Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials
Abstract
:1. Introduction
2. Mathematical Model
3. Network Model
4. Nondimensionalization Technique
5. Material Properties and Model Validation
5.1. Material Properties Depending on Temperature
5.2. Model Validation
6. Results, Case Studies, and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. Convection Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 1995; p. 623. [Google Scholar]
- Bejan, A.; Kraus, A. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; Available online: https://books.google.com/books?hl=es&lr=&id=d4cgNG_IUq8C&oi=fnd&pg=PP11&ots=28zTda2t1B&sig=6yXJBvtqgJxIlD72No6ehnMMHYw (accessed on 2 January 2022).
- Jordan, J.L.; Casem, D.T.; Bradley, J.M.; Dwivedi, A.K.; Brown, E.N.; Jordan, C.W. Mechanical Properties of Low Density Polyethylene. J. Dyn. Behav. Mater. 2016, 2, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Zenkour, A.M.; Abbas, I.A. A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties. Int. J. Mech. Sci. 2014, 84, 54–60. [Google Scholar] [CrossRef]
- Ding, S.; Wu, C.P. Optimization of material composition to minimize the thermal stresses induced in FGM plates with temperature-dependent material properties. Int. J. Mech. Mater. Des. 2018, 14, 527–549. [Google Scholar] [CrossRef]
- Haopeng, S.; Kunkun, X.; Cunfa, G. Temperature, thermal flux and thermal stress distribution around an elliptic cavity with temperature-dependent material properties. Int. J. Solids Struct. 2021, 216, 136–144. [Google Scholar] [CrossRef]
- Demirbas, M.D. Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity. Compos. B Eng. 2017, 131, 100–124. [Google Scholar] [CrossRef]
- Noda, N. Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev. 1991, 44, 383–397. [Google Scholar] [CrossRef]
- del Cerro Velázquez, F.; Gómez-Lopera, S.A.; Alhama, F. A powerful and versatile educational software to simulate transient heat transfer processes in simple fins. Comput. Appl. Eng. Educ. 2008, 16, 72–82. [Google Scholar] [CrossRef]
- Mark, J.E. Physical Properties of Polymers Handbook, 2nd ed.; Springer Science+Business Media, LLC: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ozawa, S.; Morohoshi, K.; Hibiya, T. Influence of oxygen partial pressure on surface tension of molten type 304 and 316 stainless steels measured by oscillating droplet method using electromagnetic levitation. ISIJ Int. 2014, 54, 2097–2103. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, H.; Higashi, H.; Yamano, H. Thermophysical Properties of Molten Stainless Steel Containing 5 mass % B4C. Nucl. Technol. 2019, 205, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Pichler, P.; Leitner, T.; Kaschnitz, E.; Rattenberger, J.; Pottlacher, G. Surface Tension and Thermal Conductivity of NIST SRM 1155a (AISI 316L Stainless Steel). Int. J. Thermophys. 2022, 43, 66. [Google Scholar] [CrossRef]
- Plebanski, T. Recommended Reference Materials for Realization of Physicochemical Properties. Pure Appl. Chem. 2007, 52, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Daubert, T.E.; Danner, R.P. Physical and thermodynamic properties of pure chemicals: Data compilation. Choice Rev. Online 1990, 27, 3319. [Google Scholar] [CrossRef]
- Coker, A.K. Ludwig’s Applied Process Design for Chemical and Petrochemical Plants, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2010; Volume 2. [Google Scholar] [CrossRef]
- Alhama, F.; Campo, A. Electric network representation of the unsteady cooling of a lumped body by nonlinear heat transfer modes. J. Heat Transfer. 2002, 124, 988–991. [Google Scholar] [CrossRef]
- Alhama, F.; González-Fernández, C.F. Network simulation method for solving phase-change heat transfer problems with variable thermal properties. Heat Mass Transfer/Waerme- und Stoffuebertragung 2002, 38, 327–335. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Marín, F.; Morales, J.L.; Cánovas, M.; Alhama, F. Modeling and simulation of different and representative engineering problems using network simulation method. PLoS ONE 2018, 13, e0193828. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.F.S.; Conesa, M.; Alhama, I. Solving ordinary differential equations by electrical analogy: A multidisciplinary teaching tool. Eur. J. Phys. 2016, 37, 065703. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Alhama, I. Universal curves for the solution of chlorides penetration in reinforced concrete, water-saturated structures with bound chloride. Commun. Nonlinear. Sci. Numer. Simul. 2020, 84, 105201. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Alhama, F.; Moreno, J.A.; Cánovas, M. Study of main parameters affecting pitting corrosion in a basic medium using the network method. Results Phys. 2019, 12, 1015–1025. [Google Scholar] [CrossRef]
- García-Ros, G.; Alhama, I.; Morales, J.L. Numerical simulation of nonlinear consolidation problems by models based on the network method. Appl. Math. Model 2019, 69, 604–620. [Google Scholar] [CrossRef]
- Morales, N.G.; Sánchez-Pérez, J.F.; Nicolás, J.A.M.; Killinger, A. Modelling of alumina splat solidification on preheated steel substrate using the network simulation method. Mathematics 2020, 8, 1568. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids. J. Optim. Theory Appl. 2021, 189, 623–645. [Google Scholar] [CrossRef]
- Nigri, M.R.; Pedrosa-Filho, J.J.; Gama, R.M.S. An exact solution for the heat transfer process in infinite cylindrical fins with any temperature-dependent thermal conductivity. Therm. Sci. Eng. Prog. 2022, 32, 101333. [Google Scholar] [CrossRef]
- Guart, A.; Bono-Blay, F.; Borrell, A.; Lacorte, S. Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters. Food Chem. 2014, 156, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Loyo-Rosales, J.E.; Rosales-Rivera, G.C.; Lynch, A.M.; Rice, C.P.; Torrents, A. Migration of Nonylphenol from Plastic Containers to Water and a Milk Surrogate. J. Agric. Food Chem. 2004, 52, 2016–2020. [Google Scholar] [CrossRef]
- Hao, L.; Xu, F.; Chen, Q.; Wei, M.; Chen, L.; Min, Y. A thermal-electrical analogy transient model of district heating pipelines for integrated analysis of thermal and power systems. Appl. Therm. Eng. 2018, 139, 213–221. [Google Scholar] [CrossRef]
- Kreith, F.; Manglik, R.M.; Bohn, M.S. Principles of Heat Transfer, SI Edition, 7th ed.; West Publishing Company: Eagan, MN, USA, 1999; Volume 2. [Google Scholar]
- Zheng, W.; Zhu, J.; Luo, Q. Distributed Dispatch of Integrated Electricity-Heat Systems with Variable Mass Flow. IEEE Trans Smart Grid 2022, 1. [Google Scholar] [CrossRef]
- Holger, V.; Atkinson, G.; Nenzi, P.; Warning, D. Software “NgSpice”. Available online: https://ngspice.sourceforge.io/index.html (accessed on 2 January 2022).
- Nagel, L.W. SPICE2: A Computer Program to Simulate Semiconductor Circuits; University of California: Berkeley, CA, USA, 1975. [Google Scholar]
- Gear, C.W. The automatic integration of ordinary differential equations. Commun. ACM 1971, 14, 176–179. [Google Scholar] [CrossRef]
- Nagel, L.W.; Pederson, D.O. SPICE (Simulation Program with Integrated Circuit Emphasis); EECS Department: Berkeley, CA, USA, 1973. [Google Scholar]
- Pérez, J.F.S.; Conesa, M.; Alhama, I.; Alhama, F.; Cánovas, M. Searching fundamental information in ordinary differential equations. Nondimensionalization technique. PLoS ONE 2017, 12, e0185477. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pérez, J.F.; Conesa, M.; Alhama, I.; Cánovas, M. Study of Lotka–Volterra Biological or Chemical Oscillator Problem Using the Normalization Technique: Prediction of Time and Concentrations. Mathematics 2020, 8, 1324. [Google Scholar] [CrossRef]
- Conesa, M.; Pérez, J.F.S.; Alhama, I.; Alhama, F. On the nondimensionalization of coupled, non-linear ordinary differential equations. Nonlinear. Dyn. 2016, 84, 91–105. [Google Scholar] [CrossRef]
- Madrid, C.; Alhama, F. Análisis Dimensional Discriminado en Mecánica de Fluidos y Transferencia de Calor; Editorial Reverté: Barcelona, Spain, 2012. [Google Scholar]
- Valencia, J.J.; Quested, P.N. Thermophysical Properties. ASM Handb. Cast. 2008, 15, 468–481. [Google Scholar] [CrossRef]
- Mark, J.E. Physical Properties of Polymers Handbook. In Physical Properties of Polymers Handbook; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Jagga, S.; Vanapalli, S. Cool-down time of a polypropylene vial quenched in liquid nitrogen. Int. Commun. Heat Mass. Transf. 2020, 118, 104821. [Google Scholar] [CrossRef]
- Kalaprasad, G.; Pradeep, P.; Mathew, G.; Pavithran, C.; Thomas, S. Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Compos. Sci. Technol. 2000, 60, 2967–2977. [Google Scholar] [CrossRef]
- Toyo’oka, T.; Oshige, Y. Determination of alkylphenols in mineral water contained in PET bottles by liquid chromatography with coulometric detection. Anal. Sci. 2000, 16, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
Material | Al319 | PET | PP |
---|---|---|---|
Length (cm) | 20.5 | 22.0 | 23.0 |
Radio (cm) | 3.50 | 2.75 | 3.50 |
Thickness (mm) | 3.05 | 1.80 | 2.20 |
Temperature (°C) | |||
---|---|---|---|
Time (Minutes) | Al319 | PET | PP |
0 | 54.1 | 66.7 | 55.7 |
15 | 53.6 | 58.7 | 50.7 |
30 | 53.2 | 52.5 | 46.7 |
45 | 52.5 | 48.0 | 43.3 |
60 | 52.2 | 43.6 | 40.3 |
Temperature at Reference Point (°C) | |||
---|---|---|---|
Room Temperature (°C) | Al319 | PET | PP |
30 | 23.72 | 27.77 | 27.58 |
40 | 27.43 | 35.59 | 35.14 |
50 | 31.13 | 43.48 | 42.69 |
60 | 34.72 | 51.43 | 50.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Gracía, M.; Sánchez-Pérez, J.F.; del Cerro, F.; Conesa, M. Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials. Axioms 2023, 12, 335. https://doi.org/10.3390/axioms12040335
Fernández-Gracía M, Sánchez-Pérez JF, del Cerro F, Conesa M. Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials. Axioms. 2023; 12(4):335. https://doi.org/10.3390/axioms12040335
Chicago/Turabian StyleFernández-Gracía, Martina, Juan Francisco Sánchez-Pérez, Francisco del Cerro, and Manuel Conesa. 2023. "Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials" Axioms 12, no. 4: 335. https://doi.org/10.3390/axioms12040335
APA StyleFernández-Gracía, M., Sánchez-Pérez, J. F., del Cerro, F., & Conesa, M. (2023). Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials. Axioms, 12(4), 335. https://doi.org/10.3390/axioms12040335