
Citation: Olatunji, S.O.; Oluwayemi,

M.O.; Oros, G.I. Coefficient Results

concerning a New Class of Functions

Associated Gegenbauer Polynomials

and Convolution in Terms of

Subordination. Axioms 2023, 12, 360.

https://doi.org/10.3390/

axioms12040360

Academic Editor: Hari Mohan

Srivastava

Received: 21 February 2023

Revised: 5 April 2023

Accepted: 6 April 2023

Published: 8 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Coefficient Results concerning a New Class of Functions
Associated with Gegenbauer Polynomials and Convolution in
Terms of Subordination
Sunday Olufemi Olatunji 1 , Matthew Olanrewaju Oluwayemi 2,3,* and Georgia Irina Oros 4,*

1 Department of Mathematical Sciences, Federal University of Technology, P.M.B. 704, Akure 340110, Nigeria
2 Quality Education Research Group, Landmark University, SDG 4, Omu-Aran 251103, Nigeria
3 Department of Mathematics, Landmark University, P.M.B. 1001, Omu-Aran 251103, Nigeria
4 Department of Mathematics and Computer Science, University of Oradea, 410087 Oradea, Romania
* Correspondence: oluwayemimatthew@gmail.com (M.O.O.); georgia_oros_ro@yahoo.co.uk (G.I.O.)

Abstract: Gegenbauer polynomials constitute a numerical tool that has attracted the interest of many
function theorists in recent times mainly due to their real-life applications in many areas of the
sciences and engineering. Their applications in geometric function theory (GFT) have also been
considered by many researchers. In this paper, this powerful tool is associated with the prolific
concepts of convolution and subordination. The main purpose of the research contained in this
paper is to introduce and study a new subclass of analytic functions. This subclass is presented using
an operator defined as the convolution of the generalized distribution and the error function and
applying the principle of subordination. Investigations into this subclass are considered in connection
to Carathéodory functions, the modified sigmoid function and Bell numbers to obtain coefficient
estimates for the contained functions.

Keywords: analytic function; starlike function; convex function; univalent function; Gegenbauer
polynomials; Bell numbers; sigmoid function
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1. Introduction and Preliminaries

The beginning of univalent function theory is largely credited to P. Koebe’s article
published in 1907 [1]. Problems pertaining to the full class of univalent functions were
the primary focus at first. Bieberbach, who published numerous significant papers on the
theory of univalent functions in the early 1920s, was a key figure in the early development
of geometric function theory. He conjectured his well-known bounds for a normalized
univalent function’s coefficients in 1916 [2] and established the bound for the second
coefficient. It was not until 1984 [3] that the hypothesis was generally proven.

In a paper published in 1915 [4], Alexander intended to obtain sufficient conditions
for a function to map the interior of the unit disc in a one-to-one manner. As a result,
Alexander developed a number of classes of univalent functions as well as several tests that
ensured the univalence of those classes, initiating new lines of research in GFT. Alexander
first proposed the concepts of starlike functions, close-to-convex functions and functions
of bounded turning, along with other ideas and theorems that were later rediscovered,
often without awareness of Alexander’s pioneering work. In a nice review paper [5], the
authors analyze the content of Alexander’s paper emphasizing his intuitive arguments and
how those arguments were used by other researchers for further developments. Alexander
describes [4] a star-shaped region as a set whose every point may be connected to point a via
a linear segment made up only of points contained in the region. The center is designated
as point a. The region is said to be convex when any point inside the region may be picked
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as the center. In an effort to guarantee the univalence of the mapping by controlling the
shape of the boundary image, he proposed the idea of mapping the unit disc onto a starlike
or convex region. By mandating that the boundary image is a starlike or a convex domain,
univalence is achieved since overlapping or looping is avoided. Geometric characterization
states that a mapping w = w(z) is star-shaped if arg w(z) is a never-decreasing function of
θ = arg w(z) when z describes the unit circle in the counterclockwise direction, and it is a
convex function if the argument of the normal vector of the image curve is a non-decreasing
function of an increasing θ.

There are numerous intriguing uses for star-shaped bodies in various fields. For
instance, star-shaped bodies were explored in the context of compressible fluid penetration
in mechanics [6]. Computer simulations were extensively used in statistical mechanics to
study models of fluids, liquid crystals, plastic crystals and other solid-phase systems made
of hard convex bodies [7]. On the other hand, it has been demonstrated in [8] that hard
star-shaped bodies can replace hard convex bodies in computer simulations of constant
volume and constant pressure. As with other applications for star-shaped bodies, it has
been determined in elasticity theory that the stress field is uniform when m is an odd
integer for an m-pointed polygonal inclusion exposed to a uniform eigenstrain [9].

Many univalent function subclasses have captured the interest of GFT researchers.
Such subclasses are defined using functions f belonging to the class A of holomorphic
functions that have the following form:

f (z) = z +
∞

∑
n=2

anzn, z ∈ E, (1)

where E = {z : |z| < 1} with f (0) = f ′(0) − 1 = 0. The class of starlike functions is
comprised functions f ∈ A with the geometric representation Re z f ′(z)

f (z) > 0, the class of
convex functions contains functions f ∈ A with the geometric characterization given by
Re
(

1 + z f ′′(z)
f ′(z)

)
> 0 and the class of close-to-convex functions is characterized by Re z f ′(z)

g(z) >

0, with g representing a starlike function.
Recently, Babalola [10] improved on a subclass ofA called the class of starlike functions

by introducing the class Lλ(β), which is defined as the class of functions f belonging to A
that satisfies

Re
z( f ′(z))λ(z)

f (z)
> β, (2)

where β ∈ [0, 1) and λ ≥ 1 ∈ R. Since then, many authors have used different approaches
to study the class of functions introduced in [10].

Using an analytic function F(z), the starlike and convex functions were investigated
by authors such as [11–14] and extended to the class of F−starlike and F−convex functions
denoted by FS∗ and FK, respectively, which are represented by

Re
F(z) f ′(z)

f (z)
> 0 (3)

and

Re
(

1 +
F(z) f ′′(z)

f ′(z)

)
> 0, (4)

respectively, with the condition F(0) = 0. By setting F(z) = z in (3) and (4), the well-known
starlike and convex functions are obtained [11,14].

Let

g(z) = z +
∞

∑
n=2

bkzn. (5)
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Then, the convolution of (1) and (5) gives

( f ∗ g)(z) = z +
∞

∑
n=2

anbnzn. (6)

For details, see [15,16].
A normalized Gegenbauer polynomial has the form

G(z, m) = z +
∞

∑
n=2

cβ
n−1(m)zn, (7)

where β > − 1
2 . The first three coefficients of the forms are

cβ
0 (m) = 1, (8)

cβ
1 (m) = 2βm, (9)

cβ
2 (m) = 2β(β + 1)m2 − β, (10)

and the next coefficient is given by

cβ
3 (m) =

4β(β + 1)(β + 2)m2

3
− 2β(β + 1)m. (11)

In general, the n-th coefficient is defined by

cβ
n(m) =

2m(n + β− 1)cβ
n−1(m)− (n + 2β− 2)cβ

n−2(m)

n
. (12)

It originates from

q(z) =
∫ 1

−1
G(z, m)dµ(m),

where
G(z, m) =

z
(1− 2mz + z2)β

(13)

and µ is a probability measure on the interval [−1, 1]. The collection of such measures on
[s, t] is denoted by P[s,t].

By substituting β = 1
2 in G(z, m), the Legendre polynomial will be obtained, while by

setting β = 1 in G(z, m), the famous Chebyshev polynomial will be obtained, which are
both tools in the field. These recent results can be seen in [17,18].

Gegenbauer polynomials have been studied intensely and have proved to provide
interesting results, as seen in early studies such as [19,20]. They have wide applications
in queueing theory, as can be seen in [21], signal analysis, automatic control, scattering
theory and many others. Applications in GFT include defining the subclasses of univalent
functions [22] and bi-univalent functions [23]. Coefficient studies on the subclasses of
bi-univalent functions can be seen in very recent papers, such as [24–27].

Let D denote the sum of the convergent series of the form

D =
∞

∑
n=0

an, (14)

where an ≥ 0 for all n ∈ N. The probability mass function of the generalized discrete
probability distribution defined using (14) is given by p(n) = an

D , n = 0, 1, 2, 3, . . . . Function
p(n) is the probability mass function because p(n) ≥ 0 and ∑n p(n) = 1.
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Additionally, let ψ(x) = ∑∞
n=0 anxn. Then, since D = ∑∞

n=0 an is convergent, the series
ψ is convergent for |x| < 1 and x = 1. The interest of the present investigation is the power
series whose coefficients are probabilities of generalized distributions of the form

Hψ(z) = z +
∞

∑
n=2

an−1

D
zn. (15)

Details can be found in [22,28,29].
The error function is a special function that occurs in probability, statistics, material

science, partial differential equation, physics, chemistry, biology, mass flow and diffusion
for transportation phenomena. It also occurs in quantum mechanics to eliminate the
probability of observing a particle in a particular region. Barton et al. [30] introduced the
function of the form

erf(z) =
2√
π

∫ z

0
e−t2

dt =
2√
π

∞

∑
n=0

(−1)n+1z2n+1

n!(2n + 1)
. (16)

The properties and inequalities of error functions have also been considered by
Alzer [31], Cartilz [32], Coman [33], Elbert [34] and many other researchers in the field.

Ramachandran et al. [35,36] modified (16) to

Erf(z) = z +
∞

∑
n=2

(−1)n−1zn

(n− 1)!(2n− 1)
, (17)

which is analytic in the unit disk U = z : |z| < 1 and normalized by Erf(0) = 0 and
Erf′(0) = 1.

The convolution of (15) and (17) generates the following function, which will be used
to define the new subclass of functions that is investigated in this paper:

F←(z) =
(
Hψ ∗ Erf

)
(z) = z +

∞

∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
an−1

D
zn, (18)

as a power series. See [16] for details.
Let P denote the class of the Carathéodory functions of the form

p(z) = 1 +
∞

∑
n=1

pnzn, (19)

with the conditions Re p(z) > 0 and p(0) = 1.
The functions of the form

G(z) =
1

1 + e−z =
1
2
+

z
4
− z3

48
+

z5

480
− 17z7

80640
+ . . . ,

referred to as sigmoid functions, are defined in [37] by the following modified form:

γ(z) =
2

1 + e−z = 1 +
z
2
− z3

24
+

z5

240
− 17z7

40320
+ . . . . (20)

The sigmoid function has been repeatedly studied by many researchers because it
has the following properties: it outputs real numbers between 0 and 1, maps a very large
input domain to a small range of outputs, never loses information because it is a one-to-one
function, increases monotonically and is also differentiable. The sigmoid function has
useful applications in fields such as functional analysis, real analysis, algebra, topology,
differential equations and many others. It has numerous methods of evaluation but, here,
only the truncated series expansion is considered. See [38–44].
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The function of the form

Q(z) = eez−1 =
∞

∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5
6

z3 +
5
8

z4 + . . . , z ∈ E, (21)

was investigated by Kumar et al. [45]. This function is starlike with respect to one, and
its coefficients generate the Bell numbers where B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52 and B6 = 203 are the coefficients generated through binomial expansion. In recent
times, some applications of the Beta function were considered in [46–48], while Olatunji
and Altinkaya [49] used (21) to investigate the generalized distribution for the analytic
function classes associated with error functions and Bell numbers. Further information can
also be found in [49–51].

In the present work, the authors draw motivation from prior research in [15,17,29,49].
The aim of this paper is to consider applications of certain special functions in GFT. In par-
ticular, certain results are obtained in terms of subordination associated with Carathéodory
functions, the modified sigmoid function and Bell numbers for the specific class of functions
defined here and given in the next definition. The early coefficient bounds obtained are
used to establish the famous Fekete–Szegö inequalities.

The following class is defined and studied in this paper.

Definition 1. A function f ∈ A is said to be in the class GS∗Fψ(m, β), where m ∈ [−1, 1] and
β ≥ 1, if the following subordination is satisfied

Re
G
(
F ′ψ
)
(z)

Fψ(z)
≺
√

1 + z (22)

with the condition Gψ(0) = 0. The function Fψ(z), defined by (18), is a convolution of (7) and (17).
The class of functions GS∗F←(m, β), defined above, is investigated in the next section in relation

to the Carathéodory function p(z), the modified sigmoid function and Bell numbers by means of the
subordination principle, and initial coefficient estimates are obtained. Furthermore, those results are
used for investigating the Fekete–Szegö problem.

2. Main Results

The main aim of this work is to investigate the coefficient problems for the class of
functions GS∗Fψ(m, β) defined in this study. The coefficient estimates are obtained using the
Carathéodory function p(z) defined by (19), the modified sigmoid function given by (20)
and Bell numbers generated by the function given in (21) involving functions associated
with Gegenbauer polynomials. The applications of Gegenbauer polynomials (7), the error
function (17), a generalized distribution function (15), Carathéodory functions (19), the
modified sigmoid function (20), Bell numbers (21) and some other functions in GFT have
been considered by several authors in the field. In this study, the authors use combinations
of all the functions mentioned above with the purpose of investigating the coefficients of
the class of F-starlike functions GS∗Fψ(m, β) such that every function in the class satisfies the
condition seen in (22). The Gegenbauer polynomials used in this work can be found to have
some applications in queueing theory [21], signal analysis, automatic control, scattering
theory and many other areas. Gengenbauer polynomials, also known as ultraspherical
polynomials Cα

n(x), are orthogonal polynomials defined on the closed interval [−1, 1].
These polynomials are obtained as solutions of the Gengenbauer differential equation,
which reduces to the Chebyshev differential equation for α = 1.

First, we consider obtaining the coefficient bounds for the class of functions GS∗Fψ(m, β)
associated with the Carathéodory functions given by (19).
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Theorem 1. Let f (z) be defined by (1) and p(z) by (19). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if ∣∣∣ a1

s

∣∣∣ ≤ ∣∣∣∣∣3(4cβ
1 (m)− p1)

4

∣∣∣∣∣ (23)

and ∣∣∣ a2

s

∣∣∣ ≤
∣∣∣∣∣∣
5
[
8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32

(
(cβ

1 (m))2 − cβ
2 (m)

)]
32

∣∣∣∣∣∣. (24)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1, then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z). (25)

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)−
cβ

1 (m)a1

3s
+

a2

5s
−

a2
1

9s2

)
z2 + . . . , (26)

while the right-hand side gives√
1 +

p(z)− 1
p(z) + 1

= 1 +
p1

4
z +

(
p2

4
−

5p2
1

32

)
z2 + . . . . (27)

Comparing the coefficients of z and z2 in (26) and (27), we obtain

a1

s
=

3(4cβ
1 (m)− p1)

4

and

a2

s
=

5
[
8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32

(
(cβ

1 (m))2 − cβ
2 (m)

)]
32

,

which completes the proof.

The next two theorems are concerned with the investigation of certain coefficient
problems for the class of functions GS∗Fψ(m, β) involving the sigmoid function given
by (20).

Theorem 2. Let f (z) be defined by (1) and γ(z) by (20). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true∣∣∣∣∣ a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]∣∣∣∣∣. (28)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] β ≥ 1 and µ ∈ R. Then

a2

2
− µ

a2
1

s2 =

5[8p2 − 7p2
1 + 16cβ

1 (m)p1 + 32((cβ
1 (m))2 − cβ

2 (m))]

32
− µ

(
3(4cβ

1 (m)− p1)

4

)2
,

a2

2
− µ

a2
1

s2 =
9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]
,

which finally gives
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∣∣∣∣∣ a2

2
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]∣∣∣∣∣.
Theorem 3. Let f (z) be defined by (1) and γ(z) by (20). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if ∣∣∣ a1

s

∣∣∣ ≤ ∣∣∣∣∣3(8cβ
1 (m)− 1)

8

∣∣∣∣∣ (29)

and ∣∣∣ a2

s

∣∣∣ ≤
∣∣∣∣∣∣
5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128

∣∣∣∣∣∣. (30)

Proof. Let f ∈ GS∗Fψ(m, β), where m ∈ [−1, 1] and β ≥ 1. Then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z).

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)−
cβ

1 (m)a1

3s
+

a2

5s
−

a2
1

9s2

)
z2 + . . . , (31)

while the right-hand side gives√
1 +

γ(z)− 1
γ(z) + 1

= 1 +
1
8

z− 5
128

z2 + . . . (32)

Comparing the coefficients of z and z2 in (26) and (32), we obtain

a1

s
=

3(8cβ
1 (m)− 1)

8

and

a2

s
=

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128
,

which completes the proof.

Theorems 4–6 involve the investigation of certain coefficient problems of the class
GS∗Fψ(m, β) with respect to the Bell numbers (21).

Theorem 4. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true∣∣∣∣∣ a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ

∣∣∣∣∣∣. (33)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1 and µ ∈ R. Then

a2

s
− µ

a2
1

s2 =
5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128
− µ

(
3(8cβ

1 (m)− 1)
8

)2

,
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a2

2
− µ

a2
1

s2 =
9(8cβ

1 (m)− 1)2

64

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ

,

which finally gives:

∣∣∣∣∣ a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ

∣∣∣∣∣∣.

Theorem 5. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if ∣∣∣ a1

s

∣∣∣ ≤ ∣∣∣∣∣3(4cβ
1 (m)− 1)

4

∣∣∣∣∣ (34)

and ∣∣∣ a2

s

∣∣∣ ≤
∣∣∣∣∣∣
5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

32

∣∣∣∣∣∣. (35)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1. Then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z).

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)−
cβ

1 (m)a1

3s
+

a2

5s
−

a2
1

9s2

)
z2 + . . . ,

while the right-hand side gives√
1 +
Q(z)− 1
Q(z) + 1

= 1 +
1
4

z +
3

32
z2 + . . . . (36)

When the coefficients of z and z2 in (26) and (36), are compared, the following values are
obtained:

a1

s
=

3(4cβ
1 (m)− 1)

4
and

a2

s
=

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

32
.

Hence, the proof is completed.

In Theorem 2, the coefficient estimates were established using the Carathéodory
function p(z) given by (19). We now consider in the next theorem the coefficient estimates
for the class of functions GS∗Fψ(m, β) using the Bell numbers Q(z) as given by (21).
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Theorem 6. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true∣∣∣∣∣ a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣∣9(4cβ

1 (m)− 1)2

16

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− 1)2

− µ

∣∣∣∣∣∣. (37)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1], β ≥ 1 and µ ∈ R. Then
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)]
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4

)2
,
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2
− µ
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9(4cβ

1 (m)− 1)2

16

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− p1)2

− µ

,

which finally gives

∣∣∣∣∣ a2

2
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣∣9(4cβ

1 (m)− 1)2

16

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− p1)2

− µ

∣∣∣∣∣∣.

3. Conclusions

The investigation presented in the paper concerns a new subclass of functions denoted
by GS∗Fψ(m, β) introduced in Definition 1 by using an operator defined in (18) as the
convolution of the generalized distribution and the error function using the concept of
subordination. The new class is interesting due to the powerful tools in geometric function
theory used for introducing it, namely convolution and subordination. The main aim
of the research presented in this paper targets a topic of interest at this moment in GFT:
coefficient-related studies. The first theorem proved in Section 2, Theorem 1, provides
the coefficient estimates for functions that are part of the class GS∗Fψ(m, β) by involving
the Carathéodory function p(z) defined in (19). The next results, proved in Theorem 2
and Theorem 3, use the sigmoid function given by (20) for establishing further coefficient
estimates regarding the class GS∗Fψ(m, β). Finally, the Bell numbers given by (21) are used
in Theorems 4–6 to provide other forms of coefficient estimates concerning functions from
the new class GS∗Fψ(m, β).

The initial results regarding the coefficient estimates obtained here can be used for
further specific investigations regarding coefficients of the functions from class GS∗Fψ(m, β),
such as estimations for Hankel determinants of different orders, Toeplitz determinants or
the Fekete–Szegö problem.
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