = p2m(3ps−dsp(C)+3)

i.e., p3m(2ps−j) = p2m(3ps−dsp(C)+3) i.e., 6ps − 3j = 6ps − dsp(C) + 3) i.e., 3j = dsp(C)− 3.
Now, we have

3j ≥ 3(2ps − ps−ξ + (δ− 1)ps−ξ−1 + 1)

≥ 6pξ+1 − 3p + 3(δ− 1) + 3 (equality when ξ = s− 1)

≥ 6(δ + 1)pξ − 3(δ + 1) + 3(δ− 1) + 3

(equality when p− 1 = δ)

≥ 2(δ + 1)pξ − 3 + 4(δ + 1)pξ

> 2(δ + 1)pξ − 3.

Hence, 3j > dsp(C)− 3. Thus, C is not MDS.

5. Conclusions

In this paper, the symbol-pair distance of all γ-constacyclic codes of length 3ps overR,
where γ is not a cube in Fpm is given (Theorems 3–5). The symbol-pair distance of (α + uβ)-
constacyclic codes of length 3ps overR is obtained in Theorem 6, where (α + uβ) is not a
cube inR. Example 1 gives us some examples of symbol-pair distance γ-constacyclic codes
of length 3ps overR, where γ is not a cube in Fpm . The necessary and sufficient conditions
for MDS symbol-pair codes of length 3ps overR are provided in Theorems 8–12.

For future work, it will be very interesting to study symbol-pair distance of λ-
constacyclic codes of length 3ps over R, where λ is a cube in R. In the near future,
we will discuss the b-symbol metrics for all constacyclic codes of length 3ps overR, and as
an application, we will identify all MDS constacyclic codes of length 3ps, with respect to
b-symbol distances.
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