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Abstract: The objective of this work was to investigate the dynamics of host–parasitoid model with
spatial refuge effect. For this, two discrete host–parasitoid models were considered under spatial
refuge effect. Suppose that a constant population of hosts may seek refuge and protection from an
attack of parasitoids. We found the parametric factors affecting the existence of the equilibrium
points and uniqueness of equilibrium points. A local stability analysis of host–parasitoid models was
also carried out. Bifurcation theory was used to observe that the host–parasitoid models undergo
Neimark–Sacker bifurcation. The effect of the existence of constant refuge effect on the local stability
and bifurcation of models was also explored. Hybrid chaos control methodology was used to control
the chaotic behavior of model. In addition, numerical simulations, bifurcation diagrams, and phase
portraits of the models are also presented.
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1. Introduction

The host–parasitoid model in discrete dynamical systems is a way to describe the
population dynamics of a host species and its parasitoid species over discrete-time inter-
vals. This model is based on a set of equations that describe how the populations of the
two species change from one time step to the next. The model assumes that the populations
of the host and parasitoid species are discrete, meaning they are represented by integers.
A model that has secured appreciable recognition from both theoretical and experimental
point of view is the host–parasitoid model. The host–parasitoid collaborations are the most
accepted topics in mathematical biology as they are necessary to deal with the natural
enemy of a pest or insect [1–6]. We observe that parasitoids are insect species whose larvae
grow as parasites on further insect species. It has been discovered that larvae of parasitoids
generally kill and sometimes paralyze its host. However, usually, mature parasitoid in-
dividuals are free-living insects. Moreover, parasitoids are characterized, in general, by
insects that show one or more larval stages that parasite other arthropods, developing
inside them and killing them before the end of their life cycle. Life cycles of parasitoids and
their hosts are usually synched, e.g., hosts and parasitoids are univoltine (one generation
per year) species. Discrete-time steps corresponding to generations are usually used in
such models [7–10]. Parasitoids commonly include species of wasps, flies, beetles, and
worms. On the other hand, a special case is where some preys are fully safe from attack of
predators within a progressive or spatial refuge. Spatial refuges can take a variety of forms
lying between two extremes, which are given as follows:

(i) Where the constant ratio of the host populations is safe within refuge.

Axioms 2023, 12, 290. https://doi.org/10.3390/axioms12030290 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030290
https://doi.org/10.3390/axioms12030290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-7486-2493
https://orcid.org/0000-0002-0999-7404
https://orcid.org/0000-0002-9701-4809
https://orcid.org/0000-0001-9320-9433
https://doi.org/10.3390/axioms12030290
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030290?type=check_update&version=3


Axioms 2023, 12, 290 2 of 16

(ii) Where the constant number is protected.

The most common among these are the constant proportion refuges. For example, flour
moth caterpillars are protected from attack of parasitoids by the ichneumonid (Nemeritis
canescen) when they are sufficiently deep in the flour medium to be out of reach of the para-
sitoid’s ovipositor. In this way, only a proportion of the host’s habitat is searched [11–15].
Before starting our discussion related to the mathematical modeling of host–parasitoid
interaction under refuge effects, it is worthwhile to describe the pioneering contribution
proposed by Nicholson and Bailey [16]. The mathematical model presented by Nicholson
and Bailey is acknowledged as the Nicholson–Bailey (NB) model and is directed by the
autonomous planar system of nonlinear difference equations as follows:

Ht+1 = r Ht exp(−a Pt)
Pt+1 = c Ht (1− exp(−a Pt))

(1)

where Ht and Pt are state variables representing population concentrations of host and
parasitoid at some instant t, respectively. Moreover, r and c are growth rates of host and
parasitoid, respectively, and a denotes the searching efficiency of parasitoids. Further
investigation reveals that the NB model has trivial and interior (positive) fixed points.
Moreover, a unique positive fixed equilibrium point occurs when r > 1 and is always
unstable, which contradicts the fact that the NB model is a noble descriptive of regular
host–parasitoid interactions because most of these interactions are stable and do not possess
any oscillatory behavior. Various attempts were made by numerous mathematicians and
ecologists to formulate appropriate modifications to the classical NB model. One of these
modifications is to introduce the refuge effect on the classical NB model. For this, we study
two modifications proposed by Hassell in [17]:

Firstly, we consider a constant population of hosts, keeping in view the NB model, to
examine the spatial refuge effect. A fraction of host specie α is accessible to the parasitoid
specie in every single generation. Consequently, (1− α) is the population within spatial
refuge. This is represented by the following model.

Ht+1 = r(1− α) Ht + rαHt exp(−a Pt)
Pt+1 = α Ht (1− exp(−a Pt))

(2)

Relative proportions lead to stability under refuges but large areas of parameter space
remain for unstable equilibrium (too few hosts within the refuge) or no equilibrium at all
(too many hosts within the refuge).

Secondly, consider constant number refuge, where H0 hosts are always protected, and
we obtain:

Ht+1 = rH0 + r(Ht − H0)exp(−a Pt)
Pt+1 = (Ht − H0) (1− exp(−a Pt))

(3)

The spatial refuge can play an important role in the dynamics of the model, potentially
leading to the persistence of the host population even in the presence of high parasitoid
attack rates.

The main contribution of this article is to explore the dynamics of systems (2) and (3). It
would be beneficial first to clarify certain fundamental concepts and mathematical outcomes
pertaining to our primary inquiry, prior to delving into an all-encompassing examination
of the qualitative behaviors exhibited by these systems. Since systems (2) and (3) are planar
discrete-time models governed by autonomous nonlinear systems of difference equations,
therefore we start with the dynamical behavior of the general planar systems. The key
investigations of the manuscript are synopsized in the following discussion.
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2. Stability Analysis around Equilibria

In order to obtain the equilibrium points of the system (2), we transform the system
as follows.

xn+1 = r(1− p)xn + rpxne−ayn ,
yn+1 = pxn(1− e−ayn).

, 0 < p < 1.

Consider map: (
x
y

)
→
(

r(1− p)x + rpxe−ay

px(1− e−ay)

)
Here we introduce,

f (x, y) = r(1− p)x + rpxe−ay

g(x, y) = px
(
1− e−ay)

The equilibria O(0, 0) and Ω(x?, y?) are obtained, where x? = 1
a

ln rp
1−r(1−p)
r−1 ,

y? = 1
a ln rp

1−r(1−p) , 1 < r < 1
1−p , p ∈ (0, 1). To demonstrate the stability (local) analysis of

a biologically suitable equilibrium, the following lemma is the best interpretation [18,19].

Lemma 1. Let F(λ) = λ2 − Trace(J) λ + Determinant(J). This is called the characteristic
equation of variational matrix J and λ1 and λ2 are the eigenvalues of this equation. Now, a
unique positive equilibrium point is termed as a sink if the absolute values of λ1 and λ2 is one.
Consequently, a sink is always a local asymptotic stable equilibrium point. When |λ1| > 1 along
with |λ2| >1 , the equilibrium point is known as a repeller; thus, we always have a source which is
unstable. When |λ1| < 1 and |λ2| > 1 or |λ1| > 1 and |λ2| < 1, then the equilibrium point is
called a saddle and it is always unstable. When the absolute value of either of λ1 and λ2 is one,
then we get a non-hyperbolic equilibrium point.

Taking into account the positivity and existence of model (2) at Ω(x?, y?), one can
take r > 1. In Figure 1, the blue region shows the sink, and the red region shows the source.
Moreover, the yellow region shows the Hopf bifurcation. The nonexistence of the model (2)
is represented by the white area. Thus, the Jacobian matrix at Ω(x?, y?) is:

J(x?, y?) =

 1
r(−1+r−pr) ln

(
pr

1+(−1+p)r

)
−1+r

−1+r
r

(1+(−1+p)r) ln
(

pr
1+(−1+p)r

)
−1+r


and the characteristic polynomial is given as:

F(λ) = λ2 −

1 +
(1 + (−1 + p)r) ln

(
pr

1+(−1+p)r

)
−1 + r

λ +
r(1 + (−1 + p)r) ln

(
pr

1+(−1+p)r

)
−1 + r

.

By simple calculations, we obtain:

F(1) = (1 + (−1 + p)r) ln
[

pr
1 + (−1 + p)r

]
> 0

F(−1) = 2 +
(1 + r)(1 + (−1 + p)r) ln

[
pr

1+(−1+p)r

]
−1 + r

and

F(0) =
r(1 + (p− 1)r) ln

(
pr

1+(p−1)r

)
r− 1

.
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Now, suppose λ1, λ1 be two roots of the system of Equations (2), then the positive

equilibrium point is given by Ω(x?, y?) =
(

1
a

ln rp
1−r(1−p)
r−1 , 1

a ln rp
1−r(1−p)

)
. According to the

lemma 1, system (2) has the following conditions related to the stability analysis.

i. The equilibrium point Ω(x?, y?) is a sink, if and only if F(−1) > 0 and F(0) < 1.
ii. The equilibrium point Ω(x?, y?) is a source, if and only if F(−1) > 0 and F(0) > 1.
iii. The equilibrium point Ω(x?, y?) is a saddle point, if and only if F(−1) < 0.

Now, we consider the dynamics of model (3) by replacing H and P with x and y.
It is clear that system (3) has two equilibrium points, the trivial equilibrium point (0, 0)
and the unique positive equilibrium point (x?, y?) =

(
x0 +

y?

1−e−ay? , 1
a ln
∣∣∣ r(x?−x0)

x?−rx0

∣∣∣ ), with
r > 1, and rx0 < x?.

The Jacobian matrix computed at (0, 0) is:

J(0, 0) =
(

r arx0
0 −ax0

)
.

Clearly, (0, 0) is a sink if and only if 0 < r < 1 and a saddle if r > 1.
The Jacobian matrix at the interior steady state (x?, y?) is calculated as:

J (x?, y?) =


x?−rx0
x?−x0

− aeay? (x?−rx0)y?

(eay?−1)(x?−x0)

(r−1)x
r(x?−x0)

a
(

1+ 1
eay?−1

)
(x?−rx0)y?

r(x?−x0)


and the characteristic polynomial is given by:

F(λ) = λ2 −

 (x? − rx0)
(

eay?(r + ay)− r
)

(eay? − 1)r(x? − x0)

λ +
aeay?(x? − rx0)y?

(eay? − 1)(x? − x0)
.
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By simple calculations, we obtain:
F(−1) = r(x0+rx0−2x?)−eay? (r(x0+rx0−2x?)+a(1+r)(rx0−x?)y?)

(eay?−1)r(x?−x0)

F(1) =
(r−1)

(
eay? (rx0+a(x?−rx0)y?)−rx0

)
(eay?−1)r(x?−x0)

> 0

F(0) = aeay? (x?−rx0)y?

(eay?−1)(x?−x0)
.

From the above mathematical computations, we deduced the following results:

1. The unique steady-state (x?, y?) is locally asymptotically stable if and only if:

a(1 + r)(rx0 − x?)y?

r(x0 + rx0 − 2x?)
< e−ay? − 1 and

a(x? − rx0)y?

(x? − x0)
< 1− e−ay? .

2. The unique steady-state (x?, y?) is unstable if and only if:

1 +
a(1 + r)(rx0 − x?)y?

r(x0 + rx0 − 2x?)
< e−ay? and

a(x? − rx0)y?

(x? − x0)
>

eay? − 1
eay? .

3. The unique steady-state (x?, y?) is saddle if and only if:

e−ay? − 1 <
a(1 + r)(rx0 − x?)y?

r(x0 + rx0 − 2x?)
.

4. The eigenvalues of the characteristic polynomial are complex conjugate with magni-
tude 1, if and only if: ∣∣∣∣∣∣

(x? − rx0)
(

eay?(r + ay)− r
)

(eay? − 1)r(x? − x0)

∣∣∣∣∣∣ < 2,

r =
e−ay?

(
x? − x0 + eay?(x0 + x?(ay? − 1))

)
ax0y?

.

3. Neimark–Sacker Bifurcation in Model (2)

Now, we study the presence and trajectory of the Neimark–Sacker bifurcation for the
unique positive equilibrium point Ω(x?, y?) of model (2). We must find sufficient condi-
tions for the Neimark–Sacker bifurcation. The interior unique positive equilibrium point
Ω(x?, y?) should be non-hyperbolic for the existence of Neimark–Sacker bifurcation, such
that the variational matrix calculated at this point has two complex conjugate eigenvalues
with an absolute value equal to one. Discrete-time models corresponding to population can
also be investigated it the same way [20–22]. The conditions that determine the limitations
for the existence of the Neimark-Sacker bifurcation are as follows:

F(0) =
r(1 + (−1 + p)r) ln

[
pr

1+(−1+p)r

]
−1 + r

= 1,

or

ln
[

pr
1 + (−1 + p)r

]
=

(−1 + r)
r(1 + (−1 + p)r)

and ∣∣∣∣∣∣
1 +

(1 + (−1 + p)r) ln
[

pr
1+(−1+p)r

]
−1 + r

∣∣∣∣∣∣ < 2.
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Suppose that ΩNS =
{
(a, r, p)ЄR3 : r ≡ r0, |A| < 2

}
, then there is change of parame-

ters in a small neighborhood of ΩNS, where ΩNS produces the Neimark–Sacker bifurcation
for the positive equilibrium point of system (2). The following two-dimensional map
expresses the system of Equation (2) as:

r̃
(

X
Y

)
→
(

r(1− p)X + rpXe−aY

pX
(
1− e−aY) )

.

Let r̃ indicate the bifurcating parameter, and then the perturbed mapping of the above
system is as follows: (

X
Y

)
→
(

R
(
(1− p)X + pXe−aY)

pX
(
1− e−aY) )

where R = r1 + r̃ and the small perturbation parameter is denoted by |r̃ | << 1. Where

x = X− 1
a

ln rp
1−r(1−p)
r−1 and y = Y− 1

a ln rp
1−r(1−p) . Then from above map, we have(

X
Y

)
→
(

m11 m12
m21 m22

)(
x
y

)
+

(
f1(x, y)
f2(x, y)

)
,

where
f1(x, y) = m13x2 + m14xy + m15x2y + O

(
(|x|+ |y|)4

)
,

f2(x, y) = m23x2 + m24xy + m25x2y + O
(
(|x|+ |y|)4

)
,

m11 = 1− 1
R
+

ln
[

pR
1+(−1+p)R

]
a

; m12 =
e−a(−1 + (1 + (−1 + ea)p)R) ln

[
pR

1+(−1+p)r

]
a(−1 + r)

;

m14 = p
(

1 +
e−a(−1 + r− pR)

pR

)1 +
R ln

[
pR

1+(−1+p)R

]
a(−1 + R)

; m21 = 1− 1
R
+

ln
[

pR
1+(−1+p)R

]
a

;

m22 =
e−a(−1 + (1 + (−1 + ea)p)R) ln

[
pR

1+(−1+p)R

]
a(−1 + R)

; m24 = p
(

1 +
e−a(−1 + R− pR)

pR

)1 +
R ln

[
pR

1+(−1+p)R

]
a(−1 + R)

;

m25 = p
(

1 +
e−a(−1 + R− pR)

pR

)
2 +

R ln
[

pR
1+(−1+p)R

]
a(−1 + R)

.

The characteristic equation for the Jacobian matrix at equilibrium point (0, 0) is

λ2 − A(r̃)λ + B(r̃) = 0.

Since (a, r, p)ЄΩNS. Hence, the complex conjugate roots can be written as

λ1 =
A(r̃)− i

√
4B(r̃)− (A(r̃))2

2
, λ2 =

A(r̃) + i
√

4B(r̃)− (A(r̃))2

2
.

where

A(r̃) = 1 +
(1 + (−1 + p)R) ln

[
pR

1+(−1+p)R

]
−1 + R

and

B(r̃) =
R(1 + (p− 1)R) ln

[
pR

1+(p−1)R

]
R− 1

.
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Thus,

|λ1| = |λ2| =

√√√√R(1 + (p− 1)R) ln
[

pR
1+(p−1)R

]
R− 1

.

Now, to obtain the non-degeneracy conditions, we observe that(
d|λ1|

dr̃

)
r̃=0

=

(
d|λ2|

dr̃

)
r̃=0
6= 0.

Moreover, we have −2 < A(0) < 2 because (α, β, r1) ∈ ΩNS. Now, consider that

A(0) = 1 +
(1 + (−1 + p)r1) ln

[
pr1

1+(−1+p)r1

]
−1 + r1

.

Hence, we observe that A(0) 6= 0 and A(0) 6= −1, that is consider A(0) 6= ±2, 0,−1.

1 +
(1+(−1+p)r1) ln

[
pr1

1+(−1+p)r1

]
−1+r1

6= −1

1 +
(1+(−1+p)r1) ln

[
pr1

1+(−1+p)r1

]
−1+r1

6= 0.

 (4)

Moreover, B(0) =
r(1+(−1+p)r1) ln

[
pr1

1+(−1+p)r1

]
−1+r1

.
Make sure that A(0) 6= ±2, 0,−1, and as a result we have λ1

m, λ2
m 6= 1, 2, 3, 4 when

r̃ = 0. Henceforth, the roots of the system cannot exist within the intersection of the circle
with a unit radius with the synchronized axes if r̃ = 0. To obtain the normal form when

r̃ = 0, we assume that k = A(0)
2 at ω =

√
4B(0)−A(0)2

2 . Thus,

k =
1
2

1 +
(1 + (−1 + p)r1) ln

(
pr1

1+(−1+p)r1

)
r1 − 1


and

ω =

√√√√4
r(1+(−1+p)r1) ln

[
pr1

1+(−1+p)r1

]
−1+r1

−
(

1 +
(1+(−1+p)r1) ln

[
pr1

1+(−1+p)r1

]
−1+r1

)2

2
.

Furthermore, considering the following transformation:(
x
y

)
→
(

m12 0
k−m11 −ω

)(
u
ν

)
.

Under this transformation, our system can be written as:(
x
y

)
→
(

k −ω
ω k

)(
u
ν

)
+

(
f̃1(x, y)
f̃2(x, y)

)
.

f̃1(x, y) =
m13

m12
x2 +

m14

m12
xy +

m15

m12
y2 + O

(
(|u|+ |v|)4

)

f̃2(x, y) =
(
(k−m11)m13

m12ω
− m23

ω

)
x2 +

(
(k−m11)m14

m12ω
− m24

ω

)
xy +

(
(k−m11)m15

m12ω
− m25

ω

)
y2 + O

(
(|u|+ |v|)4

)
.

x = m12u and y = (k−m11)u−ωv.
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Then consider a real number as follow:

L1 =

([
−Re

(
(1− 2λ1)λ2

2

1− λ1
τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 + Re(λ2τ21)

])
r̃=0

.

where
τ20 =

1
8

[
f̃1uu − f̃1vv + 2 f̃2uv + i

(
f̃2uu − f̃2vv − 2 f̃1uv

)]
,

τ11 =
1
4

[
f̃1uu + f̃1vv + i

(
f̃2uu − f̃2vv

)]
,

τ02 =
1
8

[
f̃1uu − f̃1vv − 2 f̃2uv + i

(
f̃2uu − f̃2vv + 2 f̃1uv

)]
,

τ21 =
1

16

[
f̃1uuu + f̃1uvv + f̃2uuv + f̃2vvv + i

(
f̃2uuu + f̃2uvv − f̃1uuv − f̃1vvv

)]
.

After conducting the aforementioned detailed investigation, we have the following
precise result:

Theorem 1. Assume that (1) holds and L1 6= 0, then system (2) undergoes the Neimark–Sacker
bifurcation at the unique positive equilibrium point Ω(x?, y?), when the parameter r varies in
a small neighborhood of r1. Furthermore, if L1 < 0, then an attracting invariant closed curve
bifurcates from the equilibrium point for r1 < r, and if L1 > 0, then a repelling invariant closed
curve bifurcates from the equilibrium point for r1 > r.

4. Neimark–Sacker Bifurcation in Model (3)

The two-dimensional map for model (3) is defined as:

r̃
(

X
Y

)
→
(

R(X0 + (X− X0)e−aY

(X− X0)
(
1− e−aY) ).

Let r̃ represent the bifurcation parameter where |r̃| � 1, and then corresponding
perturbed mapping of above system is stated as follows:(

X
Y

)
→
(

R
(
X0 + (X− X0)e−aY)
(X− X0)

(
1− e−aY) ),

where R = r2 + r̃ and the small perturbation parameter is denoted by |r̃ | << 1. Then after-
wards, consider the transformations x = X − Y and y = Y − ξ, the above map implies that(

X
Y

)
→
(

a11 a12
a21 a22

)(
x
y

)
+

(
g1(x, y)
g2(x, y)

)
,

where
g1(x, y) = a13x2 + a14xy + a15x2y + O

(
(|x|+ |y|)4

)
,

g2(x, y) = a23x2 + a24xy + a15x2y + O
(
(|x|+ |y|)4

)
.

a11 = R, a12 = −ae−aY, a21 = 1− e−aY, a22 = ae−aY(X− X0), a24 = ae−aY.

The characteristic equation for the Jacobian matrix at the equilibrium point (0, 0) is

σ2 − A(r̃)σ + B(r̃) = 0.

Since (a, r, p) ∈ ΩNS. Hence, the complex conjugate roots can be written as

σ1,2 =
A(r̃)± i

√
4B(r̃)− (A(r̃))2

2
.
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where
A(r̃) = e−ay(R + a(x− x0))

B(r̃) = ae−ayR(x− x0).

Thus, |σ1| = |σ2| =
√

ae−ayR(x− x0). Now, for obtaining the non-degeneracy condi-
tions, we have (

d|σ1|
dr

)
r̃=0

=

(
d|σ2|

dr

)
r̃=0

= 4r2ae−ay(x− x0) 6= 0.

Moreover, we have−2 < A(0) < 2 because (α, β, r2) ∈ ΩNS. Also, A(0) = ae−ay(x− x0).
Now, suppose that A(0) 6= 0,−1 that is,

A(0) = e−ay(r2 + a(x− x0)) 6= 0
A(0) = e−ay(r2 + a(x− x0)) 6= −1.

}
(5)

To obtain the normal form at r̃ = 0, we assume that k = A(0)
2 at ω =

√
4B(0)−A(0)2

2 ,
where

k =
e−ay(r2 + a(x− x0))

2
and ω =

√
4ae−ayr2(x− x0)− (e−ay(r2 + a(x− x0)))

2

2
.

Furthermore, we consider the following transformation:(
x
y

)
→
(

a12 0
k− a11 −ω

)(
u
ν

)
.

Under this transformation, our system can be written as(
x
y

)
→
(

k −ω
ω k

)(
u
ν

)
+

(
f̃3(x, y)
f̃4(x, y)

)
.

where
f̃3(x, y) =

a13

a12
x2 +

a14

a12
xy +

a15

a12
y2 + O

(
(|u|+ |v|)4

)
.

f̃4(x, y) =
(

a13

a12ω
− a23

ω

)
x2 +

(
(k− a11)a14

a12ω
− a24

ω

)
xy +

(
(k− a11)a15

m12ω
− a25

ω

)
y2 + O

(
(|u|+ |v|)4

)
.

x = a12u and y = (k− a11)u−ωv. Now, we consider a real number as follows:

L2 =

([
−Re

(
(1− 2σ1)σ2

2

1− σ1
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(σ2ξ21)

])
r̃=0

.

where
ξ20 =

1
8

[
f̃3uu − f̃3vv + 2 f̃4uv + i

(
f̃4uu − f̃4vv − 2 f̃3uv

)]
,

ξ11 =
1
4

[
f̃3uu + f̃3vv + i

(
f̃4uu − f̃4vv

)]
,

ξ02 =
1
8

[
f̃3uu − f̃3vv − 2 f̃4uv + i

(
f̃4uu − f̃4vv + 2 f̃3uv

)]
,

ξ21 =
1

16

[
f̃3uuu + f̃3uvv + f̃4uuv + f̃4vvv + i

(
f̃4uuu + f̃4uvv − f̃3uuv − f̃3vvv

)]
.

After conducting the detailed investigation described above, we have obtained the
following precise result:
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Theorem 2. Assume that map (5) holds and L2 6= 0, then system (3) undergoes the Neimark–
Sacker bifurcation at the unique positive equilibrium point (X∗, Y∗), when the parameter r varies
in a small neighborhood of r2. Furthermore, if L2 < 0, then an attracting invariant closed curve
bifurcates from the equilibrium point for r2 < r, and if L2 > 0, then a repelling invariant closed
curve bifurcates from the equilibrium point for r2 > r.

5. Chaos Control

For population models, an important feature considered is controlling chaos and
bifurcation. Often, we observe that discrete-time models show more complex behavior
than continuous models. Chaos control techniques are used to escape population from
unpredictable situations. Here, we use the hybrid control feedback methodology to reduce
chaos arising because of bifurcation. We use this technique to reduce chaos emerging
because of the Neimark–Sacker bifurcation. As we know that system (2) experiences the
Neimark–Sacker bifurcation at the equilibrium point Ω(x?, y?), then a controlled system
corresponding to this system can be expressed as [23–26]:

xn+1 = α[r(1− p)xn + rpxne−ayn ] + (1− α)xn,
yn+1 = α[pxn(1− e−ayn)] + (1− α)yn.

(6)

where α ∈ (0, 1). Here, the growth rate is increased by α in both populations, the host and
parasite, where as (1− α) is a harvesting term which is introduced in a correction to the
equations. Moreover, the controlled tactic of system (5) is the fusion of both the feedback
control and parameter perturbation. Furthermore, by appropriate selection of the controlled
parameter α, the Neimark–Sacker bifurcation for the equilibrium point Ω(x?, y?) of the
controlled system (5) could be postponed or excluded entirely. Now, the variational matrix
of controlled system (5) calculated at equilibrium point Ω(x?, y?) is expressed as: 1

r(−1+r−pr)α ln
(

pr
1+(−1+p)r

)
−1+r

(−1+r)α
r 1− α +

(1+(−1+p)r)α ln
(

pr
1+(−1+p)r

)
−1+r

.

Furthermore, the characteristic equation of the Jacobian matrix of the controlled
system is

P(λ) = λ2 −
[

2− α +
(1+(−1+p)r)α ln

(
pr

1+(−1+p)r

)
−1+r

]
λ + 1− α

+
(1+(−1+p)r)α(1+(−1+r)α) ln

(
pr

1+(−1+p)r

)
−1+r .

The condition for equilibrium point of the controlled system to be locally asymptoti-
cally stable is ∣∣∣∣∣2− α +

(1+(−1+p)r)α ln
(

pr
1+(−1+p)r

)
−1+r

∣∣∣∣∣
< 2− α +

(1+(−1+p)r)α(1+(−1+r)α) ln
(

pr
1+(−1+p)r

)
−1+r < 2.

As we know that system (1) experiences the Neimark–Sacker bifurcation at a unique
equilibrium point, then a controlled system corresponding to this system can be expressed as:

xn+1 = α(rx0 + r(xn − x0)exp(−a yn)) + (1− α)xn
yn+1 = α((xn − x0) (1− exp(−a yn)) + (1− α)yn

where α ∈ (0, 1). Moreover, the controlled strategy of the above controlled system is coma
bination of both the feedback control and the parameter perturbation. Furthermore, by an
appropriate option for the controlled parameter α, the Neimark–Sacker bifurcation for the
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equilibrium point (x∗, y∗) of controlled system can be postponed or excluded totally. The
variational matrix of the controlled system calculated at equilibrium point is:(

1 + (−1 + e−ayr)α ae−ayrα(−x + x0)
α− e−ayα 1 + α(−1 + ae−ay(x− x0))

)
.

Additionally, the characteristic equation associated with variational matrix of the
controlled system is as follow:

P(λ) = λ2 − (2 + α(−2 + e−ay(r + ax− ax0)))λ + (−1 + α)2

+e−ayα(−a(−1 + α)(x− x0) + r(1 + α(−1 + ax− ax0))).

For the controlled system, the criteria for equilibrium point to be locally asymptotically
stable are the following:

∣∣2 + α
(
e−ay(r + ax− ax0)− 2

)∣∣ < 1 + (α− 1)2 − e−ayα(a(α− 1)(x− x0) + r(1 + α(ax− ax0 − 1))) < 2.

6. Numerical Simulations

Here, we discuss the qualitative and complex dynamical behavior of models (2) and
(3) with numerical simulations by introducing some examples. In this section, we elaborate
our mathematical and theoretical study with the help of numerical simulations by selecting
particular parameter values.

Example 1. Let us consider system (2). Assume that a = 0.4, p = 0.85 and (x0, y0) = (8.12, 6.36).
Then, the system (2) experiences Neimark-Sacker bifurcation when the bifurcation parameter
r ≈ 4.614946371656745.

Furthermore, (a, p, r) = (0.4, 0.85, 4.614946371656745) system (2) has unique positive steady-
state which is represented by (x∗, y∗) = (8.12326, 6.3630567). For the parametric values
(a, p, r) = (0.4, 0.85, 4.614946371656745) the characteristic polynomial becomes

P(λ) = λ2 − 1.2166872417286627λ + 1.

Then, the roots of P(λ) = 0, are λ1 = 0.608343620864331 − 0.7936737610338864i
and λ1 = 0.6083436208643314 + 0.7936737610338864i with |λ1| = |λ2| = 1. Therefore,
(a, p, r) = (0.4, 0.85, 4.614946371656745) ∈ ΩNS, then the corresponding bifurcation dia-
gram for model (2) can be shown in the following figures:

Figure 2 shows that after the bifurcation point r = 4.614946371656745, the popu-
lations described in the model (2) experience quasiperiodic behavior due to emergence
of Neimark–Sacker bifurcation. Furthermore, (4.614946371656745, 6] is the non-chaotic
region for the model (2), and [2, 4.614946371656745] is its chaotic region. From Figure 2c, it
is obvious to observe that the maximum Lyapunov exponents are almost about zero due to
the quasiperiodic behavior.

Moreover, it is interesting to see phase portraits of the system (2) for various values of
the bifurcation parameter in the chaotic region. For this, we keep fixed a = 0.4, p = 0.85 and
the initial conditions (x0, y0) = (8.12, 6.36), and choosing some values of r in the chaotic
region, then the phase portraits of the system (2) are portrayed in Figure 3 as follows:

Next, we want to observe the effectiveness of the hybrid control method in the
chaotic region due to the emergence of the Hopf bifurcation in the model (2). For this, we
choose two fixed parameters, that is, a = 0.4, p = 0.85, and keep on varying the other
two parameters in the approximate intervals. For this, it is suitable to choose the whole
chaotic region [2, 4.614946371656745] for the bifurcation parameter r and the whole allow-
able unit interval [0, 1] for the control parameter α. The stability region (controllability
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region) of system (6) can be shown by Figure 4, which shows the effectiveness of hybrid
chaos control methodology:
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Example 2. Let a = 0.2, H0 = 2.5, r ∈ [1.5, 6] and (x0, y0) = (16.035, 12.402), then system (3)
undergoes the Neimark–Sacker bifurcation when r ≈ 4.41524. The bifurcation diagrams for model
(3) can be shown in Figure 5:
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The Figure 5 shows that at r = 4.41524 and (x0, y0) = (16.0356, 12.4027), model (3) ex-
periences the Neimark–Sacker bifurcation. Furthermore, at (a, H0, r) = (0.2, 2.5, 4.41524)
a unique positive equilibrium point exists. The phase portraits of model (3) for a = 0.2,
H0 = 2.5 and r ∈ [1.5, 6] are depicted in Figure 6a–d as:
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7. Conclusions

The spatial refuge can have important implications for the population dynamics
of host–parasitoid systems. The presence of a refuge can increase the survival of the
host population, reduce the parasitoid attack rate, lead to increased competition among
parasitoids, and make the system more complex and difficult to predict. Therefore, it is
important to consider the effects of spatial structure when modeling or studying host–
parasitoid systems.

In this manuscript, two host–parasitoid models are discussed. Both the models are
modifications of the Nicholson–Bailey model proposed by Bailey et al., in [16]. One of
these modifications is to introduce the refuge effect on the classical NB model. For this, we
study the two modifications proposed by Hassell. At first, some qualitative features of host–
parasitoid models are discussed. These features include the existence of equilibrium points,
the stability of equilibria, and the numerical simulations. Moreover, the mathematical re-
sults of [2, 3] have been reviewed. They investigated the outcomes of the existence of refuge
on the local stability and bifurcation of the models on the three different host–parasitoid
models with the spatial refuge effect. The Taylor series method has been used in proposed
model (2). It is also proved that model (3) undergoes the Neimark–Sacker bifurcation
around the interior equilibrium point. Moreover, it is observed that both proposed models
undergo the Neimark–Sacker bifurcation, and the maximum Lyapunov exponents also
show that the models experience the Neimark–Sacker bifurcation. In addition to this, the
hybrid chaos control methodology is used to control the chaotic behavior of the proposed
models. Numerical simulations are provided for further explanation.
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