Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques
Abstract
:1. Introduction
2. Construction of Higher-Order Scheme
3. Special Cases
4. Numerical Results
5. Concluding Remarks
- We presented new derivative-free and multi-point iterative techniques that can handle multiple zeros of nonlinear models.
- Divided difference and weight function approaches are the main pillar where the construction of our scheme lies.
- Our expression (3) consuming is an optimal scheme in the regard of Kung–Traub conjecture. Because, it adopts only three values of f at different points.
- Many new weight functions are depicted in Table 1 that satisfy the hypotheses of the Theorems 1 and 2. These new weight functions also correspond to new iterative techniques.
- Our techniques provide better numerical solutions in terms of the residual errors, stable , absolute error between two iterations, and number iterations as compared to the existing ones (see Table 2, Table 3, Table 4 and Table 5). We have emphasized, in the Tables, the better result in all problems and coincides in Table 2 and Table 3 with the new method RM2, while, in Table 5, we remark that new methods perform less iterations for reaching the same tolerance than the known ones.
- Finally, we wind up with this statement that “our schemes is a good alternative to the existing methods”. Our scheme is not valid for the solutions of nonlinear system. In the future, we will try to work on this direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [Google Scholar] [CrossRef]
- Osada, N. An optimal multiple root finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202, 162–170. [Google Scholar]
- Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 2012, 63, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Babajee, D.K.R.; Lotfi, T. On a numerical technique for finding multiple zeros and its dynamics. J. Egypt. Math. Soc. 2013, 21, 346–353. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput. Appl. Math. 2011, 235, 4199–4206. [Google Scholar] [CrossRef] [Green Version]
- Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Hernádez, M.A.; Salanova, M.A. A family of chebyshev type methods in banach spaces. Int. J. Comput. Methods 1996, 61, 145–154. [Google Scholar] [CrossRef]
- Krasnosel kii, M.A.; Vainikko, G.M.; Zabreiko, P.P. Approximate Solution of Operator Equations; Nauka: Moscow, Russia, 1969. [Google Scholar]
- Kurchatov, V.A. On a Method for Solving Nonlinear Functional Equations. Dokl. AN USSR 1969, 189, 247–249. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Kumar, D.; Sharma, J.R.; Argyros, I.K. Optimal one-point iterative function free from derivatives for multiple roots. Mathematics 2020, 8, 709. [Google Scholar] [CrossRef]
- Behl, P.; Alharbi, S.K.; Mallawi, F.O.; Salimi, M. An optimal derivative free Ostrowski’s scheme for multiple roots of nonlinear equations. Mathematics 2020, 8, 1809. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, S.; Jäntschi, L. On Derivative Free Multiple Root finders with Optimal Fourth Order Convergence. Mathematics 2020, 8, 1091. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, S.; Jäntschi, L. On a class of optimal fourth order multiple root solvers without using derivatives. Symmetry 2019, 11, 1452. [Google Scholar] [CrossRef] [Green Version]
- Dong, C. A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation. Math. Numer. Sin. 1982, 11, 445–450. [Google Scholar]
- Dong, C. A family of multipoint iterative functions for finding multiple roots of equation. Int. J. Comput. Math. 1987, 21, 363–4670. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Sharma, J.R.; Cesarano, C.; Agarwal, P.; Chu, Y.M. An Optimal Fourth Order Derivative-Free Numerical Algorithm for Multiple roots. Symmetry 2020, 12, 1038. [Google Scholar] [CrossRef]
- Ahlfors, I.V. Complex Analysis; Mc Graw-Hill Book, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Zafar, F.; Cordero, A.; Torregrosa, J.R. Stability analysis of a family of optimal fourth-order methods for multiple roots. Numer. AlgoriTheorem. 2018, 81, 947–981. [Google Scholar] [CrossRef]
- Behl, R.; Bhalla, S.; Magreñán, Á.A.; Moysi, A. An Optimal Derivative Free Family of Chebyshev-Halley’s Method for Multiple Zeros. Mathematics 2021, 9, 546. [Google Scholar] [CrossRef]
- Kansal, M.; Behl, R.; Mahnashi, M.A.A.; Mallawi, F.O. Modified Optimal Class of Newton–Like Fourth-Order Methods for Multiple roots. Symmetry 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003. [Google Scholar]
- Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Education Inc.: New Delhi, India, 2006. [Google Scholar]
- Douglas, J.M. Process Dynamics and Control; Hall: Englewood Cliffs, NJ, USA, 1972. [Google Scholar]
Cases (Naming) | Weight Functions | Corresponding Iterative Method |
---|---|---|
Case-1 (RM1) | ||
. | ||
Case-2 (RM2) | ||
. | ||
Case-3 (RM3) | ||
. | ||
Case-4 (RM4) | ||
. | ||
Case-5 (RM5) | ||
. | ||
Case-6 (RM6) | ||
Case-7 (RM7) | ||
Methods | t | |||||
---|---|---|---|---|---|---|
RM1 | 7 | |||||
RM2 | 7 | |||||
RM3 | 7 | |||||
RM4 | 7 | |||||
ZM | 8 | |||||
BM () | 7 | |||||
() | 7 | |||||
MKM | 7 | |||||
SKM | 7 |
Methods | t | |||||
---|---|---|---|---|---|---|
RM1 | 5 | |||||
RM2 | 5 | |||||
RM3 | 5 | |||||
RM4 | 5 | |||||
ZM | 7 | |||||
BM () | 5 | |||||
() | 5 | |||||
MKM | 5 | |||||
SKM | 5 |
Methods | t | |||||
---|---|---|---|---|---|---|
RM1 | 6 | |||||
RM2 | 6 | |||||
RM3 | 6 | |||||
RM4 | 6 | |||||
ZM | 10 | |||||
BM () | 7 | |||||
() | 7 | |||||
MKM | 6 | |||||
SKM | 8 |
Methods | t | |||||
---|---|---|---|---|---|---|
RM1 | 6 | |||||
RM2 | 6 | |||||
RM3 | 6 | |||||
RM4 | 6 | |||||
ZM | 6 | |||||
BM () | 6 | |||||
() | 6 | |||||
MKM | 6 | |||||
SKM | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Arora, H.; Martínez, E.; Singh, T. Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques. Axioms 2023, 12, 270. https://doi.org/10.3390/axioms12030270
Behl R, Arora H, Martínez E, Singh T. Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques. Axioms. 2023; 12(3):270. https://doi.org/10.3390/axioms12030270
Chicago/Turabian StyleBehl, Ramandeep, Himani Arora, Eulalia Martínez, and Tajinder Singh. 2023. "Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques" Axioms 12, no. 3: 270. https://doi.org/10.3390/axioms12030270
APA StyleBehl, R., Arora, H., Martínez, E., & Singh, T. (2023). Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques. Axioms, 12(3), 270. https://doi.org/10.3390/axioms12030270