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Abstract: The new arithmetic operations of non-normal fuzzy sets are studied in this paper by using
the extension principle and considering the general aggregation function. Usually, the aggregation
functions are taken to be the minimum function or t-norms. In this paper, we considered a general
aggregation function to set up the arithmetic operations of non-normal fuzzy sets. In applications,
the arithmetic operations of fuzzy sets are always transferred to the arithmetic operations of their
corresponding a-level sets. When the aggregation function is taken to be the minimum function,
this transformation is clearly realized. Since the general aggregation function was adopted in this
paper, the concept of compatibility with a-level sets is needed and is proposed, which can cover the

conventional case using minimum functions as the special case.
Keywords: compatibility; extension principle; non-normal fuzzy sets
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1. Introduction

In order to simplify the notations, the membership function ¢y of a fuzzy set F is
identified with F by simply writing ¢z(x) = F(x). Let F and G be two fuzzy sets in R, and
let ® denote any one of the arithmetic operations @, ©, ®, © between FandG. According
to the extension principle, the membership function of F ® G is defined by

FoGu) =

sup  min{F(x),G(y)} @

{(xy)u=xoy}

for all u € R, where the arithmetic operations ® € {®, S, ®, 0} correspond to the arith-
metic operations o € {+, —, %, +}. The case of o = =+ should avoid the division of x/y for
y=0.

In general, we can consider the t-norm instead of the minimum function by referring
to Dubois and Prade [1] and Weber [2]. For more detailed properties, we can refer to the
monographs by Dubois and Prade [3] and Klir and Yuan [4]. In this paper, we used the
general function to propose the arithmetic operations of fuzzy sets, and we present the
compatibility with the conventional definition using the minimum functions. We can also
refer to Gebhardt [5], Fullér and Keresztfalvi [6], Mesiar [7], Ralescu [8], and Yager [9] and
Wu [10] for the arithmetic operations of fuzzy sets based on the extension principle.

The generalization of Zadeh's extension principle in (1) can also be used to set up the
arithmetic operations without using the minimum function. Coroianua and Fuller [11,12]
used the so-called joint probability distribution to generalize the extension principle (1),
which is given by
sup  €(x,y) 2)
{(xy):u=xoy}
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for all u € R, where ¢ : R? — [0,1] is a joint probability distribution satisfying

sup€(x,y) = G(y) and sup = &(x,y) = F(x). ©)]
xeR yeR

Wu [10] considered a general function © : [0,1] x [0,1] — [0,1] by defining the

arithmetic as

FopGu)= sup D(F(x),G(y)), (4)

{(oy)u=xoy}
where © does not need to satisfy some extra conditions. The main difference between (2)
and (4) is that the domains of the joint probabilitydistribution ¢ : R? — [0, 1] and function
D :[0,1]?> — [0,1] are different. We can also refer to Coroianua and Fuller [11] for the
comparison between (2) and (4). Although © in (4) is a general function, some sufficient
conditions regarding © are still needed to obtain some desired properties. Therefore, the
second motivation of this paper was to propose the concept of compatibility. We shall say
that the function ® is compatible with the arithmetic operations of a-level sets when the
following equality:
(Fop G), =F oG

is satisfied for each « € (0, 1]. The sulfficient conditions imposed upon the function © will
be studied to guarantee the compatibility. Under the general function ®, the associativity
of the arithmetic operations is also an important issue. Therefore, many rules regarding the
associativity were also studied.

There is some other interesting arithmetic of fuzzy numbers, which will be shown
below. Hol¢apek, Skorupovd, and Stépnicka [13,14] proposed the arithmetic of extensional
fuzzy numbers based on a similarity relation S : R?> — [0,1] such that S satisfies some
required conditions. On the other hand, based on the concept of the extensional hull, given
a fixed real number x € R, the so-called extensional fuzzy number generated by x and a
similarity relation S is a fuzzy set £ in R with membership degree

%s(y) = S(x,y) forally € R.

Given any two extensional fuzzy numbers %5 and 7, the addition ®g and multiplica-
tion ®g are defined by

Xs @sPs = (x +y)s and Xs @5 Js = (xy)s,

where S is assumed to be the so-called separated similarity relation for the purpose of
well-defined arithmetic. In general, based on a system S of so-called nested similarity
relations, the addition ®s and multiplication ® s are defined by

X5 D5 i1 = (X + ¥)max(s,r) and X5 @5 1 = (XY )max(s,1) for S, T € S.

Esmi et al. [15] and Pedro et al. [16] used the extension principle in (3) to study the
fuzzy differential equations. They considered the interactivity between fuzzy numbers. Let
P be a fuzzy set in R. Given any fuzzy numbers F and G, we say that P is a joint probability
distribution of F and G when

sup P(x,y) = G(y) and sup = P(x,y) = F(x).
xeR yeR

We say that F and G are non-interactive when
P(x,y) = min{F(x), G(x)}.

Otherwise, they are called interactive. The disadvantage is that the non-interactivity
depends on their joint probability distributions. We cannot just say that F and G are non-
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interactive without considering the role of the joint probability distribution. Let ©® denote
any one of the arithmetic operations @3, ©5, ® 5, @ 5 between fuzzy numbers Fand G along
with a joint probability distribution P. The membership function of F © 5 G is defined by

FopGu)= sup P(x,y)
{(x,y):u=xoy}

for all u € R, where the case of o5 = + should avoid the division of x/y for y = 0.

The arithmetic of fuzzy intervals is an important issue. Wu [17] considered the form of
expression in the decomposition theorem to study the arithmetic of fuzzy intervals. Wu [18]
also used the form of expression in the decomposition theorem to study the different
types of binary operations of fuzzy sets, which were also applied to study the difference
of fuzzy intervals and covered the so-called generalized differences proposed by Bede
and Stefanini [19] and Gomes and Barros [20] as the special cases. The fuzzy axiom of
choice, the fuzzy Zorn’s lemma, and the fuzzy Hausdorff maximal principle studied by
Zulgarnian et al. [21] were also based on normal fuzzy sets. It is also possible to extend
those results based on the non-normal fuzzy sets.

The fuzzy sets considered in Wu [17,18] were implicitly assumed to be normal. Without
using the form of expression in the decomposition theorem, in this paper, we shall use
the extension principle based on a general function rather than the t-norm to study the
arithmetic of non-normal fuzzy intervals. In this case, the concept of compatibility with
a-level sets can be proposed and the equivalence with conventional arithmetic operations
using the minimum function can also be established.

In Section 2, the concept and basic properties of non-normal fuzzy sets will be pre-
sented, and the arithmetic operations of non-normal fuzzy sets will be studied using the
extension principle based on the general functions. In Section 3, we shall propose the
concept of compatibility with the a-level sets, which can cover the conventional case using
the minimum functions as the special case.

2. Arithmetic Operations of Fuzzy Sets

Let F be a fuzzy set in R. Recall that a fuzzy set F in a universal set U is called normal
when there exists x € U satisfying F(x) = 1. For « € (0,1], the a-level set of F is denoted
and defined by

Fr={xeR:F(x) >a}. 5)

The support of a fuzzy set F is the crisp set defined by
Fpy = {x e R: F(x) > 0}.

The 0-level set [ is defined to be the topological closure of the support of F, i.e.,
Fy = cl(Fy). We write R ¢ to denote the range of the membership function of F. In general,
we have Ry # [0,1]. The following result is very useful.

Proposition 1. Let I be a fuzzy set in R with membership function F. Define a* = sup Ry and

I — { [0,a*), if the supremum sup R is not obtained ©)

[0,a*], if the supremum sup R is obtained.

Then, F, # @ forall a € Ip and F, = @ for all « & 1. Moreover, we have Ry C I and

F0+: U Fa: U Fa.

{aelp:a>0} {aeRp:x>0}

The interval If is called an interval range of F.
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We considered three arithmetic operations B, H and X between any two fuzzy sets F
and G in R. The extension principle says that the membership functions are given by

FBGu)= sup min{F(x),G(y)} (7)
{(xy):u=x+y}

FBGu)= sup min{F(x),G(y)} (8)
{(Gy)u=x—y}

FRXG(u)= sup min{F(x),G(y)} 9)
{(xy)u=xy}

for all u € R, where the arithmetic operations [J € {H,H, X} correspond to the arithmetic
operations o € {+, —, x}. The case of division was not considered in this paper, since it can
be similarly obtained.

Instead of the minimum function, we can consider a general function ® : [0,1]2 — [0, 1]
defined on [0, 1]2. In this case, the membership functions are defined by

FoppGu)=  sup  D(F(x),G(y));
{(xy)u=x+y}

FoppGu)=  sup  D(F(x),G(y));
{(xy)u=x—y}

FoppGu)= sup D(F(x),G(y)).
{(xy):u=x-y}

In general, the arithmetic operations are defined below.

Definition 1. Given any fuzzy sets V..., F") in R and a function ©, : [0,1]" — [0,1]
defined on the product set [0,1)", regarding the operations ®; € {®,5,} fori=1,--- ,n—1,
the membership function of F = FV) @1 - -~ ©,_1 F") is defined by
Fu) = EV @ 0pq EM (1) = sup 9, (ﬁ<l>(a1), . ,F(”)(an)),
{(ay, - an):u=ayoy---0,_1an}

(10)
where the operations ©; € {®,8,®} fori = 1,--- ,n — 1 correspond to the operations o; €
{+, = «}fori=1,--- ,n—1

When the function ®, is taken to be the minimum function given by
On(ar, -+ an) = minfay, -+ an},
the membership function of FV [, - - - [,_; F is given by

VE g, F(”)(u) - sup

{(x1,+ X ):u=x101-0 _1Xn }

min{ PV (xy), - FO ()}, (1)

where [J; € {H,8,K} fori =1,--- ,n — 1 can refer to (7), (8), and (9).
We can also insert the parentheses into the expression F W@y ©,_1 EM. The
following example shows the way of inserting parentheses.

Example 1. Given fuzzy sets E(V), .., E(7) in R, we can consider the membership functions of
G=FEVg (F‘(z) D F(3)) o (ﬁ(‘l) ® (P(5) @ E6) o F‘(7))>

and

A=F1gF? qFd o @ g G g F6) o F7)
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given by
Gu) = sup Dy (F(l)(xl),- =) (xy))
{(x1,+ x7):u=x1% (x2+x3) — (xg% (x5 +x6—x7)) }

and
Au) = sup 07 (FV (), F D (x7)),

{21, ,x7) U= %Xp+X3—Xg%X5+Xg—X7 }
respectively. It is clear that G # H. Since
X1 % X + X3 — Xg % X5+ Xg — X7 = (X1 % X) + X3 — (Xg % X5) + X6 — X7,

the fuzzy set H means the following form:
= (p(l) ® 15(2)) e O o <15(4) ® p(S)) o FO) g ED),

Example 2. We present an example from mathematical finance. The well-known Black—Scholes
formula (see Black and Scholes [22]) for the European call option on a stock is described as follows.
Let the function f be given by the formula:

f(s,t,K,r,0) =s-N(dy) —K-e " - N(dyp),

where s denotes the stock price, t denotes the time, K denotes the strike price, r denotes the interest
rate, o denotes the volatility, and N stands for the cumulative distribution function of a standard
normal random variable N(0,1). The quantities dy and dy are given by

In(s/K )t
PRLLIGVE Sl Ul 0 L S 7
ot
Let T be the expiry date, and let C; denote the price of a European call option at time t € [0, T).
Then, we have

Ct = f(St,T—t,K,r,0) forallt € [0, T], (12)

where Sy denotes the stock price at time t. On the other hand, the price Py of a European put option
at time t with the same expiry date T and strike price K can be obtained by the following put—call
parity relationship (see Musiela and Rutkowski [23]):

Ci—P =8 —K-e"TH forall t € [0,T]. (13)

Under the considerations of the fuzzy interest rate ¥, fuzzy volatility &, and fuzzy stock price
S, we can obtain the fuzzy price Hy of a European call option at time t according to (12) and the
extension principle. Therefore, the membership function of H; is given by

Hi(c) = sup D3(St(s), #(r),o(0)).
{(s,r,0):c=f (s, T—tK,r,0)}

According to the put—call parity relationship in (13), we can also study the fuzzy price Py of a
European put option at time t. Let

g(s,t,K,r,0) = f(s,t,K,1,0) —s+K-e "

Then, we can obtain the fuzzy price i of a European put option at time t in which the
membership function of Py is given by

Bi(p) = sup D3(5¢(s),7(r),0(0))).
{(s,r,0):p=g(s,T—tKr,0)}
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Let £, F") be fuzzy sets in R, and let aj = sup R ;). From Proposition 1, we

see that £\") # @ forall a € I ) and EY = @foralla ¢ I £, where the interval range I,
is given by

[0,&;), if the supremum sup R is not obtained

JEp— i
Trw { [0,af], if the supremum sup Rz is obtained. (14)

Let I* = Izq) N -+ - N Ipw. Then, I* is also an interval of the form [0, «] or [0, a) for

some « € (0,1]. For a € I*, we see that FDEZ) #Q@foralli=1,--- ,n.

Let F = F) ©p - ©, 1 E™, and let I; be the interval range of F. We also write
R; = Ry to denote the range of the membership function of F () fori =1,---,n. The
supremum of the range Rz of the membership function of F is given by

sup R¢ = sup F(u) = sup sup Dy (?(1)(x1), e ,f(”)(xn))

ueR u€R {(xq,++ ,xp ):u=x107---0, 1%, }

= sup Dplay, -, an) = at. (15)
(alr"'r“n)ERlX"'XRn

Therefore, the definition of interval range says

I { [0,a*] if the supremum R is obtained
=

[0,a%) if the supremum R is not obtained (16)

Proposition 2. Let F(1), ... F(") be fuzzy sets in R, and let F = FV & --- @,_1 F with
interval range Iz. Suppose that the function ©, : [0,1]" — [0, 1] satisfies the following condition:

& S ﬁifori = 1/' e, n Zmpl}/ Dn(“lr' o /“ﬂ) S 971(,31/' v /,Bn)~ (17)

We also assumed that the supremum «] = sup Ry is obtained for i =1,--- ,n. Then, the
following supremum:
supRp =a* =Dy(ag, -, ay)

is obtained. Moreover, we have
Ir =[0,a"] and I* = [0,a®],

where
a® = min{aj, -, a;}.

In particular, suppose that
Du(ay, -+, ay) =min{aj,--- ,ap}. (18)

Then, we have
IF = I[?(l) n---N IF(”) = I* = [O,Dé*].

Proof. Since the supremum sup Rﬁ(i) is obtained fori =1,--- ,n, we have
Iy = [0,af] and o] = FO(xf) e Rei = Ri (19)
for some x € Rand foralli =1, - ,n. Itis also clear that

I = Iﬁ(l) NN IF(”> = [O,DC.].
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From (15), we have

ot = sup Du(ay, -, an) > Du(aj, -, ap).
(ocl,m,ocn)G’Rlx---XRn

On the other hand, since £ (i) (xl-) < ocl’f foralli =1,---,n, from (15), again, we also
have

a* = sup sup Dy (F(l)(xl),' = ,ﬁ(n)(xn))

u€R {(x1,+ 2y ):u=x101"+-05_1%n }

< sup sup Dyu(aj, -+, ay) (using (17))
UER {(x1,+ xn):u=x101+-0_1Xn}

= Dl’l(lxik/' o ,0(:;),

which proves
af =9, (al, -, ay).

We take u* = xJ o1 - - 0,1 x;;. Then, we have

F(u¥)

e sup Qn(ﬁ(l)(x])/"' ,F'(n)(xn))
{(x1,+ xn)su*=x101+-0 1%}

> D, (ﬁﬂ)(x;),. . ,ﬁ<ﬂ>(x:;)) (since u* = x} oy - 0y_1 X3)

=Du(af, - ,0) =a"

and
F(u*) = sup Dy (ﬁ(l)(xl),' x ,ﬁ(n)(xn)>
{(x1,+ xn)u*=xq01--04 1%, }
< sup D, (FM (x%) ,l:"(”)(x,’;)) (using (17))

{(x1, 2 )u*=x101--04 _1xn }

=Dy(aj, -, a) =a"

Therefore, we obtain F(u*) = a*. From (15), we conclude that the supremum sup R
is obtained at u*. From (16), it follows that Iz = [0, a*]. This completes the proof. [

3. Compatibility
Let Sq,-- -, S, be subsets of R. We write

Sjo1-+-0, 1S, ={x101---0, 1x,:x; €S;fori=1,---,n},

where the arithmetic operations o; € {+, —, %} fori =1,--- ,n — 1.
Given any fuzzy sets FO, ... FMinR, let F = FD @ -+ ®,_1 F™ be defined in
Definition 1. For any
S I*OIFZIF(U ﬂ~~~ﬁlﬁ(n) ﬂlﬁ,

it is clear that the a-level sets F, and Féi) are nonempty for i = 1,--- ,n. Therefore, we
propose the following definition.

Definition 2. Given any fuzzy sets F1), ... ,F(") in R, we considered the arithmetic operations

©; € {®, &, ®}, which correspond to the arithmetic operations o; € {+, —, x} fori=1,--- ,n—1:

e The function ©y : [0,1]" — [0, 1] is said to be compatible with the arithmetic operations of
a-level sets when the following equality is satisfied:

(F(l) ©1+ - Op-q ﬁ(”)) — F,,El) 01+ 0y_1 Fugn)forall a € I" N Iz with o > 0.

o
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e The function ©, : [0,1]" — [0,1] is said to be strongly compatible with the arithmetic
operations of a-level sets when the following equality is satisfied:

(ﬁ(l) @1 Op_1 15(”)> =FEVo oy EM foralla € I N If.

o

The purpose of this paper was to present some sufficient conditions such that the
compatibility with the arithmetic operations of a-level sets can be satisfied.

Recall that the real-valued function f : R — R is upper semi-continuous on R if and
only if the set {x € R : f(x) > a} is a closed set in R for each « € R. Especially, if F is a
fuzzy set in R such that its membership function F is upper semi-continuous on R, then
each a-level set F, is a closed subset of R for a € I.

Lemma 1 (Royden ([24] p. 161)). Let K be a closed and bounded subset of R, and let f be a
real-valued function defined on R. Suppose that f is upper semi-continuous on R. Then, f assumes
its maximum on K; that is, the supremum is obtained in the following sense:

sup f(x) = max f(x).

xeK xek

Theorem 1. Given any fuzzy sets E(V), ..., F() in R, we considered the arithmetic operations
©; € {®,©, ®}, which correspond to the arithmetic operations o; € {+,—,*} fori=1,--- ,n—
1. Then, we have the following properties:

(i) Forany a € I* N Iz with « > 0, we assumed that the function ©,, satisfies the following
condition:
a; >aforalli=1, - nimply Dy(ay, -, an) > a. (20)

Then, the following inclusion:

F'Dgl) 01+ 0y_q F‘DE”) C (F‘(l) 1 Op_1 F‘(”))

4

holds true for all « € I* N I.
(ii)  Suppose that the membership functions of F(¥) are upper semi-continuous forall i =1,- - - ,n.
We also assumed that the function ®, satisfies the following conditions:

o giwenanya € I" NI witha >0,
Dy(ay, -+ ,an) > aifand only if a; > a foralli =1, - ,n. (21)

e Givenany « ¢ I* witha € (0,1],
a; < forsomei € {1,--- ,n}imply D, (ay, - ,an) < a (22)

for any a; € [0,1] with j # i.
Then, the following equality:

(FO o1 0ua FW) = EV oy w0,y Y (23)

o

holds true for all x € I* N Iz with & > 0. We further assumed that the supports Féfg are
bounded for alli =1, - - - ,n. Then, the following equality:

(ﬁ(l) O1 - Op_q ﬁ‘(”))o = ﬁél) 01+ 0,1 ﬁén) (24)

reqarding the 0-level sets holds true.
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Proof. To prove Part (i), given any a € [* N [z with a > 0, we have F, # @ and F,,Ei) #0

foralli =1, - ,n. Given any

Uy € 15951) 01041 ?vgn)'
there exist x\) € FY foralli=1,--- ,n satisfying

(1) ()

n
Uy = Xy " 01 - Op—-1Xg -

We see that o
FOy > aforalli=1,--,n.

Using the assumption (20) of ®,, we also have

Therefore, we have

(25)

FO oy @pq EM (1) = sup 9, (F(l)(xl), . ,ﬁ(”)(xn)>

{(xl,"' ,xn)mﬁc:xlol”'on—lxn}

> Dy (F(l)(x,(xl)),- . ,F(”)(x,gn))) > a (using (25)).

This shows
Uy € (15(1) O1 Op_q F(”))“.

Therefore, we obtain the following inclusion:

D oy 0y 1 B € (FD 0y 0,4 )

o

foralla € I* N Iz with x > 0.
Next, we considered the 0-level sets. For « = 0, given any

Uy € ﬁél) 010y 1 15("),
there exist x(()i) € Féi) foralli=1,---,n satisfying

(1) (n)

Ug =Xy Op- " Op_1Xy .
For each fixed i, since
x(()i) € ﬁéi) = cl({x eR:FO(x) > 0}),
the concept of closure says that there exists a sequence
(e c {xeR:FO(x) > 0}

satisfying
lim x(i) = x(i)
m—yoo M 0"

We considered a function 77 : R” — R defined by

(X1, ,Xn) = X101+ 0y_1 Xy,

(26)



Axioms 2023, 12,277 10 of 17

where the binary operations o; € {4, —,} fori = 1,---,n. Then, it is clear that 7 is

continuous. We define

(1) 0= (el ).

Um = Xm" O1 " On—1Xm

Using (26) and the continuity of #, we obtain

(0, 280) = (0, ) = 2D 01y ) = @

Iim u,;, = lim X
oo M m—>0017 m.

Given any «; € Iz;) witha; >0fori=1,---,nand any & € Iz witha > 0, let
o« = min{&, ay,- -+ ,an}.

Then, wehave 0 < o« < aand 0 < &« < a; fori = 1,---,n. From (14), we also see
a € lpanda € Iy foralli=1,---,n,ie,a € I N Iz The assumption (20) of D, says

Dplag, -+ ,aq) >a>0.

Therefore, the following statement holds true:
0<a;€lpforalli=1,---,nimply D, (aq,- - ,an) > 0. (28)

Now, we have

FO o @pg B0 (1) = sup 9, (F(l)(xl), . ,F(”)(xn))

{(x1,+ %n)m=x101-+-0_1Xn }

> 9, (F(l)(xg)),- p ,F(”)(ng))) > 0 (using (28)),

which also says

um € {u e R:FV oy -+ 0,1 F™(u) > 0} for all m.

From (27), we obtain

o€ Af{u € Ri FD oy -0,y F)(u) > 0}) = (FO) oy - 04 FOY)

which shows the following inclusion:

N(gl) 01 . e on_l F‘én) g (P(l) @1 . e @n_l F‘(n)>0

Therefore, we obtain the desired inclusion.
Proving Part (ii) means proving another direction of inclusion. Now, we further

assumed that the membership functions of £() are upper semi-continuous for all i =
1,---,n. In other words, the nonempty a-level sets 15,,51) are closed setsin R forall « € I*
andi=1,---,n. Givenany a € I* NIz witha > 0 and any

Uy € (ﬁ(l) ®1 - Op_1 ﬁ(”))m

we have

sup
{(21,+ xu)ug=x101--0, 1% }

Since u, is a finite number, we see that

9, (F<1)(x1),~ . ,ﬁ(n)(xn)> = FD oy @p g FM (1) > a. (29)

FE{(xlf"'/xn)iua=x101"-0n71xn}
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is a bounded set in R"”. We also see that the function

17(x1,--- ,xn) = X101"""%1-1%n

is continuous on R”. Since the singleton set {u,} is a closed set in R, the continuity of 7
says that the inverse image F = 57! ({uy}) of {u,} is also a closed set in R". This says that
F is a bounded and closed set in R". Next, we want to claim that the function

Flxr, - xn) = Dn (ﬁ(l)(xl),. . ,F(”)(x,,))

is upper semi-continuous. In other words, we want to show that

{Cen o sxn) s fxn, o) > )

is a closed set in R" for any &« € R. We considered the different cases as follows:
*  Suppose that « < 0. Then, we have

{(x1,--+,xn) s f(x1,-++ ,xn) > a} =R",

which is a closed set in R".
*  Suppose that « > 1. Then, we have

{(x, -, xn): f(x1,---,x0) >} =0,

which is also a closed set in R".
*  Suppose thata € I" NIz witha >0, ie, F # Qforalli=1,---,n. Then, we have

) S ) 2 }—{<x1,~~,xn>:®n(ﬁ<”<x1>,~-,F(’”(xn))za}

x,) : FO(x;) > aforalli=1,- } (using (21))

cxn) i x; € B foralli =1, - }:”ogl)x...xﬁa(”),

which is a closed set in R”, since FS) are closed setsinR foralli =1,---,n.

*  Suppose thata ¢ I* with « € (0,1]. Then, we have 1:",,9) = @ for some i, i.e., a & Izq).
By referring to (14), it follows that F())(x) < a for all x € R. Therefore, using the
assumption (22), we obtain

flxy, -+, x0) =Dy (F(l)(xl),--- ,I:“(")(xn)) < waforall (xq,---,x,) € R".

This shows
{(xq, - xn)  flxr, -, x0) > a} =0,

which is also a closed set in R”.
e  Suppose that a ¢ I with a € (0,1]. Then, we have

o= {(xl/. ) Qn(?(l)(xl),--- ,ﬁ(n)(xn)) > ,X}
= {(xl,... ,xn) 3f(x1,"' ’xn) > Oc},

which is a closed set in R”.
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The above cases conclude that the function f(x,---,x,) is indeed upper semi-
continuous. Lemma 1 says that the function f assumes the maximum on the set F. Therefore,
using (29), we have

max X1, ,Xn) = max X1, ,X
(xlr”'rxn)EFf( ! 7’1) {(xlr"'rxn)Zuvc:xlol"'on—lxn}f( ! ”)
= sup fxy, -, xn) > a (30)

{(x1,+ xn):ug=x101---0_1Xn }
Therefore, there exists (xj,-- -, x};) € F satisfying
o = X} 01 -0y X
and

D, (F(l)(xik),- . ,F(Tl)(x;;)) = f(x5, - ,x}) = ( max)epf(xl,- c LX) > .
X1,/ %n

Using the assumption (21), we obtain F (i)(x;‘) > «, which says x] € 15,,5{) for all
i=1,---,n. Therefore, we obtain

Uy € 15951) 01+ 0y—1 ?ogn),
which shows the following inclusion:
(ﬁ(1> ®l “e. G}’l*l F(”)) - ~0Sl) Ol P Ol’l*l ﬁﬂgi’l)
4

for alla € I* N Iz with « > 0. Using Part (i), we obtain the desired equality (23).

Considering the 0-level sets, for « = 0, we further assumed that the supports 1552

are bounded for all i = 1,---,n. Suppose that ©,(a; ---,a,) > 0 for a; € Iz and
i=1,---,n. Since I" N I is an interval beginning from 0, using the denseness of R, there
exists & € I* N Iz with & > 0 satisfying

Dylay -+ ,0y) >a>0.

Using the assumption (21), we have a; > a« > Oforalli =1, -- ,n, which says that
the following statement holds true:

Dn(ay -+ ,ay) >0fora; € Ipyyandi=1,--- ,nimplya; > Oforalli=1,---,n. (31)

Now, considering the O-level set, we have
ug € (ﬁ‘(l) O Op_q ﬁ‘("))o = cl<<ﬁ(1) O1 - Op_q f‘("))o+>
= cl({u eR:FM o1 0pq FM(u) > O})
Therefore, there exists a sequence {u,,}5,_; in the following set:
{u eR: ﬁ(l) ®1 - Op1 F(”)(u) > 0}

satisfying

lim Um = UQ.
m—o0
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Using the above arguments by referring to (30), we can obtain

0<FV G @y EM (1) = sup 9, (ﬁ(l)(xl),. .. ,ﬁ(n)(xn))
{ (21, 2 ) um=x101 -0 12 }

_ 0, (FV(xy), - E (1),

(1 )10 1 ) "( (1) (x”))

Therefore, there exist X1, - - - , Xu satisfying

Um = X1m ©1 ** * On—1 Xnm

and

(l)<x1m),. .. ,F(n) (xnm)) — max @n (ﬁ(l)<x1)/ e e /F‘(Tl) (xn)) > 0,

{(Xlr"' /xn):um:xlol"'on—lxn}

lap!!

N (

Using (31), we have F () (xjy) > O0foralli =1,---,n, which shows that the sequence
{Xim }op_y is in the support 1:"(52 foralli = 1,---,n. Since each 15(52 is bounded for i =

1,---,n, it follows that {x;, }5_, is also a bounded sequence. Therefore, there exists a
convergent subsequence {X;;, }3> ; of {x;, }5,_;. In other words, we have

lim x;;, = xjo foralli=1,---,n,
k—o0
which also says x;y € cl(Féz) = ~(§l) foralli=1,---,n. Let
umk = xlmk 01" %n-1 xnmk-
Then, we see that {1, }{2 , is a subsequence of {uy }5 4, ie.,
lim uy,, = ug.
k—o0 "k 0
Since
uy = lim uy, = lim (xq1,,, 01 9,1 X
0 ko0 My k~)oo( 1mk 1 n—1 nmk)

= | im X1y, ) 01041 | im Xy | = X190 01"+ 041 Xno,
k—oc0 k—r00

which shows
)

Therefore, we obtain the following inclusion:
(p(l) O1 - Op_1 ﬁ("))o CEM oy io,_g B,
Using Part (i), we obtain the desired equality (24), and the proof is complete. O
Theorem 2. Given any fuzzy sets E1), ... E(") in R, we considered the arithmetic operations

©; € {®, ©, ®}, which correspond to the arithmetic operations o; € {+, —, } fori=1,--- ,n—
1. Suppose that the function ©,, satisfies the following conditions:

*  Givenanywa € I* N Ip witha >0,
Du(ay, -+, an) > aifandonly if a; > a foralli =1,--- ,n.
e Givenany a ¢ I* witha € (0,1],

a; < forsomei € {1,--- ,n}imply D, (ay,--- ,0n) < &
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forany a; € [0,1] with j # i.
Then, we have the following properties:

(i)  Suppose that the membership functions of F(¥) are upper semi-continuous forall i = 1,- - - ,n.
Then, the function ©,, is compatible with arithmetic operations of a-level sets. In other words,
given any o € I* N Iz with a > 0, we have

(FO @1 0ua FM) =V oo,y B, (32)

o

In particular, if V), .., ") are normal, the equality (32) holds true for all « € (0, 1].

(ii)  Suppose that the membership functions of E®) are upper semi-continuous and that the supports
Féfg are bounded for all i = 1,--- ,n. Then, the function ©, is strongly compatible with
the arithmetic operations of a-level sets. In other words, the equality (32) holds true for all
a € I* N 1g. In particular, if EQ, ... ") are normal, the equality (32) holds true for all

a € [0,1].

Proof. To prove Part (i), the equality (32) follows immediately from Part (ii) of Theorem 1.
In particular, if each F() is assumed to be normal fori = 1,- - - , 1, then we have I Fi) = [0,1]
foralli=1,---,n, which also says I* = [0, 1]. Part (ii) can be easily realized from Part (ii)
of Theorem 1 and Part (i) of this theorem. This completes the proof. O

Corollary 1. Given any fuzzy sets F1), ... F) in R, we considered the arithmetic operations

0; € {8, 8, X}, which correspond to the arithmetic operations o; € {+, —,*} fori=1,--- ,n—

1. Then, we have the following properties:

(i)  Suppose that the membership functions of F(¥) are upper semi-continuous forall i =1,- - - ,n.
Then, given any & € I* N Iz with a > 0, we have

(ﬁ(l) Oy -0, 1 ﬁ(ﬂ)) = ~0S1) 01+ 0y_q F,,E”). (33)

In particular, if FY), - - -, F") are normal, the equality (33) holds true for all a € (0,1].

(ii)  Suppose that the membership functions of F(®) are upper semi-continuous and that the supports
1:"(52 are bounded for alli =1, --- ,n. Then, the equality (33) holds true for all x € I* N Iz.
In particular, if V), -, FU) are normal, the equality (33) holds true for all « € [0,1].

Proof. Since we considered the arithmetic operations [J; € {H,H, X}, this means that we
take
Dn(“ll e 10‘1’1) = min{“l/ e /an}/

which clearly satisfies all the assumptions of Theorem 2. Therefore, the desired results
follow immediately from Theorem 2. [J

Definition 3. We denote by F..(R) the family of all fuzzy sets in R such that each i € Fe.(R)
satisfies the following conditions:

. The supremum sup R is obtained, i.e., sup Rz = max R;.

*  The membership function of i is upper semi-continuous and quasi-concave on R.

®  The 0-level set i is a closed and bounded subset of R.

Each d € Fec(R) is also called a fuzzy interval. If the fuzzy interval d is normal and the one-level
set iy is a singleton set {a}, where a € R, then @ is also called a fuzzy number with core value a.
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If 4 is a fuzzy interval, then its 0-level set d is a closed and bounded subset of R. The
conditions in Definition 3 says that each a-level set 4, is a bounded closed interval for
a € [0,1]. Itis also clear that

where I; denotes the interval range of 4 and [a%, 4] is a bounded closed interval with

endpoints a; and . The a-level set &, can be interpreted as a bounded closed interval

[ﬁk, ﬁkq with degree «, which explains the terminology of the fuzzy interval.

Proposition 3. Given any fuzzy intervals d and b with interval ranges I; and I, respectively, let
Ly, denote the interval range of a (L1 b for [J € {H,5,X}. Then, 4 [1b is also a fuzzy interval, and
its a-level set is given by

(GED)y =y 0 E,Xfor all w € I; NI N L.
More precisely, we have
Bh), = [ﬁ,,% T E,ﬂ
(@25)e = [a — B~ 1],
(a85)e = [min{akby, atbl!, oL, allvl! |, max{akol, ko, allbk, al5il} |,
forany a € Iz N I N L. We further assumed that the suprema:
a* = sup Rz and B* = sup R(D)

are obtained. Then,
Iﬁ N II'] = Iﬁlﬂf) = [0, min{oc*,,B*}]

is a closed interval.

Proof. Given any a € I; N [; N I, it is clear that the a-level sets (4 [ b)y, Gy, and by
are nonempty. Therefore, the desired results follow immediately from Corollary 1 and
Proposition 2. This completes the proof. [

4. Conclusions

The arithmetic operations of non-normal fuzzy sets using the extension principle
based on general functions were investigated in this paper. The membership function of
arithmetic operation jale) 1+ Ouq F (1) is defined by

FO @ oy M () = sup 9, (ﬁ(l)(al),. . E) (an)),

{(ay, - ,an)u=ayor---0p 1an}

where the way of calculation (V) @1 --- ©,_1 EM for ©; € {®,6,@}andi=1,--- ,n—1
corresponds to the way of calculation for ay o1 -+ 0,_q1a, for o; € {+,—, %} and i =
1,---,n — 1. This kind of arithmetic operation generalizes the conventional one given by

F(l) |Z|1 e Dn—l F‘(") (u) = sup min{ﬁ'(l)(xl)’ e ’15(”) (xn)},

{ (21, xn)u=x101---0,_1x4 }

where [J; € {H,H,X} fori=1,--- ,n—1.
The main issue of arithmetic operations is studying their a-level sets. Therefore,
the concept of compatibility with a-level sets is proposed by saying that the function
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References

D, :[0,1]" — [0,1] is (strongly) compatible with the arithmetic operations of a-level sets
when

(ﬂl) O1- - On ﬁ<”>) =FWop 0, E foralla € I* N I; with & > 0.

o

It is clear that the minimum function:
9(“1/ T /“1’1) - min{l’é], e /"‘n}

considered in the conventional case is compatible with arithmetic operations of a-level sets.

Theorems 1 and 2 present the sufficient conditions to guarantee the compatibility
with the arithmetic operations of a-level sets. This means that Theorems 1 and 2 are the
general situation. Therefore, Corollary 1 and Proposition 3, which are the conventional
cases, are the special cases of Theorems 1 and 2. This was the main purpose of this paper:
to generalize the conventional cases. In other words, from some other functions ®, that
can satisfy the sufficient conditions, the desired results can be obtained as the conventional
cases. The main focus was on the functions ©, and the non-normal fuzzy sets, rather than
the t-norm and the normal fuzzy sets. As we can see in Part (i) of Theorem 2, the equality
(32) holds true for non-normal fuzzy sets. The case of normal fuzzy sets is just the special
case of (32). Therefore, Theorems 1 and 2 indeed generalize the conventional cases. The
limitation of Theorems 1 and 2 is checking the assumptions of general function ®,. Since
those assumptions are satisfied for the conventional cases, as shown in Corollary 1 and
Proposition 3, this also means that those assumptions are not too strong to be used in real
applications.

The interval ranges of non-normal fuzzy sets comprise an important tool to handle
the arithmetic of non-normal fuzzy sets. The future research will focus on the applications
by using non-normal fuzzy sets and will solve the difficulty caused by the different forms
of the interval ranges of non-normal fuzzy sets.
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