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Abstract: The new arithmetic operations of non-normal fuzzy sets are studied in this paper by using
the extension principle and considering the general aggregation function. Usually, the aggregation
functions are taken to be the minimum function or t-norms. In this paper, we considered a general
aggregation function to set up the arithmetic operations of non-normal fuzzy sets. In applications,
the arithmetic operations of fuzzy sets are always transferred to the arithmetic operations of their
corresponding α-level sets. When the aggregation function is taken to be the minimum function,
this transformation is clearly realized. Since the general aggregation function was adopted in this
paper, the concept of compatibility with α-level sets is needed and is proposed, which can cover the
conventional case using minimum functions as the special case.
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1. Introduction

In order to simplify the notations, the membership function ξ F̃ of a fuzzy set F̃ is
identified with F̃ by simply writing ξ F̃(x) = F̃(x). Let F̃ and G̃ be two fuzzy sets in R, and
let � denote any one of the arithmetic operations ⊕,	,⊗,� between F̃ and G̃. According
to the extension principle, the membership function of F̃� G̃ is defined by

F̃� G̃(u) = sup
{(x,y):u=x◦y}

min{F̃(x), G̃(y)} (1)

for all u ∈ R, where the arithmetic operations � ∈ {⊕,	,⊗,�} correspond to the arith-
metic operations ◦ ∈ {+,−, ∗,÷}. The case of ◦ = ÷ should avoid the division of x/y for
y = 0.

In general, we can consider the t-norm instead of the minimum function by referring
to Dubois and Prade [1] and Weber [2]. For more detailed properties, we can refer to the
monographs by Dubois and Prade [3] and Klir and Yuan [4]. In this paper, we used the
general function to propose the arithmetic operations of fuzzy sets, and we present the
compatibility with the conventional definition using the minimum functions. We can also
refer to Gebhardt [5], Fullér and Keresztfalvi [6], Mesiar [7], Ralescu [8], and Yager [9] and
Wu [10] for the arithmetic operations of fuzzy sets based on the extension principle.

The generalization of Zadeh’s extension principle in (1) can also be used to set up the
arithmetic operations without using the minimum function. Coroianua and Fuller [11,12]
used the so-called joint probability distribution to generalize the extension principle (1),
which is given by

F̃�C G̃(u) = sup
{(x,y):u=x◦y}

C(x, y) (2)
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for all u ∈ R, where C : R2 → [0, 1] is a joint probability distribution satisfying

sup
x∈R

C(x, y) = G̃(y) and sup
y∈R

= C(x, y) = F̃(x). (3)

Wu [10] considered a general function D : [0, 1] × [0, 1] → [0, 1] by defining the
arithmetic as

F̃�D G̃(u) = sup
{(x,y):u=x◦y}

D
(

F̃(x), G̃(y)
)
, (4)

where D does not need to satisfy some extra conditions. The main difference between (2)
and (4) is that the domains of the joint probabilitydistribution C : R2 → [0, 1] and function
D : [0, 1]2 → [0, 1] are different. We can also refer to Coroianua and Fuller [11] for the
comparison between (2) and (4). Although D in (4) is a general function, some sufficient
conditions regarding D are still needed to obtain some desired properties. Therefore, the
second motivation of this paper was to propose the concept of compatibility. We shall say
that the function D is compatible with the arithmetic operations of α-level sets when the
following equality: (

F̃�D G̃
)

α
= F̃α ◦ G̃α

is satisfied for each α ∈ (0, 1]. The sufficient conditions imposed upon the function D will
be studied to guarantee the compatibility. Under the general function D, the associativity
of the arithmetic operations is also an important issue. Therefore, many rules regarding the
associativity were also studied.

There is some other interesting arithmetic of fuzzy numbers, which will be shown
below. Holčapek, Škorupová, and Štěpnička [13,14] proposed the arithmetic of extensional
fuzzy numbers based on a similarity relation S : R2 → [0, 1] such that S satisfies some
required conditions. On the other hand, based on the concept of the extensional hull, given
a fixed real number x ∈ R, the so-called extensional fuzzy number generated by x and a
similarity relation S is a fuzzy set x̃S in R with membership degree

x̃S(y) = S(x, y) for all y ∈ R.

Given any two extensional fuzzy numbers x̃S and ỹS, the addition ⊕S and multiplica-
tion ⊗S are defined by

x̃S ⊕S ỹS = (x + y)S and x̃S ⊗S ỹS = (xy)S,

where S is assumed to be the so-called separated similarity relation for the purpose of
well-defined arithmetic. In general, based on a system S of so-called nested similarity
relations, the addition ⊕S and multiplication ⊗S are defined by

x̃S ⊕S ỹT = (x + y)max(S,T) and x̃S ⊗S ỹT = (xy)max(S,T) for S, T ∈ S .

Esmi et al. [15] and Pedro et al. [16] used the extension principle in (3) to study the
fuzzy differential equations. They considered the interactivity between fuzzy numbers. Let
P̃ be a fuzzy set in R. Given any fuzzy numbers F̃ and G̃, we say that P̃ is a joint probability
distribution of F̃ and G̃ when

sup
x∈R

P̃(x, y) = G̃(y) and sup
y∈R

= P̃(x, y) = F̃(x).

We say that F̃ and G̃ are non-interactive when

P̃(x, y) = min
{

F̃(x), G̃(x)
}

.

Otherwise, they are called interactive. The disadvantage is that the non-interactivity
depends on their joint probability distributions. We cannot just say that F̃ and G̃ are non-
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interactive without considering the role of the joint probability distribution. Let � denote
any one of the arithmetic operations⊕P̃,	P̃,⊗P̃,�P̃ between fuzzy numbers F̃ and G̃ along
with a joint probability distribution P̃. The membership function of F̃�P̃ G̃ is defined by

F̃�P̃ G̃(u) = sup
{(x,y):u=x◦y}

P̃(x, y)

for all u ∈ R, where the case of ◦P̃ = ÷ should avoid the division of x/y for y = 0.
The arithmetic of fuzzy intervals is an important issue. Wu [17] considered the form of

expression in the decomposition theorem to study the arithmetic of fuzzy intervals. Wu [18]
also used the form of expression in the decomposition theorem to study the different
types of binary operations of fuzzy sets, which were also applied to study the difference
of fuzzy intervals and covered the so-called generalized differences proposed by Bede
and Stefanini [19] and Gomes and Barros [20] as the special cases. The fuzzy axiom of
choice, the fuzzy Zorn’s lemma, and the fuzzy Hausdorff maximal principle studied by
Zulqarnian et al. [21] were also based on normal fuzzy sets. It is also possible to extend
those results based on the non-normal fuzzy sets.

The fuzzy sets considered in Wu [17,18] were implicitly assumed to be normal. Without
using the form of expression in the decomposition theorem, in this paper, we shall use
the extension principle based on a general function rather than the t-norm to study the
arithmetic of non-normal fuzzy intervals. In this case, the concept of compatibility with
α-level sets can be proposed and the equivalence with conventional arithmetic operations
using the minimum function can also be established.

In Section 2, the concept and basic properties of non-normal fuzzy sets will be pre-
sented, and the arithmetic operations of non-normal fuzzy sets will be studied using the
extension principle based on the general functions. In Section 3, we shall propose the
concept of compatibility with the α-level sets, which can cover the conventional case using
the minimum functions as the special case.

2. Arithmetic Operations of Fuzzy Sets

Let F̃ be a fuzzy set in R. Recall that a fuzzy set F̃ in a universal set U is called normal
when there exists x ∈ U satisfying F̃(x) = 1. For α ∈ (0, 1], the α-level set of F̃ is denoted
and defined by

F̃α =
{

x ∈ R : F̃(x) ≥ α
}

. (5)

The support of a fuzzy set F̃ is the crisp set defined by

F̃0+ = {x ∈ R : F̃(x) > 0}.

The 0-level set F̃0 is defined to be the topological closure of the support of F̃, i.e.,
F̃0 = cl(F̃0+). We writeRF̃ to denote the range of the membership function of F̃. In general,
we haveRF̃ 6= [0, 1]. The following result is very useful.

Proposition 1. Let F̃ be a fuzzy set in R with membership function F̃. Define α∗ = supRF̃ and

IF̃ =

{
[0, α∗), if the supremum supRF̃ is not obtained
[0, α∗], if the supremum supRF̃ is obtained.

(6)

Then, F̃α 6= ∅ for all α ∈ IF̃ and F̃α = ∅ for all α 6∈ IF̃. Moreover, we haveRF̃ ⊆ IF̃ and

F̃0+ =
⋃

{α∈IF̃ :α>0}
F̃α =

⋃
{α∈RF̃ :α>0}

F̃α.

The interval IF̃ is called an interval range of F̃.
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We considered three arithmetic operations �,� and � between any two fuzzy sets F̃
and G̃ in R. The extension principle says that the membership functions are given by

F̃ � G̃(u) = sup
{(x,y):u=x+y}

min{F̃(x), G̃(y)} (7)

F̃ � G̃(u) = sup
{(x,y):u=x−y}

min{F̃(x), G̃(y)} (8)

F̃ � G̃(u) = sup
{(x,y):u=xy}

min{F̃(x), G̃(y)} (9)

for all u ∈ R, where the arithmetic operations � ∈ {�,�,�} correspond to the arithmetic
operations ◦ ∈ {+,−, ∗}. The case of division was not considered in this paper, since it can
be similarly obtained.

Instead of the minimum function, we can consider a general function D : [0, 1]2 → [0, 1]
defined on [0, 1]2. In this case, the membership functions are defined by

F̃⊕EP G̃(u) = sup
{(x,y):u=x+y}

D
(

F̃(x), G̃(y)
)
;

F̃	EP G̃(u) = sup
{(x,y):u=x−y}

D
(

F̃(x), G̃(y)
)
;

F̃⊗EP G̃(u) = sup
{(x,y):u=x·y}

D
(

F̃(x), G̃(y)
)
.

In general, the arithmetic operations are defined below.

Definition 1. Given any fuzzy sets F̃(1), · · · , F̃(n) in R and a function Dn : [0, 1]n → [0, 1]
defined on the product set [0, 1]n, regarding the operations �i ∈ {⊕,	,⊗} for i = 1, · · · , n− 1,
the membership function of F̃ = F̃(1) �1 · · · �n−1 F̃(n) is defined by

F̃(u) = F̃(1) �1 · · · �n−1 F̃(n)(u) = sup
{(a1,··· ,an):u=a1◦1···◦n−1an}

Dn

(
F̃(1)(a1), · · · , F̃(n)(an)

)
,

(10)
where the operations �i ∈ {⊕,	,⊗} for i = 1, · · · , n − 1 correspond to the operations ◦i ∈
{+,−, ∗} for i = 1, · · · , n− 1.

When the function Dn is taken to be the minimum function given by

Dn(α1, · · · , αn) = min{α1, · · · , αn},

the membership function of F̃(1) �1 · · ·�n−1 F̃(n) is given by

F̃(1) �1 · · ·�n−1 F̃(n)(u) = sup
{(x1,··· ,xn):u=x1◦1···◦n−1xn}

min
{

F̃(1)(x1), · · · , F̃(n)(xn)
}

, (11)

where �i ∈ {�,�,�} for i = 1, · · · , n− 1 can refer to (7), (8), and (9).
We can also insert the parentheses into the expression F̃(1) �1 · · · �n−1 F̃(n). The

following example shows the way of inserting parentheses.

Example 1. Given fuzzy sets F̃(1), · · · , F̃(7) in R, we can consider the membership functions of

G̃ ≡ F̃(1) ⊗
(

F̃(2) ⊕ F̃(3)
)
	
(

F̃(4) ⊗
(

F̃(5) ⊕ F̃(6) 	 F̃(7)
))

and
H̃ ≡ F̃(1) ⊗ F̃(2) ⊕ F̃(3) 	 F̃(4) ⊗ F̃(5) ⊕ F̃(6) 	 F̃(7)
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given by

G̃(u) = sup
{(x1,··· ,x7):u=x1∗(x2+x3)−(x4∗(x5+x6−x7))}

D7

(
F̃(1)(x1), · · · , F̃(7)(x7)

)
and

H̃(u) = sup
{(x1,··· ,x7):u=x1∗x2+x3−x4∗x5+x6−x7}

D7

(
F̃(1)(x1), · · · , F̃(7)(x7)

)
,

respectively. It is clear that G̃ 6= H̃. Since

x1 ∗ x2 + x3 − x4 ∗ x5 + x6 − x7 = (x1 ∗ x2) + x3 − (x4 ∗ x5) + x6 − x7,

the fuzzy set H̃ means the following form:

H̃ =
(

F̃(1) ⊗ F̃(2)
)
⊕ F̃(3) 	

(
F̃(4) ⊗ F̃(5)

)
⊕ F̃(6) 	 F̃(7).

Example 2. We present an example from mathematical finance. The well-known Black–Scholes
formula (see Black and Scholes [22]) for the European call option on a stock is described as follows.
Let the function f be given by the formula:

f (s, t, K, r, σ) = s · N(d1)− K · e−rt · N(d2),

where s denotes the stock price, t denotes the time, K denotes the strike price, r denotes the interest
rate, σ denotes the volatility, and N stands for the cumulative distribution function of a standard
normal random variable N(0, 1). The quantities d1 and d2 are given by

d1 =
ln(s/K) + (r + σ2

2 )t
σ ·
√

t
and d2 = d1 − σ ·

√
t.

Let T be the expiry date, and let Ct denote the price of a European call option at time t ∈ [0, T].
Then, we have

Ct = f (St, T − t, K, r, σ) for all t ∈ [0, T], (12)

where St denotes the stock price at time t. On the other hand, the price Pt of a European put option
at time t with the same expiry date T and strike price K can be obtained by the following put–call
parity relationship (see Musiela and Rutkowski [23]):

Ct − Pt = St − K · e−r(T−t) for all t ∈ [0, T]. (13)

Under the considerations of the fuzzy interest rate r̃, fuzzy volatility σ̃, and fuzzy stock price
S̃, we can obtain the fuzzy price H̃t of a European call option at time t according to (12) and the
extension principle. Therefore, the membership function of H̃t is given by

H̃t(c) = sup
{(s,r,σ):c= f (s,T−t,K,r,σ)}

D3
(
S̃t(s), r̃(r), σ̃(σ)

)
.

According to the put–call parity relationship in (13), we can also study the fuzzy price P̃t of a
European put option at time t. Let

g(s, t, K, r, σ) = f (s, t, K, r, σ)− s + K · e−rt.

Then, we can obtain the fuzzy price P̃t of a European put option at time t in which the
membership function of P̃t is given by

P̃t(p) = sup
{(s,r,σ):p=g(s,T−t,K,r,σ)}

D3
(
S̃t(s), r̃(r), σ̃(σ))

)
.
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Let F̃(1), · · · , F̃(n) be fuzzy sets in R, and let α∗i = supRF̃(i) . From Proposition 1, we

see that F̃(i)
α 6= ∅ for all α ∈ IF̃(i) and F̃(i)

α = ∅ for all α 6∈ IF̃(i) , where the interval range IF̃(i)

is given by

IF̃(i) =

{
[0, α∗i ), if the supremum supRF̃(i) is not obtained
[0, α∗i ], if the supremum supRF̃(i) is obtained.

(14)

Let I∗ = IF̃(1) ∩ · · · ∩ IF̃(n) . Then, I∗ is also an interval of the form [0, α] or [0, α) for

some α ∈ (0, 1]. For α ∈ I∗, we see that F̃(i)
α 6= ∅ for all i = 1, · · · , n.

Let F̃ = F̃(1) �1 · · · �n−1 F̃(n), and let IF̃ be the interval range of F̃. We also write
Ri ≡ RF̃(i) to denote the range of the membership function of F̃(i) for i = 1, · · · , n. The
supremum of the rangeRF̃ of the membership function of F̃ is given by

supRF̃ = sup
u∈R

F̃(u) = sup
u∈R

sup
{(x1,··· ,xn):u=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
= sup

(α1,··· ,αn)∈R1×···×Rn

Dn(α1, · · · , αn) ≡ α∗. (15)

Therefore, the definition of interval range says

IF̃ =

{
[0, α∗] if the supremumRF̃ is obtained
[0, α∗) if the supremumRF̃ is not obtained

(16)

Proposition 2. Let F̃(1), · · · , F̃(n) be fuzzy sets in R, and let F̃ = F̃(1) �1 · · · �n−1 F̃(n) with
interval range IF̃. Suppose that the function Dn : [0, 1]n → [0, 1] satisfies the following condition:

αi ≤ βi for i = 1, · · · , n imply Dn(α1, · · · , αn) ≤ Dn(β1, · · · , βn). (17)

We also assumed that the supremum α∗i = supRF̃(i) is obtained for i = 1, · · · , n. Then, the
following supremum:

supRF̃ = α∗ = Dn(α
∗
1 , · · · , α∗n)

is obtained. Moreover, we have

IF̃ = [0, α∗] and I∗ = [0, α•],

where
α• = min{α∗1 , · · · , α∗n}.

In particular, suppose that

Dn(α
∗
1 , · · · , α∗n) = min{α∗1 , · · · , α∗n}. (18)

Then, we have
IF̃ = IF̃(1) ∩ · · · ∩ IF̃(n) = I∗ = [0, α∗].

Proof. Since the supremum supRF̃(i) is obtained for i = 1, · · · , n, we have

IF̃(i) = [0, α∗i ] and α∗i = F̃(i)(x∗i ) ∈ RF̃(i) ≡ Ri (19)

for some x∗i ∈ R and for all i = 1, · · · , n. It is also clear that

I∗ = IF̃(1) ∩ · · · ∩ IF̃(n) = [0, α•].
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From (15), we have

α∗ = sup
(α1,··· ,αn)∈R1×···×Rn

Dn(α1, · · · , αn) ≥ Dn(α
∗
1 , · · · , α∗n).

On the other hand, since F̃(i)(xi) ≤ α∗i for all i = 1, · · · , n, from (15), again, we also
have

α∗ = sup
u∈R

sup
{(x1,··· ,xn):u=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≤ sup

u∈R
sup

{(x1,··· ,xn):u=x1◦1···◦n−1xn}
Dn(α

∗
1 , · · · , α∗n) (using (17))

= Dn(α
∗
1 , · · · , α∗n),

which proves
α∗ = Dn(α

∗
1 , · · · , α∗n).

We take u∗ = x∗1 ◦1 · · · ◦n−1 x∗n. Then, we have

F̃(u∗) = sup
{(x1,··· ,xn):u∗=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≥ Dn

(
F̃(1)(x∗1), · · · , F̃(n)(x∗n)

)
(since u∗ = x∗1 ◦1 · · · ◦n−1 x∗n)

= Dn(α
∗
1 , · · · , α∗n) = α∗

and

F̃(u∗) = sup
{(x1,··· ,xn):u∗=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≤ sup
{(x1,··· ,xn):u∗=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x∗1), · · · , F̃(n)(x∗n)

)
(using (17))

= Dn(α
∗
1 , · · · , α∗n) = α∗

Therefore, we obtain F̃(u∗) = α∗. From (15), we conclude that the supremum supRF̃
is obtained at u∗. From (16), it follows that IF̃ = [0, α∗]. This completes the proof.

3. Compatibility

Let S1, · · · , Sn be subsets of R. We write

S1 ◦1 · · · ◦n−1 Sn = {x1 ◦1 · · · ◦n−1 xn : xi ∈ Si for i = 1, · · · , n},

where the arithmetic operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n− 1.
Given any fuzzy sets F̃(1), · · · , F̃(n) in R, let F̃ = F̃(1) �1 · · · �n−1 F̃(n) be defined in

Definition 1. For any
α ∈ I∗ ∩ IF̃ = IF̃(1) ∩ · · · ∩ IF̃(n) ∩ IF̃,

it is clear that the α-level sets F̃α and F̃(i)
α are nonempty for i = 1, · · · , n. Therefore, we

propose the following definition.

Definition 2. Given any fuzzy sets F̃(1), · · · , F̃(n) in R, we considered the arithmetic operations
�i ∈ {⊕,	,⊗}, which correspond to the arithmetic operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n− 1:

• The function Dn : [0, 1]n → [0, 1] is said to be compatible with the arithmetic operations of
α-level sets when the following equality is satisfied:(

F̃(1) �1 · · · �n−1 F̃(n)
)

α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α for all α ∈ I∗ ∩ IF̃ with α > 0.
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• The function Dn : [0, 1]n → [0, 1] is said to be strongly compatible with the arithmetic
operations of α-level sets when the following equality is satisfied:(

F̃(1) �1 · · · �n−1 F̃(n)
)

α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α for all α ∈ I∗ ∩ IF̃.

The purpose of this paper was to present some sufficient conditions such that the
compatibility with the arithmetic operations of α-level sets can be satisfied.

Recall that the real-valued function f : R→ R is upper semi-continuous on R if and
only if the set {x ∈ R : f (x) ≥ α} is a closed set in R for each α ∈ R. Especially, if F̃ is a
fuzzy set in R such that its membership function F̃ is upper semi-continuous on R, then
each α-level set F̃α is a closed subset of R for α ∈ IF̃.

Lemma 1 (Royden ([24] p. 161)). Let K be a closed and bounded subset of R, and let f be a
real-valued function defined on R. Suppose that f is upper semi-continuous on R. Then, f assumes
its maximum on K; that is, the supremum is obtained in the following sense:

sup
x∈K

f (x) = max
x∈K

f (x).

Theorem 1. Given any fuzzy sets F̃(1), · · · , F̃(n) in R, we considered the arithmetic operations
�i ∈ {⊕,	,⊗}, which correspond to the arithmetic operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n−
1. Then, we have the following properties:

(i) For any α ∈ I∗ ∩ IF̃ with α > 0, we assumed that the function Dn satisfies the following
condition:

αi ≥ α for all i = 1, · · · , n imply Dn(α1, · · · , αn) ≥ α. (20)

Then, the following inclusion:

F̃(1)
α ◦1 · · · ◦n−1 F̃(n)

α ⊆
(

F̃(1) �1 · · · �n−1 F̃(n)
)

α

holds true for all α ∈ I∗ ∩ IF̃.
(ii) Suppose that the membership functions of F̃(i) are upper semi-continuous for all i = 1, · · · , n.

We also assumed that the function Dn satisfies the following conditions:

• given any α ∈ I∗ ∩ IF̃ with α > 0,

Dn(α1, · · · , αn) ≥ α if and only if αi ≥ α for all i = 1, · · · , n. (21)

• Given any α 6∈ I∗ with α ∈ (0, 1],

αi < α for some i ∈ {1, · · · , n} imply Dn(α1, · · · , αn) < α (22)

for any αj ∈ [0, 1] with j 6= i.

Then, the following equality:(
F̃(1) �1 · · · �n−1 F̃(n)

)
α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α (23)

holds true for all α ∈ I∗ ∩ IF̃ with α > 0. We further assumed that the supports F̃(i)
0+ are

bounded for all i = 1, · · · , n. Then, the following equality:(
F̃(1) �1 · · · �n−1 F̃(n)

)
0
= F̃(1)

0 ◦1 · · · ◦n−1 F̃(n)
0 . (24)

regarding the 0-level sets holds true.
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Proof. To prove Part (i), given any α ∈ I∗ ∩ IF̃ with α > 0, we have F̃α 6= ∅ and F̃(i)
α 6= ∅

for all i = 1, · · · , n. Given any

uα ∈ F̃(1)
α ◦1 · · · ◦n−1 F̃(n)

α .

there exist x(i)α ∈ F̃(i)
α for all i = 1, · · · , n satisfying

uα = x(1)α ◦1 · · · ◦n−1 x(n)α .

We see that
F̃(i)(x(i)α ) ≥ α for all i = 1, · · · , n.

Using the assumption (20) of Dn, we also have

Dn

(
F̃(1)(x(1)α ), · · · , F̃(n)(x(n)α )

)
≥ α (25)

Therefore, we have

F̃(1) �1 · · · �n−1 F̃(n)(uα) = sup
{(x1,··· ,xn):uα=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≥ Dn

(
F̃(1)(x(1)α ), · · · , F̃(n)(x(n)α )

)
≥ α (using (25)).

This shows
uα ∈ (F̃(1) �1 · · · �n−1 F̃(n))α.

Therefore, we obtain the following inclusion:

F̃(1)
α ◦1 · · · ◦n−1 F̃(n)

α ⊆
(

F̃(1) �1 · · · �n−1 F̃(n)
)

α

for all α ∈ I∗ ∩ IF̃ with α > 0.
Next, we considered the 0-level sets. For α = 0, given any

u0 ∈ F̃(1)
0 ◦1 · · · ◦n−1 F̃(n)

0 ,

there exist x(i)0 ∈ F̃(i)
0 for all i = 1, · · · , n satisfying

u0 = x(1)0 ◦1 · · · ◦n−1 x(n)0 .

For each fixed i, since

x(i)0 ∈ F̃(i)
0 = cl

(
{x ∈ R : F̃(i)(x) > 0}

)
,

the concept of closure says that there exists a sequence

{x(i)m }∞
m=1 ⊆ {x ∈ R : F̃(i)(x) > 0} (26)

satisfying
lim

m→∞
x(i)m = x(i)0 .

We considered a function η : Rn → R defined by

η(x1, · · · , xn) = x1 ◦1 · · · ◦n−1 xn,
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where the binary operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n. Then, it is clear that η is
continuous. We define

um = x(1)m ◦1 · · · ◦n−1 x(n)m = η
(

x(1)m , · · · , x(n)m

)
.

Using (26) and the continuity of η, we obtain

lim
m→∞

um = lim
m→∞

η
(

x(1)m , · · · , x(n)m

)
= η

(
x(1)0 , · · · , x(n)0

)
= x(1)0 ◦1 · · · ◦n−1 x(n)0 = u0. (27)

Given any αi ∈ IF̃(i) with αi > 0 for i = 1, · · · , n and any ᾱ ∈ IF̃ with ᾱ > 0, let

α = min{ᾱ, α1, · · · , αn}.

Then, we have 0 < α ≤ ᾱ and 0 < α ≤ αi for i = 1, · · · , n. From (14), we also see
α ∈ IF̃ and α ∈ IF̃(i) for all i = 1, · · · , n, i.e., α ∈ I∗ ∩ IF̃. The assumption (20) of Dn says

Dn(α1, · · · , αn) ≥ α > 0.

Therefore, the following statement holds true:

0 < αi ∈ IF̃(i) for all i = 1, · · · , n imply Dn(α1, · · · , αn) > 0. (28)

Now, we have

F̃(1) �1 · · · �n−1 F̃(n)(um) = sup
{(x1,··· ,xn):um=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≥ Dn

(
F̃(1)(x(1)m ), · · · , F̃(n)(x(n)m )

)
> 0 (using (28)),

which also says

um ∈ {u ∈ R : F̃(1) �1 · · · �n−1 F̃(n)(u) > 0} for all m.

From (27), we obtain

u0 ∈ cl
(
{u ∈ R : F̃(1) �1 · · · �n−1 F̃(n)(u) > 0}

)
=
(

F̃(1) �1 · · · �n−1 F̃(n)
)

0
,

which shows the following inclusion:

F̃(1)
0 ◦1 · · · ◦n−1 F̃(n)

0 ⊆
(

F̃(1) �1 · · · �n−1 F̃(n)
)

0
.

Therefore, we obtain the desired inclusion.
Proving Part (ii) means proving another direction of inclusion. Now, we further

assumed that the membership functions of F̃(i) are upper semi-continuous for all i =

1, · · · , n. In other words, the nonempty α-level sets F̃(i)
α are closed sets in R for all α ∈ I∗

and i = 1, · · · , n. Given any α ∈ I∗ ∩ IF̃ with α > 0 and any

uα ∈ (F̃(1) �1 · · · �n−1 F̃(n))α,

we have
sup

{(x1,··· ,xn):uα=x1◦1···◦n−1xn}
Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
= F̃(1) �1 · · · �n−1 F̃(n)(uα) ≥ α. (29)

Since uα is a finite number, we see that

F ≡ {(x1, · · · , xn) : uα = x1 ◦1 · · · ◦n−1 xn}
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is a bounded set in Rn. We also see that the function

η(x1, · · · , xn) = x1 ◦1 · · · ◦n−1 xn

is continuous on Rn. Since the singleton set {uα} is a closed set in R, the continuity of η
says that the inverse image F = η−1({uα}) of {uα} is also a closed set in Rn. This says that
F is a bounded and closed set in Rn. Next, we want to claim that the function

f (x1, · · · , xn) = Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
is upper semi-continuous. In other words, we want to show that

{(x1, · · · , xn) : f (x1, · · · , xn) ≥ α}

is a closed set in Rn for any α ∈ R. We considered the different cases as follows:

• Suppose that α ≤ 0. Then, we have

{(x1, · · · , xn) : f (x1, · · · , xn) ≥ α} = Rn,

which is a closed set in Rn.
• Suppose that α > 1. Then, we have

{(x1, · · · , xn) : f (x1, · · · , xn) ≥ α} = ∅,

which is also a closed set in Rn.
• Suppose that α ∈ I∗ ∩ IF̃ with α > 0, i.e., F̃(i)

α 6= ∅ for all i = 1, · · · , n. Then, we have

{(x1, · · · , xn) : f (x1, · · · , xn) ≥ α} =
{
(x1, · · · , xn) : Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≥ α

}
=
{
(x1, · · · , xn) : F̃(i)(xi) ≥ α for all i = 1, · · · , n

}
(using (21))

=
{
(x1, · · · , xn) : xi ∈ F̃(i)

α for all i = 1, · · · , n
}
= F̃(1)

α × · · · × F̃(n)
α ,

which is a closed set in Rn, since F̃(i)
α are closed sets in R for all i = 1, · · · , n.

• Suppose that α 6∈ I∗ with α ∈ (0, 1]. Then, we have F̃(i)
α = ∅ for some i, i.e., α 6∈ IF̃(i) .

By referring to (14), it follows that F̃(i)(x) < α for all x ∈ R. Therefore, using the
assumption (22), we obtain

f (x1, · · · , xn) = Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
< α for all (x1, · · · , xn) ∈ Rn.

This shows
{(x1, · · · , xn) : f (x1, · · · , xn) ≥ α} = ∅,

which is also a closed set in Rn.
• Suppose that α 6∈ IF̃ with α ∈ (0, 1]. Then, we have

∅ =
{
(x1, · · · , xn) : Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
≥ α

}
= {(x1, · · · , xn) : f (x1, · · · , xn) ≥ α},

which is a closed set in Rn.
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The above cases conclude that the function f (x1, · · · , xn) is indeed upper semi-
continuous. Lemma 1 says that the function f assumes the maximum on the set F. Therefore,
using (29), we have

max
(x1,··· ,xn)∈F

f (x1, · · · , xn) = max
{(x1,··· ,xn):uα=x1◦1···◦n−1xn}

f (x1, · · · , xn)

= sup
{(x1,··· ,xn):uα=x1◦1···◦n−1xn}

f (x1, · · · , xn) ≥ α. (30)

Therefore, there exists (x∗1 , · · · , x∗n) ∈ F satisfying

uα = x∗1 ◦1 · · · ◦n−1 x∗n

and

Dn

(
F̃(1)(x∗1), · · · , F̃(n)(x∗n)

)
= f (x∗1 , · · · , x∗n) = max

(x1,··· ,xn)∈F
f (x1, · · · , xn) ≥ α.

Using the assumption (21), we obtain F̃(i)(x∗i ) ≥ α, which says x∗i ∈ F̃(i)
α for all

i = 1, · · · , n. Therefore, we obtain

uα ∈ F̃(1)
α ◦1 · · · ◦n−1 F̃(n)

α ,

which shows the following inclusion:(
F̃(1) �1 · · · �n−1 F̃(n)

)
α
⊆ F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α

for all α ∈ I∗ ∩ IF̃ with α > 0. Using Part (i), we obtain the desired equality (23).

Considering the 0-level sets, for α = 0, we further assumed that the supports F̃(i)
0+

are bounded for all i = 1, · · · , n. Suppose that Dn(α1 · · · , αn) > 0 for αi ∈ IF̃(i) and
i = 1, · · · , n. Since I∗ ∩ IF̃ is an interval beginning from 0, using the denseness of R, there
exists α ∈ I∗ ∩ IF̃ with α > 0 satisfying

Dn(α1 · · · , αn) ≥ α > 0.

Using the assumption (21), we have αi ≥ α > 0 for all i = 1, · · · , n, which says that
the following statement holds true:

Dn(α1 · · · , αn) > 0 for αi ∈ IF̃(i) and i = 1, · · · , n imply αi > 0 for all i = 1, · · · , n. (31)

Now, considering the 0-level set, we have

u0 ∈
(

F̃(1) �1 · · · �n−1 F̃(n)
)

0
= cl

((
F̃(1) �1 · · · �n−1 F̃(n)

)
0+

)
= cl

({
u ∈ R : F̃(1) �1 · · · �n−1 F̃(n)(u) > 0

})
.

Therefore, there exists a sequence {um}∞
m=1 in the following set:{

u ∈ R : F̃(1) �1 · · · �n−1 F̃(n)(u) > 0
}

satisfying
lim

m→∞
um = u0.
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Using the above arguments by referring to (30), we can obtain

0 < F̃(1) �1 · · · �n−1 F̃(n)(um) = sup
{(x1,··· ,xn):um=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
= max
{(x1,··· ,xn):um=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
.

Therefore, there exist x1m, · · · , xnm satisfying

um = x1m ◦1 · · · ◦n−1 xnm

and
Dn

(
F̃(1)(x1m), · · · , F̃(n)(xnm)

)
= max
{(x1,··· ,xn):um=x1◦1···◦n−1xn}

Dn

(
F̃(1)(x1), · · · , F̃(n)(xn)

)
> 0,

Using (31), we have F̃(i)(xim) > 0 for all i = 1, · · · , n, which shows that the sequence
{xim}∞

m=1 is in the support F̃(i)
0+ for all i = 1, · · · , n. Since each F̃(i)

0+ is bounded for i =
1, · · · , n, it follows that {xim}∞

m=1 is also a bounded sequence. Therefore, there exists a
convergent subsequence {ximk}

∞
k=1 of {xim}∞

m=1. In other words, we have

lim
k→∞

ximk = xi0 for all i = 1, · · · , n,

which also says xi0 ∈ cl(F̃(i)
0+) = F̃(i)

0 for all i = 1, · · · , n. Let

umk = x1mk ◦1 · · · ◦n−1 xnmk .

Then, we see that {umk}∞
k=1 is a subsequence of {um}∞

n=1, i.e.,

lim
k→∞

umk = u0.

Since

u0 = lim
k→∞

umk = lim
k→∞

(
x1mk ◦1 · · · ◦n−1 xnmk

)
=

(
lim
k→∞

x1mk

)
◦1 · · · ◦n−1

(
lim
k→∞

xnmk

)
= x10 ◦1 · · · ◦n−1 xn0,

which shows
u0 ∈ F̃(1)

0 ◦1 · · · ◦n−1 F̃(n)
0 .

Therefore, we obtain the following inclusion:(
F̃(1) �1 · · · �n−1 F̃(n)

)
0
⊆ F̃(1)

0 ◦1 · · · ◦n−1 F̃(n)
0 .

Using Part (i), we obtain the desired equality (24), and the proof is complete.

Theorem 2. Given any fuzzy sets F̃(1), · · · , F̃(n) in R, we considered the arithmetic operations
�i ∈ {⊕,	,⊗}, which correspond to the arithmetic operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n−
1. Suppose that the function Dn satisfies the following conditions:

• Given any α ∈ I∗ ∩ IF̃ with α > 0,

Dn(α1, · · · , αn) ≥ α if and only if αi ≥ α for all i = 1, · · · , n.

• Given any α 6∈ I∗ with α ∈ (0, 1],

αi < α for some i ∈ {1, · · · , n} imply Dn(α1, · · · , αn) < α
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for any αj ∈ [0, 1] with j 6= i.

Then, we have the following properties:

(i) Suppose that the membership functions of F̃(i) are upper semi-continuous for all i = 1, · · · , n.
Then, the function Dn is compatible with arithmetic operations of α-level sets. In other words,
given any α ∈ I∗ ∩ IF̃ with α > 0, we have(

F̃(1) �1 · · · �n−1 F̃(n)
)

α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α . (32)

In particular, if F̃(1), · · · , F̃(n) are normal, the equality (32) holds true for all α ∈ (0, 1].
(ii) Suppose that the membership functions of F̃(i) are upper semi-continuous and that the supports

F̃(i)
0+ are bounded for all i = 1, · · · , n. Then, the function Dn is strongly compatible with

the arithmetic operations of α-level sets. In other words, the equality (32) holds true for all
α ∈ I∗ ∩ IF̃. In particular, if F̃(1), · · · , F̃(n) are normal, the equality (32) holds true for all
α ∈ [0, 1].

Proof. To prove Part (i), the equality (32) follows immediately from Part (ii) of Theorem 1.
In particular, if each F̃(i) is assumed to be normal for i = 1, · · · , n, then we have IF̃(i) = [0, 1]
for all i = 1, · · · , n, which also says I∗ = [0, 1]. Part (ii) can be easily realized from Part (ii)
of Theorem 1 and Part (i) of this theorem. This completes the proof.

Corollary 1. Given any fuzzy sets F̃(1), · · · , F̃(n) in R, we considered the arithmetic operations
�i ∈ {�,�,�}, which correspond to the arithmetic operations ◦i ∈ {+,−, ∗} for i = 1, · · · , n−
1. Then, we have the following properties:

(i) Suppose that the membership functions of F̃(i) are upper semi-continuous for all i = 1, · · · , n.
Then, given any α ∈ I∗ ∩ IF̃ with α > 0, we have(

F̃(1) �1 · · ·�n−1 F̃(n)
)

α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α . (33)

In particular, if F̃(1), · · · , F̃(n) are normal, the equality (33) holds true for all α ∈ (0, 1].
(ii) Suppose that the membership functions of F̃(i) are upper semi-continuous and that the supports

F̃(i)
0+ are bounded for all i = 1, · · · , n. Then, the equality (33) holds true for all α ∈ I∗ ∩ IF̃.

In particular, if F̃(1), · · · , F̃(n) are normal, the equality (33) holds true for all α ∈ [0, 1].

Proof. Since we considered the arithmetic operations �i ∈ {�,�,�}, this means that we
take

Dn(α1, · · · , αn) = min{α1, · · · , αn},

which clearly satisfies all the assumptions of Theorem 2. Therefore, the desired results
follow immediately from Theorem 2.

Definition 3. We denote by Fcc(R) the family of all fuzzy sets in R such that each ã ∈ Fcc(R)
satisfies the following conditions:

• The supremum supRã is obtained, i.e., supRã = maxRã.
• The membership function of ã is upper semi-continuous and quasi-concave on R.
• The 0-level set ã0 is a closed and bounded subset of R.

Each ã ∈ Fcc(R) is also called a fuzzy interval. If the fuzzy interval ã is normal and the one-level
set ã1 is a singleton set {a}, where a ∈ R, then ã is also called a fuzzy number with core value a.
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If ã is a fuzzy interval, then its 0-level set ã0 is a closed and bounded subset of R. The
conditions in Definition 3 says that each α-level set ãα is a bounded closed interval for
α ∈ [0, 1]. It is also clear that

ãα =

{
∅ if α 6∈ Iã[
ãL

α , ãU
α

]
if α ∈ Iã,

where Iã denotes the interval range of ã and [ãL
α , ãU

α ] is a bounded closed interval with
endpoints ãL

α and ãU
α . The α-level set ãα can be interpreted as a bounded closed interval

[ãL
α , ãU

α ] with degree α, which explains the terminology of the fuzzy interval.

Proposition 3. Given any fuzzy intervals ã and b̃ with interval ranges Iã and Ib̃, respectively, let
Iã�b̃ denote the interval range of ã � b̃ for � ∈ {�,�,�}. Then, ã � b̃ is also a fuzzy interval, and
its α-level set is given by

(ã � b̃)α = ãα ◦ b̃α for all α ∈ Iã ∩ Ib̃ ∩ Iã�b̃.

More precisely, we have

(ã � b̃)α =
[

ãL
α + b̃L

α , ãU
α + b̃U

α

]
(ã � b̃)α =

[
ãL

α − b̃U
α , ãU

α − b̃L
α

]
,

(ã � b̃)α =
[
min

{
ãL

α b̃L
α , ãL

α b̃U
α , ãU

α b̃L
α , ãU

α b̃U
α

}
, max

{
ãL

α b̃L
α , ãL

α b̃U
α , ãU

α b̃L
α , ãU

α b̃U
α

}]
,

for any α ∈ Iã ∩ Ib̃ ∩ Iã�b̃. We further assumed that the suprema:

α∗ = supRã and β∗ = supR(b̃)

are obtained. Then,
Iã ∩ Ib̃ = Iã�b̃ = [0, min{α∗, β∗}]

is a closed interval.

Proof. Given any α ∈ Iã ∩ Ib̃ ∩ Iã�b̃, it is clear that the α-level sets (ã � b̃)α, ãα, and b̃α

are nonempty. Therefore, the desired results follow immediately from Corollary 1 and
Proposition 2. This completes the proof.

4. Conclusions

The arithmetic operations of non-normal fuzzy sets using the extension principle
based on general functions were investigated in this paper. The membership function of
arithmetic operation F̃(1) �1 · · · �n−1 F̃(n) is defined by

F̃(1) �1 · · · �n−1 F̃(n)(u) = sup
{(a1,··· ,an):u=a1◦1···◦n−1an}

Dn

(
F̃(1)(a1), · · · , F̃(n)(an)

)
,

where the way of calculation F̃(1) �1 · · · �n−1 F̃(n) for �i ∈ {⊕,	,⊗} and i = 1, · · · , n− 1
corresponds to the way of calculation for a1 ◦1 · · · ◦n−1 an for ◦i ∈ {+,−, ∗} and i =
1, · · · , n− 1. This kind of arithmetic operation generalizes the conventional one given by

F̃(1) �1 · · ·�n−1 F̃(n)(u) = sup
{(x1,··· ,xn):u=x1◦1···◦n−1xn}

min
{

F̃(1)(x1), · · · , F̃(n)(xn)
}

,

where �i ∈ {�,�,�} for i = 1, · · · , n− 1.
The main issue of arithmetic operations is studying their α-level sets. Therefore,

the concept of compatibility with α-level sets is proposed by saying that the function
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Dn : [0, 1]n → [0, 1] is (strongly) compatible with the arithmetic operations of α-level sets
when (

F̃(1) �1 · · · �n−1 F̃(n)
)

α
= F̃(1)

α ◦1 · · · ◦n−1 F̃(n)
α for all α ∈ I∗ ∩ IF̃ with α > 0.

It is clear that the minimum function:

D(α1, · · · , αn) = min{α1, · · · , αn}

considered in the conventional case is compatible with arithmetic operations of α-level sets.
Theorems 1 and 2 present the sufficient conditions to guarantee the compatibility

with the arithmetic operations of α-level sets. This means that Theorems 1 and 2 are the
general situation. Therefore, Corollary 1 and Proposition 3, which are the conventional
cases, are the special cases of Theorems 1 and 2. This was the main purpose of this paper:
to generalize the conventional cases. In other words, from some other functions Dn that
can satisfy the sufficient conditions, the desired results can be obtained as the conventional
cases. The main focus was on the functions Dn and the non-normal fuzzy sets, rather than
the t-norm and the normal fuzzy sets. As we can see in Part (i) of Theorem 2, the equality
(32) holds true for non-normal fuzzy sets. The case of normal fuzzy sets is just the special
case of (32). Therefore, Theorems 1 and 2 indeed generalize the conventional cases. The
limitation of Theorems 1 and 2 is checking the assumptions of general function Dn. Since
those assumptions are satisfied for the conventional cases, as shown in Corollary 1 and
Proposition 3, this also means that those assumptions are not too strong to be used in real
applications.

The interval ranges of non-normal fuzzy sets comprise an important tool to handle
the arithmetic of non-normal fuzzy sets. The future research will focus on the applications
by using non-normal fuzzy sets and will solve the difficulty caused by the different forms
of the interval ranges of non-normal fuzzy sets.
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