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Abstract

:

Statistical models are useful in explaining and forecasting real-world occurrences. Various extended distributions have been widely employed for modeling data in a variety of fields throughout the last few decades. In this article we introduce a new extension of the Kumaraswamy exponential (KE) model called the Kavya–Manoharan KE   ( K M K E )   distribution. Some statistical and computational features of the   K M K E   distribution including the quantile (  Q U A  ) function, moments (  M  O m   s), incomplete   M  O m   s (  I N M  O m   s), conditional   M  O m   s (  C O M  O m   s) and   M  O m    generating functions are computed. Classical maximum likelihood and Bayesian estimation approaches are employed to estimate the parameters of the KMKE model. The simulation experiment examines the accuracy of the model parameters by employing Bayesian and maximum likelihood estimation methods. We utilize two real datasets related to food chain data in this work to demonstrate the importance and flexibility of the proposed model. The new KMKE proposed distribution is very flexible, more so than numerous well-known distributions.
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1. Introduction


The so-called “food chain”, a university topic taught in Germany since 1987, provides the foundation for the relatively new academic field that describes the intricate connections between food and environment [1]. It is included in environmental science, agricultural science or “agroecology” in other European nations [2]. However, the “grey” literature initially appeared in the 1970s [3], and one of the earliest scientific articles from the 1980s [4] was inspired by the 1972 United Nations environment summit in Stockholm. Since then, different food products have undergone refinement and application of environmental evaluation methods in order to assist producers and companies in improving food production from an environmental standpoint. Recently, many papers have discussed modeling of food chain data, such as [5,6,7,8,9,10].



The Kumaraswamy (K) model was first known as the double-bounded model. It was first mentioned by [11]. The cumulative distribution function (cdf) in this model is closed-form. The K-G family of distributions was presented by reference [12] as a novel approach for developing a new continuous generating family of statistical models utilizing the K model. The K-G can be constructed for any continuous baseline cdf   G ( z )  , with the cdf provided via


  G  ( z )  = 1 −    1 −     H ( z )    β    γ     ,     z ∈ R ,      β , γ > 0 ,  



(1)




where   H ( x ; δ )   symbolize the CDF of a baseline model and  β  and  γ  are two shape parameters.



The K-exponential (KE) model is introduced in [12] by taking the baseline of the CDF of the exponential model as   H ( z ; α ) = 1 − e x p ( − α z )  . The probability density function (PDF) and CDF of the KE model have the below equations:


  g   z ; α ,  β , γ   = α β γ   e  − α z      1 −  e  − α z      β − 1        1 −     1 −  e  − α z      β     γ − 1    ,  z > 0 ,  α , β , γ > 0 ,   



(2)




and


  G   z ; α ,  β , γ   = 1 −    1 −     1 −  e  − α z      β    γ   ,  z > 0 ,   α ,  β , γ > 0 .  



(3)







Many authors have studied the KE model: Ref. [13] proposed a new generalization of the KE model called the exponentiated KE model, and studied its statistical properties and use medical data to show the application of the KE model. Ref. [14] introduced a bivariate extension of the KE model and its application to the amount of overtime performed by 20 frigorific personnel before and after the installation of an incentive campaign. Ref. [15] investigated maximum likelihood and Bayesian estimates of KE parameters in a progressive type-II censored sample. Ref. [16] studied the beta KE model and some of its statistical properties, such as: moments, quantile function, median, mode, skewness, kurtosis, mean deviation and order statistics; also, they used medical data to show the importance of their model. Ref. [17] discussed the truncated bivariate KE model and computed some statistical features, and used real data related to the lifetimes of forty animals to show the flexibility of their model. Ref. [18] introduced the sine K-G family of distributions and discussed the sine KE model as a special model from their generated family of distributions; also, they used the sine KE model in the application part using two real datasets related to physics and engineering to show the importance of the sine K-G family of distributions. Ref. [19] discussed the K extended exponential (KEE) distribution as a generalization of the KE distribution and studied some important mathematical properties of the KEE distribution; in addition, they used two real datasets related to engineering and physics to illustrate the importance of the KEE distribution. Ref. [20] introduced the Topp–Leone K-G family of distributions and discussed the Topp–Leone KE model as a special model from their generated family of distributions; also, they used the Topp–Leone KE model in the application part utilizing two real datasets related to medicine to show the importance of the Topp–Leone K-G family of distributions. Ref. [21] introduced the gamma KE model as a sub-model from the gamma Kumaraswamy-G family of distributions; also they demonstrated the flexibility of the family in different fields, such as engineering, survival and lifetime data, hydrology, and economics, by using real data.



Various strategies for adding a parameter to distributions have been presented and explored in recent years. These expanded distributions are one way to solve the problem of modeling data and for providing greater flexibility in a variety of applications, including food, agriculture, COVID-19, engineering, economics, biomedicine, biology, physics, environmental sciences, and many others. Several famous families are the odd Dagum-G [22], odd generalized exponential-G [23], sine Topp–Leone-G [24], generalized odd log-logistic-G [25], Flexible BurrX-G [26], truncated Cauchy power Weibull-G [27], transmuted Gompertz- [28], transmuted odd Fréchet-G [29], transmuted odd Lindley-G [30], odd Perks-G [31], a new power Topp–Leone-G by [32], extended odd Fréchet [33], extension of the Burr XII by [34], Marshall–Olkin odd Burr III-G [35], exponentiated M-G [36], exponential TX family of distributions [37], truncated inverted Kumaraswamy generated-G by [38], Marshal–Olkin alpha power family of distributions [39] and unit exponentiated half logistic power series class of distributions introduced by [40]. Some recent classes of distributions were discussed in [41,42,43,44,45,46]. Refs. [47,48] studied the Weibull model under a repetitive group sampling plan based on truncated tests and progressively censored group sampling, among others.



Kavya and Manoharan [49] just presented a novel transformation, the KM transformation class of statistical models. The cdf and pdf are provided in the next two equations


  F  ( z )  =  e  e − 1    1 −  e  − G ( z )    , z ∈ R ,  



(4)




and


  f  ( z )  =  e  e − 1   g  ( z )   e  − G ( z )   , z ∈ R .  



(5)







Recently, [9] introduced the sine exponentiated Weibull exponential (SEWE) model to fit food data in the United Kingdom (UK) and the SEWE model was found to have an excellent fit for these data. However, in this article, we hope that the suggested model gives a better fit to the food data used by [9]. In addition, Figure 1 offers a comprehensive description of the work.



The following considerations provide sufficient motivation to investigate the suggested model. It is stated as follows:




	
The new KMKE distribution gives more flexibility than the SEWE model and other well-known statistical models for food chain data as we prove in Section 7.



	
The new recommended distribution is quite versatile and comprises three sub-models.



	
The shapes of the pdf for the KMKE model can be decreasing, right skewness and uni-modal. However, the hazard rate function (hrf) for the KMKE model can be decreasing, increasing and j-shaped.



	
Numerous statistical and computational characteristics of the recently proposed model are investigated.



	
The parameters of the KMKE model are estimated utilizing maximum likelihood and Bayesian techniques.








The rest of this article is structured as follows: some relevant literature for some extensions of the K model and their modeling to real data are discussed in Section 2. We provide the novel proposed model designated the KMKE model and its sub-models in Section 3. Several statistical and computational features of the KMKE including the   Q U A   function,   M  O m   s,   I N M  O m   s,   C O M  O m   s and   M  O m    generating functions are computed in Section 4. The parameters of the KMKE model are estimated utilizing maximum likelihood and Bayesian techniques in Section 5. In Section 6, the numerical simulations used to evaluate the efficiency of the various estimation approaches are described. In Section 7, we apply the KMKE model to two real datasets to demonstrate its usefulness and applicability. Eventually, in Section 8, some final thoughts are offered.




2. Relevant Literature


Statistical models are very useful for describing and predicting real-world events. Various extended distributions have been extensively used for data modeling in a wide range of areas throughout the last few decades. Many authors have used Equation (1) to generate new extensions from the K model and used these statistical models in modeling for different real datasets, such as: engineering, physics, medicine, failure times, reliability, survival, income and COVID-19. Table 1 shows some relevant literature for some extensions of the K model and their modeling to real data. We note that all previous authors who studied extensions of the K model did not use their models to fit food chain data. However, in this article, we try to generate a new extension of the K model and hope to give a good fit to the food chain data.




3. The Construction of the Kavya–Manoharan Kumaraswamy Exponential Model


In this section, we create the Kavya–Manoharan Kumaraswamy exponential (KMKE) model by entering Formula (3) into Formula (4), and we obtain the cdf as shown below


  F   z ; α ,  β , γ   =   e  e  −  1     1  −   e  −   1 −     1 −     1 −  e  − α z      β     γ        ,         z > 0 ,      α ,  β , γ > 0 ,   



(6)




where  β  and  γ  are two shape parameters and  α  is scale parameter. The pdf of the KMKE model can be investigated by inserting Equations (3) and (2) into (5) as


  f   z ; α ,  β , γ   =   α β γ   e  −  1     e  − α z      1 −  e  − α z      β − 1        1 −     1 −  e  − α z      β     γ − 1    e     1 −     1 −  e  − α z      β     γ   .  



(7)







The reliability function, the hazard rate function (hrf), and the reversed and cumulative hrfs (see [86]) for the KMKE model are


  S   z ; α ,  β , γ   = 1 −  e  e  −  1     1  −   e  −   1 −     1 −     1 −  e  − α z      β     γ        ,       










  h   z ; α ,  β , γ   =   α β γ   e  − α z       1 −  e  − α z       β − 1         1 −     1 −  e  − α z      β      γ − 1    e     1 −     1 −  e  − α z      β     γ      e  1 −   1 −     1 −     1 −  e  − α z      β     γ      − 1    ,   










  τ   z ; α ,  β , γ   =   α β γ   e  − α z       1 −  e  − α z       β − 1         1 −     1 −  e  − α z      β      γ − 1    e     1 −     1 −  e  − α z      β     γ     e   1  −   e  −   1 −     1 −     1 −  e  − α z      β     γ           ,    








and


  H   z ; α ,  β , γ   = − ln   1 −  e  e  −  1     1  −   e  −   1 −     1 −     1 −  e  − α z      β     γ          .  











The KMKE model is very flexible and has three sub-models, see Table 2.



Figure 2 shows the plots of the pdf and hrf for the KMKE model in 2D. Furthermore, Figure 3 and Figure 4 show the plots of the pdf and hrf for the KMKE model in 3D.




4. Statistical and Computational Features


In this section, we focus on the statistical and computational characteristics of the KMKE model, particularly the   Q U A   function,   M  O m   s,   I N M  O m   s,   C O M  O m   s and   M  O m    generating functions.



4.1. Quantile Function


The quantile function of the KMKE model is a useful tool to perform a simulated sample and it can be calculated by inverting Equation (6) where   u ∼ U n i f o r m ( 0 , 1 )  , then


  u =  e  e  −  1     1  −   e  −   1 −     1 −     1 −  e  − α Q ( u )      β     γ        .  








After some simplification, we can obtain the quantile function of the KMKE model as


  Q  u  =   − 1  α  ln   1 −     1 −     1 + ln   1 − u   1 −  e  − 1           1 γ       1 β     .  



(8)







The median of the KMKE model is investigated by putting   u = 0.5   in Equation (8),


  Q  u  =   − 1  α  ln   1 −     1 −     1 + ln   1 − 0.5   1 −  e  − 1           1 γ       1 β     .  












4.2. Moments


In this subsection, we derive the   w  t h    moment (  M  O m   ) (see [87]) for the KMKE model. The first four   M  O m   s are the most important to describe the shape and monotonicity of the distribution curve. Suppose Z via a   R V r   that follows   K M K E  (  α , β , γ  ), then the   w  t h     M  O m    about the zero of the KMKE model is


   μ  w    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1      π  i , j , k   Γ   w + 1        α ( k + 1 )     w + 1      .  



(9)







The proof of Equation (9) is mentioned in Appendix A. By putting w = 1, 2, 3 and 4 into Equation (9) we will obtain the first four   M  O m   s


   μ  1    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     π  i , j , k       α ( k + 1 )    2     ,  










   μ  2    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     2  π  i , j , k        α ( k + 1 )    3     ,  










   μ  3    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     6  π  i , j , k        α ( k + 1 )    4     ,  








and


   μ  4    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     24  π  i , j , k        α ( k + 1 )    5     .  











As a consequence, the mean and variance of the KMKE model are calculated via


  μ =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     π  i , j , k       α ( k + 1 )    2     ,  








and


  V a r  ( z )  =  ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     2  π  i , j , k        α ( k + 1 )    3     −     ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     π  i , j , k       α ( k + 1 )    2       2  .  











The moment-generating function (see [87]) of the KMKE model can be computed from the next equation


   M Z   ( t )  =  E   e  t Z    =  ∫  0  ∞   e  t Z   f  ( z ; α , β , γ )  d z .  











After some simplification we obtain


   M Z   ( t )  =  ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1    π  i , j , k     ∫ 0 ∞   e  −   α ( k + 1 ) − t   z    d z .  











Then the moment-generating function of the KMKE model is


   M Z   ( t )  =  ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1     π  i , j , k    α ( k + 1 ) − t     .  











The   m  t h    incomplete   M  O m    of the KMKE model can be computed from the next equation


   η m   ( t )  =  ∫  0  t   z m  f  ( z ; α , β , γ )  d z .  











After some simplification we obtain


   η m   ( t )  =   ∑  i = 0  t    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1    π  i , j , k     ∫ 0 ∞   z m   e  − α ( k + 1 ) z    d z ,  











Then the   m  t h    incomplete   M  O m    (see [87]) of the KMKE model is


   η m   ( t )  =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1      π  i , j , k   γ   m + 1  , t       α ( k + 1 )     m + 1      .  











The   m  t h    conditional   M  O m    (see [87]) of the KMKE model can be computed from the next equation


   τ m   ( t )  =  ∫  t  ∞   z m  f  ( z ; α , β , γ )  d z .  











After some simplification we obtain


   τ m   ( t )  =   ∑  i = t  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1    π  i , j , k     ∫ 0 ∞   z m   e  − α ( k + 1 ) z    d z ,  











Then the   m  t h    conditional   M  O m    of the KMKE model is


   τ m   ( t )  =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1      π  i , j , k   Γ   m + 1  , t       α ( k + 1 )     m + 1      .  











Figure 5 shows the mean, variance (var), skewness (SK), kurtosis (KU), coefficient of variation (CV) and index of dispersion (ID) (see [87]).





5. Estimation Methods


The maximum likelihood and Bayesian methods are the most famous. Based on Bayes’ theorem, Bayesian statistics is a method for analyzing data and estimating parameters. The prior and data distributions, which are a special feature of Bayesian statistics, are given to all observable and unobserved parameters in a statistical model. In this section, maximum likelihood estimation and Bayesian estimation have been discussed to estimate the parameters of the KMKE model. Recently, more papers have discussed maximum likelihood and Bayesian estimation methods, such as [88,89].



5.1. Maximum Likelihood Estimation


In this section, we focus on how the maximum likelihood technique (see [87]) can be employed to estimate the parameters  α ,  β  and  γ  for the KMKE model. Suppose that    z 1  , ⋯ ,  z n    is a random sample of size n from the KMKE model (7). Then, the total log-likelihood function for   Ω = ( α , β , γ )   is supplied as below


     ln L = ln α + ln β + ln γ − ln   e − 1   − α   ∑  i = 1  n    z i   +   β − 1     ∑  i = 1  n    ln   1 −  e  − α  z i                            +   γ − 1     ∑  i = 1  n    ln   1 −     1 −  e  − α  z i       β      +   ∑  i = 1  n       1 −     1 −  e  − α  z i       β     γ  .     



(10)







The first partial derivatives    U n   ( Ω )  =   (   ∂  L n   ( Ω )    ∂ α   ,   ∂  L n   ( Ω )    ∂ β   ,   ∂  L n   ( Ω )    ∂ γ   )  T    are provided via


       ∂ ln L   ∂ α   =  n α  −   ∑  i = 1  n    z i   +   β − 1     ∑  i = 1  n     z i    e  α  z i    − 1        − β   γ − 1     ∑  i = 1  n      z i   e  − α  z i        1 −  e  − α  z i        β − 1     1 −     1 −  e  − α  z i       β                         − β γ   ∑  i = 1  n     z i   e  − α  z i        1 −  e  − α  z i        β − 1       1 −     1 −  e  − α  z i       β      γ − 1    ,     



(11)






       ∂ ln L   ∂ β   =  n β   +   ∑  i = 1  n    ln   1 −  e  − α  z i       −   γ − 1     ∑  i = 1  n         1 −  e  − α  z i       β  ln   1 −  e  − α  z i        1 −     1 −  e  − α  z i       β                       − γ   ∑  i = 1  n        1 −  e  − α  z i       β      1 −     1 −  e  − α  z i       β      γ − 1    ln   1 −  e  − α  z i      ,     



(12)




and


    ∂ ln L   ∂ γ   =  n γ   +  ∑  i = 1  n   ln   1 −     1 −  e  − α  z i       β      +  ∑  i = 1  n      1 −     1 −  e  − α z      β     γ  ln   1 −     1 −  e  − α z      β    .  



(13)




By setting the nonlinear system of equations     ∂  L n   ( Ω )    ∂ α   =   ∂  L n   ( Ω )    ∂ β   =   ∂  L n   ( Ω )    ∂ γ   = 0   and solving these equations simultaneously, we can obtain the   M L E (  Ω ^  )  . Because an exact solution is not achievable, these equations can be numerically solved by employing iterative approaches and statistical tools.




5.2. Bayesian Estimation


The Bayesian approach is a well-known non-classical inference technique in statistics. It defines uncertainties on the distribution parameters using a joint prior distribution and some proposed symmetric and asymmetric loss functions. It is believed that the three parameters,  α ,  β  and  γ , are independent and follow gamma prior distributions:


  C  ( α , β , γ )  ∝  α   w 1  − 1    β   w 2  − 1    γ   w 3  − 1   exp  { −  α  ∇ 1  + β  ∇ 2  + γ  ∇ 3   }  ,     α , β , γ > 0 ;  ∇ j  ,  w j  > 0 ; j = 1 , 2 , 3 .  



(14)




The hyper-parameters will be elicited using the parameters priors    ∇ j  ,  w j   ; for more information, see [90]. The mean and variance of the KMKE distribution’s  α  and  γ  maximum likelihood estimates will be compared to the mean and variance of the    α j  ,  β j    and   γ j   considered priors (gamma priors), where   j = 1 , ⋯ , N   and N is the number of samples available from the KMKE distribution. By equating   α , β   and  γ  with the mean and variance of gamma priors, we may calculate their respective means and variances.


   1 N   ∑  j = 1  N   α j  =   w 1   ∇ 1   ,      and      1  N − 1    ∑  j = 1  N     α j  −  1 k   ∑  j = 1  N   α j   2  =   w 1   ∇  1  2   ,  










   1 N   ∑  j = 1  N   β j  =   w 2   ∇ 2   ,      and      1  N − 1    ∑  j = 1  N     β j  −  1 N   ∑  j = 1  N   β j   2  =   w 2   ∇  2  2   ,  








and


   1 N   ∑  j = 1  N   γ j  =   w 3   ∇ 3   ,      and      1  N − 1    ∑  j = 1  N     γ j  −  1 N   ∑  j = 1  N   γ j   2  =   w 3   ∇  3  2   .  











The estimated hyper-parameters can now be stated as follows after solving the preceding two equations:


   w 1  =     1 k   ∑  j = 1  k   α j   2    1  k − 1    ∑  j = 1  k     α j  −  1 k   ∑  j = 1  k   α j   2    , and    ∇ 1  =    1 k   ∑  j = 1  k   α j     1  k − 1    ∑  j = 1  k     α j  −  1 k   ∑  j = 1  k   α j   2    ,  










   w 2  =     1 k   ∑  j = 1  k   β j   2    1  k − 1    ∑  j = 1  k     β j  −  1 k   ∑  j = 1  k   β j   2    , and    ∇ 2  =    1 k   ∑  j = 1  k   β j     1  k − 1    ∑  j = 1  k     β j  −  1 k   ∑  j = 1  k   β j   2    .  








and


   w 3  =     1 k   ∑  j = 1  k   γ j   2    1  k − 1    ∑  j = 1  k     γ j  −  1 k   ∑  j = 1  k   γ j   2    , and    ∇ 3  =    1 k   ∑  j = 1  k   γ j     1  k − 1    ∑  j = 1  k     γ j  −  1 k   ∑  j = 1  k   γ j   2    .  








The likelihood function and the joint prior function Equation (14) can be used to express the joint posterior distribution. Consequently,  Ω ’s joint posterior density function is


     G ( Ω | x ) =      C   ( e − 1 )  n    α  n +  w 1  − 1    β  n +  w 2  − 1    γ  n +  w 3  − 1    e  −  α  ∇ 1  + β  ∇ 2  + γ  ∇ 3      e  − α  ∑  i = 1  n   z i     e   ∑  i = 1  n      1 −     1 −  e  − α  z i       β     γ             ∏  i = 1  n     1 −  e  − α  z i       β − 1         1 −     1 −  e  − α  z i       β     γ − 1   .     



(15)




In actuality, the posterior density’s normalization constant  C  is often intractable, requiring an integral over the parameter space.



The squared-error loss function (SELF) is the symmetric loss function:


   L S   (  Ω ˜  , Ω )  ∝    Ω ˜  − Ω  2  .  



(16)




The average is then the Bayesian estimator of  Ω  under SELF.


    Ω ˜  S  =  E Ω   Ω  .  



(17)







The two most well-known loss functions—LINEX and entropy—have been covered.



Varian [91] introduced a useful asymmetric loss function, which has recently been used in several publications by [92,93,94]. The linear exponential LINEX loss function describes this function. Assuming that the minimal loss happens at    Ω ˜  = Ω  , the LINEX loss function can be expressed as follows:


   L L   (  Ω ˜  , Ω )  ∝  e  c    Ω ˜  L  − Ω    − c    Ω ˜  L  − Ω  − 1 ;   c ≠ 0 ,  



(18)




where c is the shape parameter and   Ω ˜   is any estimate of the parameter  Ω . The shape of this loss function depends on the value of c. When the entropy loss function is used, the Bayes estimator of  Ω  is


    Ω ˜  L  =   − 1  c  ln   E Ω    e  − c  Ω     .  



(19)







According to Calabria and Pulcini [95], the entropy loss function is a decent asymmetric loss function. The form’s entropy loss function is thought of as


   L E   (  Ω ˜  , Ω )  ∝     Ω ˜  Ω   b  − b ln    Ω ˜  Ω   − 1 ,  



(20)




whose minimum is found at    Ω ˜  = Ω  . When the entropy loss function is used, the Bayes estimator of  Ω  is


    Ω ˜  E  =    E Ω    Ω  − b       − 1  b   ,  



(21)







Since it is challenging to solve these integrals analytically, the MCMC method will be used. The most important sub-classes of MCMC algorithms are Gibbs sampling and the more general Metropolis-within-Gibbs samplers. This algorithm was first presented by Metropolis et al. [96] As with acceptance–rejection sampling, the Metropolis–Hastings (MH) algorithm treats a candidate value produced from a proposal distribution as normal for each iteration of the process.





6. Simulation


Monte Carlo simulations are used to compare the performance of the suggested estimators for the KMKE parameters model. In this section, the estimation of the KMKE parameters are discussed using Bayesian and likelihood estimation techniques, comparing the results using a simulation study. In the Bayesian technique, symmetric and asymmetric loss functions are obtained. LINES and ELF are used as asymmetric loss functions.



6.1. Simulation Study


We investigate several sample sizes with n = 40, 75 and 150 for different  α ,  β  and  γ  parameter selections. We take 5000 random samples from the KMKE distribution. For each estimate, we calculate the bias values, mean square error (MSE) and length of confidence interval (LCI). The LCI of MLE is an asymptotic CI which can be denoted as LACI. The LCI of the Bayesian technique is the credible CI which can be denoted as LCCI.



Bias, MSE and LCI are used to quantify the efficacy of various estimators, with bias and MSE values close to zero indicating the most efficient techniques. The simulation results are obtained using the R programming language. The “maxLik” package computes the MLE using the Newton–Raphson approach. Additionally, the “CODA” package is used to perform the Bayesian estimation with various loss functions. This package evaluates the Markov chain Monte Carlo (MCMC) outputs and diagnoses lack of convergence. The estimated bias, MSE and LCI parameters of the KMWE distribution are displayed in Table 3, Table 4, Table 5 and Table 6.




6.2. Final Thoughts on the Simulation Results


Figure 6, Figure 7 and Figure 8 show heatmaps of MSE for parameters of the KMKE distribution, where the X-axis shows the MSE based on different estimation methods with each parameter  α ,  β  and  γ , respectively (MLE1 is a MSE for  α , MLE2 is a MSE for  β  and MLE3 is a MSE for  γ ), while the Y-axis shows the MSE based on different cases and sample sizes, for example: C1n40 is an actual value of the parameter in Table 3 where   α = 0.5 , β = 0.4  ,   γ = 0.5   and n = 40; C1n70 is an actual value of the parameter in Table 3 where   α = 0.5 , β = 0.4  ,   γ = 0.5   and n = 70; and C2n70 is an actual value of the parameter in Table 3 where   α = 0.5 , β = 0.4  ,   γ = 1.7   and n = 70.



By simulation in Table 3, Table 4, Table 5 and Table 6 and Figure 6, Figure 7 and Figure 8, all estimate techniques perform flawlessly, have very little bias and small MSE, and their mean values tend to be quite similar to the parameters’ actual values.



	
The Bayesian estimation is superior to the MLE in every situation, we observe.



	
The Bayesian estimation with positive weight asymmetric loss function is superior to the Bayesian estimation with negative weight asymmetric loss function, as we note.



	
We note that the Bayesian estimation method with positive weight asymmetric loss function is better than the other estimation method.



	
The Bayesian estimation with symmetric loss function is superior to the Bayesian estimation with negative weight asymmetric loss function, in some simulations.



	
Bayesian credible and HPD intervals are the shortest LCI.








7. Modeling Food Data


Several methods for adding a parameter to distributions have been presented and debated in recent years. These expanded distributions provide flexibility for specific food data applications. In this application, the problem is finding the best and most efficient model fitting food data. This section shows how the KMWE distribution outperforms traditional distributions such as SEWE by [9], exponentiated generalized Weibull–Gompertz (EGWG) by [97], Kumaraswamy exponentiated Burr XII (KEBXII) by [98], Weibull–Lomax (WL) by [99], Marshall–Olkin alpha power Weibull (MOAPW) by [100], extended odd Weibull–Lomax (EOWL) by [101], modified Kies inverted Topp–Leone (MKITL) by [102], odd Weibull inverted Topp–Leone (OWITL) by [103] and extended Weibull (EW) [104].



Below tables discussed estimates of MLE and various measures of fit with provide statistics for all models fitted based on two real datasets, including different measures such as Kolmogorov–Smirnov discrete (KSD) with P-value of KS (PVKS), Cramer von Mises (CVM) and Anderson-(AD) Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent AIC (CAIC), and Hannon and Quinn’s information criterion (HQIC). These tables also contain the MLE of the parameters for the models being examined.



Firstly: The food chain in the UK from 2000 to 2019 is shown in the first dataset, which can be found at https://www.gov.uk/government/statistics/food-chain-productivity and was accessed on 18 July 2022. Furthermore, this data has been cited in [9]. The data are as follows: “102.9, 104.1, 104.8, 105.5, 107.2, 108.6, 104.7, 105.8, 103.4, 104.1, 100, 99.9, 98.5, 100.1, 101.9, 101.4, 103.1, 103.2, 104.2, 109”. The results of this data are attached in Table 7 and Table 8, and Figure 9, Figure 10, Figure 11 and Figure 12.



Secondly, as one component of factor total productivity (FTP), food and drink wholesaling in the UK from 2000 to 2019, see https://www.gov.uk/government/statistics/food-chain-productivity, accessed on 18 July 2022. Furthermore, this data has been cited in [9]. The data are as follows: “101.1, 104.2, 104.6, 106.3, 100,101.7,99.6, 101, 102.7, 104.8, 109.1, 112, 114.4, 105.6, 107.1, 107.5, 108.6, 107.5, 106.6, 112.5”. The results of this data are attached in Table 9 and Table 10, and Figure 13, Figure 14, Figure 15 and Figure 16.



Figure 10 and Figure 14 show the two datasets that were fitted to the KMWE model using pdf, cdf, PP-plot and QQ-plot, respectively. Figure 9 and Figure 13 confirm the estimators have maximum plot and unique values of the KMWE model for two datasets, respectively.



A total of 10,000 MCMC samples are produced using the MCMC algorithm that is discussed in Section 5. The MLEs and BEs of the unknown parameters of the KMWE distribution were determined using two datasets in Table 8 and Table 10, respectively. Furthermore, generated and provided in Table 8 and Table 10 are two-sided 95% ACI/HPD credible intervals for MLE and Bayesian estimations, respectively. They demonstrate how closely the point estimates of the unknown parameters that the MLE and Bayesian estimations obtain are to one another. Additionally, there are similarities in the interval estimates determined by 95% ACI/HPD credible intervals.



Figure 11 and Figure 15 provide trace plots of the posterior distributions of the parameters from the under-two datasets to track the convergence of the MCMC outputs. It suggests that the MCMC method converges quite effectively and demonstrates how closely spaced apart the 95% ACI/HPD credible interval boundaries are. Figure 12 and Figure 16 also show the marginal posterior density estimates of the KMWE distribution’s parameters together with their histograms based on 10,000 chain values. The estimations clearly show that all of the generated posteriors are symmetric with respect to the theoretical posterior density functions.




8. Concluding Remarks


The SEWE model [9] was introduced to fit the food data in the United Kingdom (UK), and the SEWE model gave an excellent fit for these data. However, in this article, we investigate a new lifetime model called the KMKE model which gives a better fit than the SEWE model for the food data. The KMKE model has three special models that are proposed and discussed. Some important statistical and computational features of the new model are investigated, such as the   Q U A   function,   M  O m   s,   I N M  O m   s,   C O M  O m   s and   M  O m    generating functions. Classical maximum likelihood estimation and Bayesian estimation approaches are utilized to estimate the parameters of the KMKE model. The simulation experiment examines the accuracy of the model parameters by employing Bayesian and maximum likelihood estimation methods. In this article, we use two real datasets related to food to show the relevance and flexibility of the suggested model. The KMKE model gives the best fits for food data and we compare it with the SEWE model, which was introduced by [9] for fitting food data, and also compare it with various known statistical models. This allows it to be used to predict the future dataset of food and drink wholesaling sales, and the extent of its validity and expected risks when using different quantities of food and beverages. By studying the KMKE model for food chain data, we can say that the KMKE model is the best model for evaluating and appropriating almost in-depth food data and avoiding erroneous conclusions, by using the previous prior information of parameters of the proposed model (Bayesian) as gamma distribution, where the Bayesian estimation method has the smallest SE values of parameters. The limitation of our new suggested model is that we estimate its parameters with complete samples only. Future works can use our new model to study the statistical inference for parameters using different censored schemes and different ranked set sampling. Some authors may study the stress–strength model using our model because the KMKE model is very simple and has two parameters only.
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List of Symbols




	Z
	Random variable



	   G ( z )   
	Cumulative distribution function of Kumaraswamy generated family



	   H ( z )   
	Cumulative distribution function of exponential distribution



	   g   z ; α ,  β , γ     
	Probability density function of Kumaraswamy exponential distribution



	   G   z ; α ,  β , γ     
	Probability density function of Kumaraswamy exponential distribution



	  α  
	Scale parameter



	  β  
	Shape parameter



	  γ  
	Shape parameter



	   F   z ; α ,  β , γ     
	Cumulative distribution function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   f   z ; α ,  β , γ     
	Probability density function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   S   z ; α ,  β , γ     
	Reliability function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   h   z ; α ,  β , γ     
	Hazard rate function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   τ   z ; α ,  β , γ     
	Reversed hazard rate function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   H   z ; α ,  β , γ     
	Cumulative hazard rate function of the Kavya–Manoharan Kumaraswamy exponential distribution



	   Q  u    
	Quantile function



	   μ  w    ′    
	The   w  t h    moment



	    M Z   ( t )    
	Moment generating function



	    η m   ( t )    
	The   m  t h    incomplete moment



	    τ m   ( t )    
	The   m  t h    conditional moment



	   ln L   
	Log-likelihood function



	n
	Sample size



	   w j   
	Shape parameter of hyper-parameter



	   ∇ j   
	Scale parameter of hyper-parameter



	N
	The number of samples



	  C  
	Constant of posterior distribution



	   L S   
	Squared-error loss function



	    Ω ˜  S   
	Bayesian estimator under SELF



	   E Ω   
	Average expectation



	   L L   
	LINEX loss function



	    Ω ˜  L   
	Bayesian estimator under LINEX



	c
	Shape parameter of LINEX loss function



	   L E   
	Entropy loss function



	    Ω ˜  E   
	Bayesian estimator under entropy








Appendix A


Proof for the   w  t h      M  O m    about the zero of the KMKE model:


   μ  w    ′   =  ∫  0  ∞   z w  f  ( z ; α , β , γ )  d z .  



(A1)




By inserting Equation (7) into Equation (A1), we can rewrite the above Equation as


   μ  w    ′   =   α β γ   e  −  1     ∫ 0 ∞   z w   e  − α z      1 −  e  − α z      β − 1        1 −     1 −  e  − α z      β     γ − 1    e     1 −     1 −  e  − α z      β     γ   d z .  











By applying the next exponential expansion to the above equation (see [105])


   e     1 −     1 −  e  − α z      β     γ   =  ∑  i = 0  ∞       1 −     1 −  e  − α z      β      γ i    i !   ,  








then, we obtain


   μ  w    ′   =   α β γ   e  −  1     ∫ 0 ∞   z w   e  − α z      1 −  e  − α z      β − 1      ∑  i = 0  ∞    1  i !       1 −     1 −  e  − α z      β      γ ( i + 1 ) − 1    d z .  



(A2)







Employing the next binomial expansion to the last term of the previous equation


     1 −     1 −  e  − α z      β     γ ( i + 1 ) − 1   =    ∑  j = 0   γ ( i + 1 ) − 1        − 1    j       γ ( i + 1 ) − 1      j         1 −  e  − α z      β j   .  



(A3)







By employing the last binomial expansion in Equation (A2) we have


   μ  w    ′   =   α β γ   e  −  1    ∫ 0 ∞   z w    e  − α z     ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1         − 1    j   i !        γ ( i + 1 ) − 1      j          1 −  e  − α z       β ( j + 1 ) − 1   d z  .  



(A4)







Again employing the next binomial expansion to the last term of the previous equation


     1 −  e  − α z      β ( j + 1 ) − 1   =  ∑  k = 0   β ( j + 1 ) − 1        − 1    k       β ( j + 1 ) − 1      k       e  − α k z   .  











By inserting the previous expansion in Equation (A4), then we obtain


   μ  w    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1    π  i , j , k     ∫ 0 ∞   z w   e  − α ( k + 1 ) z    d z ,  








where


   π  i , j , k   =     α β γ     − 1     j + k       e  −  1   i !        γ ( i + 1 ) − 1      j          β ( j + 1 ) − 1      k     .  








then the   w  t h     M  O m    about the zero of the KMKE model is


   μ  w    ′   =   ∑  i = 0  ∞    ∑  j = 0   γ ( i + 1 ) − 1     ∑  k = 0   β ( j + 1 ) − 1      π  i , j , k   Γ   w + 1        α ( k + 1 )     w + 1      .  
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Figure 1. A detailed graphic representation of the article. 
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Figure 2. Plots of pdf and hrf for the KMKE model. 
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Figure 3. Plots of the pdf for the KMKE model in 3D. 
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Figure 4. Plots of the hrf for the KMKE model in 3D. 
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Figure 5. Plots of mean, var, SK, KU, CV and ID in 3D for the KMKE model. 
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Figure 6. Heatmaps of MSE values for parameters of the KMWE distribution with different sample cases:   α = 0.5 , β = 0.4  . 
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Figure 7. Heatmaps of MSE values for parameters of the KMWE distribution with different sample cases:   α = 0.5 , β = 1.5  . 
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Figure 8. Heatmaps of MSE values for parameters of KMWE distribution with different sample cases:   α = 0.5 , β = 1.5  . 
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Figure 9. Profile MLE of the KMWE model for food chain data. 
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Figure 10. MLE of cdf, and pdf with empirical and histogram, QQ and PP of the KMWE model for food chain data. 






Figure 10. MLE of cdf, and pdf with empirical and histogram, QQ and PP of the KMWE model for food chain data.



[image: Axioms 12 00379 g010]







[image: Axioms 12 00379 g011 550] 





Figure 11. MCMC plot and convergence line for parameters of the KMWE model for food chain data. 
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Figure 12. Histogram plot with normal curve for parameters of the KMWE model for food chain data. 
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Figure 13. Profile MLE of the KMWE model for food and drink wholesaling data. 
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Figure 14. MLE of cdf, and pdf with empirical and histogram, QQ and PP of the KMWE model for food and drink wholesaling data. 
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Figure 15. MCMC plot and convergence line for parameters of the KMWE model for food and drink wholesaling data. 
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Figure 16. Histogram plot with normal curve for parameters of the KMWE model for food and drink wholesaling data. 
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Table 1. Relevant literature.






Table 1. Relevant literature.





	Model
	Modeling
	Authors





	The new suggested model (KMKE model)
	Food chain data
	New



	K-Weibull model
	Failure times data
	 [50]



	K-generalized Rayleigh model
	Engineering data
	 [51]



	K-modified Weibull model
	Failure times data
	 [52]



	K-transmuted exponentiated modified Weibull model
	Medical data
	 [53]



	K-transmuted modified Weibull model
	Failure times data
	 [54]



	K-Gompertz Makeham model
	Physics data
	 [55]



	K-Gumbel model
	Engineering data
	 [56]



	K-generalized gamma model
	Industrial and medical data
	 [57]



	K-generalized power Lomax model
	Physics data
	 [58]



	K-Burr XII model
	Engineering, physics and medical data
	 [59]



	K-generalized inverse Lomax model
	Reliability and survival data
	 [60]



	K-Dagum model
	Income and lifetime data
	 [61]



	Modified K model
	Engineering data
	 [62]



	Transmuted K-Lindley model
	Medical data
	 [63]



	K-Marshall–Olkin exponential model
	Medical data
	 [64]



	K-half logistic model
	Physics and medical data
	 [65]



	K-log logistic model
	Medical data
	 [66]



	K-Marshall–Olkin log-logistic model
	Physics data
	 [67]



	Modified K Weibull model
	Reliability and engineering data
	 [68]



	K-inverted Topp–Leone model
	COVID-19 data
	 [69]



	Kavya–Manoharan-K model
	COVID-19 and physics data
	 [70]



	Transmuted K model
	Medical and environmental data
	 [71]



	Generalized inverted K-G
	Physics data
	 [72]



	Topp–Leone generalized inverted K model
	Physics data
	 [73]



	K log-logistic Weibull model
	Failure times data
	 [74]



	Exponentiated inverse K model
	Economic data
	 [75]



	Beta K Burr Type X model
	Physics and medical data
	 [76]



	Marshall–Olkin extended inverted K model
	Physics, failure and medical data
	 [77]



	K generalized Kappa model
	Geological data
	 [78]



	Cubic rank transmuted K model
	Food and industrial data
	 [79]



	K Marshall–Olkin log-logistic model
	Physics data
	 [67]



	Odd generalized exponential K model
	Geological and environmental data
	 [80]



	K exponentiated U-quadratic model
	Medical data
	 [81]



	K odd Burr-G
	Physics and engineering data
	 [82]



	Exponentiated generalized K model
	Environmental, agriculture and engineering data
	 [83]



	Size-biased K model
	Engineering data
	 [84]



	K generalized power Weibull model
	Engineering data
	 [85]



	Exponentiated K-Dagum model
	Income and lifetime data
	 [61]
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Table 2. Some sub-models of the KMKE model.
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	Model
	   α   
	   β   
	   γ   





	KMKE
	-
	-
	-



	KM- Topp–Leone exponential
	-
	2
	-



	KM- exponentiated exponential
	-
	-
	1



	KM- exponential
	-
	1
	1
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Table 3. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 0.5 , β = 0.4  .
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  α   = 0.5,   β   = 0.4

	
MLE

	
SELF

	
LINEX c = −1.2

	
LINEX c = 1.2

	
ELF c = −1.2

	
ELF c = 1.2






	
  γ  

	
n

	

	
Bias

	
MSE

	
LACI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI




	
0.5

	
40

	
  α  

	
0.1445

	
0.1540

	
1.4311

	
0.0940

	
0.0510

	
0.7638

	
0.1177

	
0.0620

	
0.8008

	
0.0705

	
0.0415

	
0.7209

	
0.1066

	
0.0546

	
0.7633

	
0.0237

	
0.0381

	
0.7249




	
  β  

	
0.1306

	
0.0269

	
0.3887

	
0.0919

	
0.0184

	
0.3302

	
0.1023

	
0.0224

	
0.3430

	
0.0816

	
0.0150

	
0.3127

	
0.0984

	
0.0202

	
0.3340

	
0.0571

	
0.0108

	
0.3083




	
  γ  

	
0.1640

	
0.1442

	
1.4311

	
0.0791

	
0.0395

	
0.6464

	
0.0979

	
0.0480

	
0.7020

	
0.0607

	
0.0322

	
0.5960

	
0.0889

	
0.0424

	
0.6670

	
0.0279

	
0.0278

	
0.5870




	
70

	
  α  

	
0.0608

	
0.0681

	
0.9954

	
0.0492

	
0.0172

	
0.4605

	
0.0560

	
0.0188

	
0.4672

	
0.0424

	
0.0158

	
0.4544

	
0.0532

	
0.0178

	
0.4605

	
0.0228

	
0.0147

	
0.4560




	
  β  

	
0.1179

	
0.0183

	
0.2602

	
0.0582

	
0.0066

	
0.2139

	
0.0618

	
0.0071

	
0.2180

	
0.0547

	
0.0060

	
0.2106

	
0.0607

	
0.0069

	
0.2157

	
0.0454

	
0.0050

	
0.2083




	
  γ  

	
0.1596

	
0.0922

	
0.9954

	
0.0413

	
0.0117

	
0.3662

	
0.0468

	
0.0127

	
0.3674

	
0.0360

	
0.0108

	
0.3598

	
0.0445

	
0.0121

	
0.3647

	
0.0251

	
0.0098

	
0.3621




	
150

	
  α  

	
0.0449

	
0.0451

	
0.8142

	
0.0437

	
0.0087

	
0.3183

	
0.0470

	
0.0092

	
0.3259

	
0.0404

	
0.0081

	
0.3147

	
0.0456

	
0.0089

	
0.3212

	
0.0223

	
0.0074

	
0.3126




	
  β  

	
0.1165

	
0.0159

	
0.1896

	
0.0578

	
0.0052

	
0.1589

	
0.0597

	
0.0054

	
0.1625

	
0.0456

	
0.0049

	
0.1565

	
0.0591

	
0.0053

	
0.1606

	
0.0451

	
0.0043

	
0.1543




	
  γ  

	
0.1436

	
0.0662

	
0.8142

	
0.0344

	
0.0062

	
0.2708

	
0.0370

	
0.0066

	
0.2759

	
0.0318

	
0.0059

	
0.2647

	
0.0360

	
0.0064

	
0.2731

	
0.0246

	
0.0054

	
0.2616




	
1.7

	
40

	
  α  

	
0.3260

	
0.1931

	
1.1554

	
0.1486

	
0.0729

	
0.8499

	
0.1805

	
0.0935

	
0.9256

	
0.1169

	
0.0558

	
0.7739

	
0.1639

	
0.0796

	
0.8640

	
0.0607

	
0.0481

	
0.8048




	
  β  

	
0.0864

	
0.0113

	
0.2430

	
0.0565

	
0.0104

	
0.2146

	
0.0682

	
0.0110

	
0.2254

	
0.0458

	
0.0091

	
0.2041

	
0.0609

	
0.0105

	
0.2250

	
0.0339

	
0.0091

	
0.2036




	
  γ  

	
0.0968

	
0.1019

	
1.1554

	
0.0503

	
0.0901

	
1.1350

	
0.0874

	
0.1006

	
1.1495

	
0.0131

	
0.0831

	
1.1221

	
0.0575

	
0.0908

	
1.1262

	
0.0132

	
0.0890

	
1.1664




	
70

	
  α  

	
0.2740

	
0.1419

	
1.0138

	
0.0604

	
0.0186

	
0.4642

	
0.0685

	
0.0205

	
0.4716

	
0.0524

	
0.0169

	
0.4578

	
0.0651

	
0.0194

	
0.4639

	
0.0361

	
0.0158

	
0.4654




	
  β  

	
0.0811

	
0.0090

	
0.1934

	
0.0354

	
0.0044

	
0.1487

	
0.0377

	
0.0054

	
0.1495

	
0.0331

	
0.0036

	
0.1472

	
0.0369

	
0.0047

	
0.1491

	
0.0277

	
0.0029

	
0.1474




	
  γ  

	
0.1487

	
0.1005

	
1.0138

	
0.0212

	
0.0210

	
0.5670

	
0.0298

	
0.0219

	
0.5699

	
0.0126

	
0.0203

	
0.5507

	
0.0229

	
0.0211

	
0.5651

	
0.0129

	
0.0206

	
0.5597




	
150

	
  α  

	
0.2688

	
0.1075

	
0.7365

	
0.0514

	
0.0091

	
0.3213

	
0.0551

	
0.0098

	
0.3290

	
0.0478

	
0.0085

	
0.3141

	
0.0536

	
0.0094

	
0.3249

	
0.0404

	
0.0077

	
0.3116




	
  β  

	
0.0740

	
0.0066

	
0.1318

	
0.0294

	
0.0016

	
0.1023

	
0.0302

	
0.0016

	
0.1029

	
0.0286

	
0.0015

	
0.1012

	
0.0300

	
0.0016

	
0.1026

	
0.0263

	
0.0014

	
0.0989




	
  γ  

	
0.0710

	
0.0825

	
0.7365

	
0.0179

	
0.0102

	
0.3891

	
0.0218

	
0.0105

	
0.3893

	
0.0140

	
0.0099

	
0.3890

	
0.0187

	
0.0102

	
0.3891

	
0.0142

	
0.0100

	
0.3902




	
3

	
40

	
  α  

	
0.4328

	
0.2818

	
1.2054

	
0.1428

	
0.0775

	
0.8571

	
0.1717

	
0.0980

	
0.9234

	
0.1143

	
0.0604

	
0.7936

	
0.1498

	
0.0805

	
0.8620

	
0.0558

	
0.0523

	
0.8153




	
  β  

	
0.0941

	
0.0116

	
0.2039

	
0.0829

	
0.0105

	
0.1237

	
0.1090

	
0.1034

	
0.1925

	
0.0582

	
0.0094

	
0.1923

	
0.0855

	
0.0106

	
0.2004

	
0.0498

	
0.0094

	
0.1822




	
  γ  

	
0.2276

	
0.1485

	
1.2054

	
0.0333

	
0.1037

	
1.1906

	
0.0652

	
0.1101

	
1.2040

	
0.0011

	
0.0996

	
1.1774

	
0.0351

	
0.1038

	
1.1910

	
0.0134

	
0.1033

	
1.2095




	
70

	
  α  

	
0.4255

	
0.2423

	
0.9707

	
0.0574

	
0.0208

	
0.5085

	
0.0641

	
0.0224

	
0.5166

	
0.0507

	
0.0192

	
0.4998

	
0.0594

	
0.0211

	
0.5095

	
0.0346

	
0.0183

	
0.5118




	
  β  

	
0.0908

	
0.0100

	
0.1639

	
0.0333

	
0.0074

	
0.1338

	
0.0358

	
0.0103

	
0.1349

	
0.0310

	
0.0053

	
0.1330

	
0.0340

	
0.0077

	
0.1342

	
0.0264

	
0.0042

	
0.1305




	
  γ  

	
0.1816

	
0.1177

	
0.9707

	
0.0048

	
0.0227

	
0.5639

	
0.0118

	
0.0230

	
0.5656

	
-0.0023

	
0.0226

	
0.5664

	
0.0051

	
0.0227

	
0.5640

	
0.0004

	
0.0227

	
0.5683




	
150

	
  α  

	
0.3773

	
0.1607

	
0.5305

	
0.0514

	
0.0102

	
0.3328

	
0.0545

	
0.0109

	
0.3401

	
0.0482

	
0.0096

	
0.3286

	
0.0523

	
0.0104

	
0.3340

	
0.0314

	
0.0088

	
0.3255




	
  β  

	
0.0825

	
0.0075

	
0.1040

	
0.0253

	
0.0011

	
0.0783

	
0.0258

	
0.0011

	
0.0791

	
0.0249

	
0.0010

	
0.0778

	
0.0255

	
0.0011

	
0.0785

	
0.0235

	
0.0010

	
0.0774




	
  γ  

	
0.1440

	
0.0258

	
0.5305

	
0.0031

	
0.0111

	
0.3980

	
0.0105

	
0.0113

	
0.3982

	
0.0080

	
0.0110

	
0.3977

	
0.0041

	
0.0111

	
0.3981

	
0.0004

	
0.0111

	
0.3957
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Table 4. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 0.5 , β = 1.5  .






Table 4. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 0.5 , β = 1.5  .





	
    α = 0.5 , β = 1.5    

	
MLE

	
SELF

	
LINEX c = −1.2

	
LINEX c = 1.2

	
ELF c = −1.2

	
ELF c = 1.2






	
  γ  

	
n

	

	
Bias

	
MSE

	
LACI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI




	
0.5

	
40

	
  α  

	
0.1630

	
0.1298

	
1.2599

	
0.0606

	
0.0401

	
0.7178

	
0.0751

	
0.0464

	
0.7495

	
0.0463

	
0.0346

	
0.6763

	
0.0644

	
0.0411

	
0.7205

	
0.0167

	
0.0309

	
0.6627




	
  β  

	
0.6417

	
0.5919

	
1.6645

	
0.0864

	
0.0951

	
1.0774

	
0.1182

	
0.1123

	
1.1213

	
0.0550

	
0.0843

	
1.0349

	
0.0899

	
0.0954

	
1.0806

	
0.0477

	
0.0937

	
1.0550




	
  γ  

	
0.1161

	
0.1152

	
1.2599

	
0.0751

	
0.0523

	
0.7778

	
0.0936

	
0.0614

	
0.8249

	
0.0570

	
0.0444

	
0.7511

	
0.0799

	
0.0537

	
0.7748

	
0.0200

	
0.0398

	
0.7325




	
70

	
  α  

	
0.0417

	
0.0482

	
0.8452

	
0.0205

	
0.0104

	
0.3666

	
0.0246

	
0.0110

	
0.3716

	
0.0164

	
0.0099

	
0.3610

	
0.0218

	
0.0105

	
0.3683

	
0.0064

	
0.0095

	
0.3620




	
  β  

	
0.5048

	
0.3385

	
1.1347

	
0.0398

	
0.0237

	
0.5758

	
0.0472

	
0.0254

	
0.5835

	
0.0325

	
0.0224

	
0.5670

	
0.0406

	
0.0239

	
0.5784

	
0.0312

	
0.0227

	
0.5702




	
  γ  

	
0.1842

	
0.1144

	
0.8452

	
0.0299

	
0.0140

	
0.4264

	
0.0348

	
0.0148

	
0.4326

	
0.0249

	
0.0132

	
0.4221

	
0.0314

	
0.0141

	
0.4265

	
0.0128

	
0.0127

	
0.4249




	
150

	
  α  

	
0.1410

	
0.0391

	
0.8045

	
0.0168

	
0.0052

	
0.2569

	
0.0187

	
0.0054

	
0.2621

	
0.0149

	
0.0051

	
0.2558

	
0.0174

	
0.0053

	
0.2578

	
0.0061

	
0.0049

	
0.2524




	
  β  

	
0.5564

	
0.3282

	
1.0533

	
0.0355

	
0.0110

	
0.3667

	
0.0389

	
0.0119

	
0.3691

	
0.0320

	
0.0103

	
0.3612

	
0.0358

	
0.0111

	
0.3669

	
0.0305

	
0.0103

	
0.3626




	
  γ  

	
0.0604

	
0.0546

	
1.0449

	
0.0236

	
0.0082

	
0.2991

	
0.0262

	
0.0092

	
0.3013

	
0.0211

	
0.0073

	
0.2977

	
0.0244

	
0.0083

	
0.2986

	
0.0125

	
0.0069

	
0.2997




	
1.7

	
40

	
  α  

	
0.2562

	
0.2002

	
1.4386

	
0.0786

	
0.0271

	
0.5305

	
0.0895

	
0.0312

	
0.5599

	
0.0678

	
0.0234

	
0.5055

	
0.0815

	
0.0278

	
0.5329

	
0.0458

	
0.0198

	
0.5047




	
  β  

	
0.5409

	
0.4577

	
1.5938

	
0.1248

	
0.1263

	
1.0458

	
0.1602

	
0.1887

	
1.0943

	
0.0907

	
0.0894

	
0.9739

	
0.1283

	
0.1281

	
1.0457

	
0.0877

	
0.1027

	
1.0044




	
  γ  

	
0.0102

	
0.3130

	
1.4386

	
−0.0046

	
0.1202

	
1.3193

	
0.0301

	
0.1225

	
1.3294

	
−0.0394

	
0.1204

	
1.3188

	
−0.0009

	
0.1195

	
1.3142

	
−0.0460

	
0.1307

	
1.3629




	
70

	
  α  

	
0.2480

	
0.1925

	
1.3683

	
0.0307

	
0.0066

	
0.2859

	
0.0338

	
0.0070

	
0.2897

	
0.0276

	
0.0063

	
0.2818

	
0.0317

	
0.0067

	
0.2857

	
0.0200

	
0.0059

	
0.2807




	
  β  

	
0.4794

	
0.3415

	
1.3108

	
0.0487

	
0.0228

	
0.5228

	
0.0559

	
0.0253

	
0.5293

	
0.0416

	
0.0209

	
0.5132

	
0.0495

	
0.0229

	
0.5245

	
0.0398

	
0.0228

	
0.5152




	
  γ  

	
−0.0924

	
0.1667

	
1.2683

	
0.0037

	
0.0243

	
0.6074

	
0.0142

	
0.0245

	
0.6077

	
−0.0001

	
0.0243

	
0.6130

	
0.0078

	
0.0243

	
0.6071

	
−0.0008

	
0.0247

	
0.6169




	
150

	
  α  

	
0.1905

	
0.0663

	
0.6791

	
0.0291

	
0.0032

	
0.1852

	
0.0306

	
0.0033

	
0.1865

	
0.0277

	
0.0031

	
0.1834

	
0.0296

	
0.0033

	
0.1851

	
0.0192

	
0.0029

	
0.1820




	
  β  

	
0.4187

	
0.2066

	
0.6932

	
0.0471

	
0.0112

	
0.3477

	
0.0507

	
0.0114

	
0.3504

	
0.0404

	
0.0111

	
0.3436

	
0.0476

	
0.0111

	
0.3469

	
0.0384

	
0.0140

	
0.3442




	
  γ  

	
−0.0678

	
0.1216

	
0.6791

	
0.0019

	
0.0104

	
0.3929

	
0.0053

	
0.0105

	
0.3931

	
−0.0001

	
0.0104

	
0.3939

	
0.0022

	
0.0104

	
0.3930

	
−0.0007

	
0.0105

	
0.3951




	
3

	
40

	
  α  

	
0.2534

	
0.1426

	
1.0980

	
0.0801

	
0.0258

	
0.5305

	
0.0903

	
0.0289

	
0.5458

	
0.0701

	
0.0230

	
0.5150

	
0.0830

	
0.0263

	
0.5303

	
0.0474

	
0.0212

	
0.5222




	
  β  

	
0.5037

	
0.3608

	
1.2831

	
0.1410

	
0.1542

	
1.1107

	
0.1825

	
0.2317

	
1.1644

	
0.1019

	
0.1087

	
1.0485

	
0.1454

	
0.1558

	
1.1143

	
0.0963

	
0.1347

	
1.0918




	
  γ  

	
−0.0634

	
0.2833

	
1.0980

	
−0.0079

	
0.1179

	
1.3328

	
0.0280

	
0.1183

	
1.3187

	
−0.0438

	
0.1213

	
1.3426

	
−0.0058

	
0.1175

	
1.3283

	
−0.0311

	
0.1231

	
1.3580




	
70

	
  α  

	
0.2146

	
0.0804

	
0.7271

	
0.0320

	
0.0068

	
0.2887

	
0.0351

	
0.0072

	
0.2958

	
0.0288

	
0.0065

	
0.2875

	
0.0329

	
0.0069

	
0.2888

	
0.0211

	
0.0061

	
0.2931




	
  β  

	
0.4584

	
0.2673

	
0.9372

	
0.0639

	
0.0290

	
0.5607

	
0.0724

	
0.0334

	
0.5711

	
0.0554

	
0.0258

	
0.5389

	
0.0648

	
0.0291

	
0.5617

	
0.0535

	
0.0289

	
0.5414




	
  γ  

	
−0.0681

	
0.1243

	
0.7271

	
−0.0044

	
0.0259

	
0.6245

	
0.0033

	
0.0257

	
0.6209

	
−0.0120

	
0.0262

	
0.6263

	
−0.0039

	
0.0258

	
0.6247

	
−0.0091

	
0.0262

	
0.6267




	
150

	
  α  

	
0.2083

	
0.0595

	
0.4978

	
0.0271

	
0.0032

	
0.1900

	
0.0285

	
0.0033

	
0.1920

	
0.0257

	
0.0031

	
0.1886

	
0.0276

	
0.0032

	
0.1901

	
0.0202

	
0.0029

	
0.1864




	
  β  

	
0.4220

	
0.2014

	
0.5992

	
0.0541

	
0.0118

	
0.3386

	
0.0577

	
0.0131

	
0.3429

	
0.0506

	
0.0107

	
0.3320

	
0.0545

	
0.0119

	
0.3394

	
0.0501

	
0.0108

	
0.3319




	
  γ  

	
−0.0513

	
0.1173

	
0.4978

	
0.0022

	
0.0112

	
0.4100

	
0.0033

	
0.0112

	
0.4079

	
−0.0013

	
0.0112

	
0.4116

	
0.0024

	
0.0112

	
0.4098

	
0.0001

	
0.0112

	
0.4120
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Table 5. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 2 , β = 1.5  .






Table 5. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 2 , β = 1.5  .





	
    α = 2 , β = 1.5    

	
MLE

	
SELF

	
LINEX c = −1.2

	
LINEX c = 1.2

	
ELF c = −1.2

	
ELF c = 1.2






	
  γ  

	
n

	

	
Bias

	
MSE

	
LACI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI




	
0.5

	
40

	
  α  

	
0.3204

	
0.8668

	
3.4284

	
−0.0230

	
0.0998

	
1.2106

	
0.0099

	
0.1009

	
1.2289

	
−0.0558

	
0.1015

	
1.1995

	
−0.0201

	
0.0994

	
1.2044

	
−0.0553

	
0.1064

	
1.2332




	
  β  

	
0.7350

	
0.7654

	
1.8610

	
0.1198

	
0.1096

	
1.0823

	
0.1537

	
0.1407

	
1.1266

	
0.0862

	
0.0887

	
1.0433

	
0.1233

	
0.1108

	
1.0850

	
0.0818

	
0.0954

	
1.0746




	
  γ  

	
0.1720

	
0.1555

	
3.4284

	
0.0810

	
0.0289

	
0.5330

	
0.0946

	
0.0343

	
0.5627

	
0.0677

	
0.0242

	
0.5075

	
0.0846

	
0.0299

	
0.5402

	
0.0408

	
0.0199

	
0.4891




	
70

	
  α  

	
0.2746

	
0.8403

	
3.4300

	
−0.0038

	
0.0231

	
0.5906

	
0.0036

	
0.0230

	
0.5856

	
−0.0112

	
0.0232

	
0.5944

	
−0.0031

	
0.0230

	
0.5895

	
−0.0107

	
0.0235

	
0.5982




	
  β  

	
0.6511

	
0.5762

	
1.5304

	
0.0442

	
0.0240

	
0.5759

	
0.0516

	
0.0251

	
0.5832

	
0.0368

	
0.0233

	
0.5674

	
0.0450

	
0.0241

	
0.5769

	
0.0349

	
0.0248

	
0.5713




	
  γ  

	
0.2121

	
0.1267

	
3.4300

	
0.0243

	
0.0078

	
0.3137

	
0.0279

	
0.0082

	
0.3164

	
0.0207

	
0.0074

	
0.3107

	
0.0254

	
0.0078

	
0.3138

	
0.0115

	
0.0071

	
0.3114




	
150

	
  α  

	
0.0761

	
0.1278

	
1.3698

	
0.0044

	
0.0109

	
0.3858

	
0.0035

	
0.0110

	
0.3870

	
0.0011

	
0.0109

	
0.3878

	
0.0035

	
0.0109

	
0.3856

	
0.0013

	
0.0109

	
0.3885




	
  β  

	
0.5633

	
0.3521

	
0.7315

	
0.0489

	
0.0113

	
0.3596

	
0.0522

	
0.0118

	
0.3639

	
0.0455

	
0.0108

	
0.3578

	
0.0492

	
0.0113

	
0.3601

	
0.0334

	
0.0107

	
0.3584




	
  γ  

	
0.1441

	
0.0702

	
1.3698

	
0.0232

	
0.0035

	
0.2105

	
0.0249

	
0.0037

	
0.2118

	
0.0214

	
0.0033

	
0.2090

	
0.0237

	
0.0035

	
0.2103

	
0.0111

	
0.0031

	
0.2043




	
1.7

	
40

	
  α  

	
0.8060

	
2.1020

	
4.7266

	
0.0428

	
0.0867

	
1.1478

	
0.0723

	
0.0933

	
1.1575

	
0.0135

	
0.0825

	
1.1326

	
0.0452

	
0.0868

	
1.1458

	
0.0156

	
0.0863

	
1.1548




	
  β  

	
0.5608

	
0.4956

	
1.6690

	
0.0874

	
0.0607

	
0.8378

	
0.1111

	
0.0674

	
0.8772

	
0.0642

	
0.0556

	
0.7973

	
0.0900

	
0.0606

	
0.8436

	
0.0592

	
0.0603

	
0.8156




	
  γ  

	
0.2774

	
0.8488

	
4.7266

	
0.0518

	
0.0960

	
1.1694

	
0.0821

	
0.1060

	
1.2057

	
0.0214

	
0.0885

	
1.1471

	
0.0547

	
0.0963

	
1.1679

	
0.0191

	
0.0933

	
1.1781




	
70

	
  α  

	
0.6543

	
1.1461

	
3.3232

	
0.0117

	
0.0229

	
0.5906

	
0.0187

	
0.0234

	
0.5955

	
0.0047

	
0.0224

	
0.5811

	
0.0123

	
0.0229

	
0.5905

	
0.0053

	
0.0227

	
0.5864




	
  β  

	
0.4902

	
0.3146

	
1.0690

	
0.0473

	
0.0190

	
0.4825

	
0.0537

	
0.0196

	
0.4924

	
0.0409

	
0.0187

	
0.4751

	
0.0481

	
0.0190

	
0.4837

	
0.0387

	
0.0215

	
0.4757




	
  γ  

	
0.1217

	
0.2325

	
3.3232

	
0.0121

	
0.0239

	
0.5973

	
0.0193

	
0.0244

	
0.5976

	
0.0048

	
0.0235

	
0.5964

	
0.0128

	
0.0239

	
0.5969

	
0.0042

	
0.0239

	
0.6000




	
150

	
  α  

	
0.5267

	
0.8022

	
3.1668

	
0.0110

	
0.0105

	
0.4068

	
0.0167

	
0.0106

	
0.4063

	
0.0038

	
0.0103

	
0.4067

	
0.0120

	
0.0105

	
0.4070

	
0.0041

	
0.0104

	
0.4079




	
  β  

	
0.3560

	
0.2364

	
0.8854

	
0.0469

	
0.0093

	
0.3196

	
0.0500

	
0.0098

	
0.3233

	
0.0378

	
0.0089

	
0.3155

	
0.0472

	
0.0094

	
0.3201

	
0.0343

	
0.0088

	
0.3155




	
  γ  

	
-0.1046

	
0.2050

	
3.0668

	
0.0120

	
0.0107

	
0.4050

	
0.0156

	
0.0109

	
0.4074

	
0.0039

	
0.0106

	
0.4035

	
0.0127

	
0.0107

	
0.4044

	
0.0039

	
0.0106

	
0.4055




	
3

	
40

	
  α  

	
0.8234

	
1.4545

	
3.4559

	
0.0740

	
0.0971

	
1.1755

	
0.1059

	
0.1094

	
1.1947

	
0.0424

	
0.0878

	
1.1452

	
0.0766

	
0.0977

	
1.1757

	
0.0457

	
0.0923

	
1.1783




	
  β  

	
0.4873

	
0.3432

	
1.2753

	
0.0922

	
0.0654

	
0.7968

	
0.1154

	
0.0881

	
0.8305

	
0.0696

	
0.0504

	
0.7560

	
0.0946

	
0.0662

	
0.7991

	
0.0661

	
0.0572

	
0.7675




	
  γ  

	
0.2195

	
0.8011

	
3.4559

	
0.0058

	
0.1180

	
1.3609

	
0.0420

	
0.1216

	
1.3737

	
−0.0302

	
0.1180

	
1.3614

	
0.0079

	
0.1178

	
1.3566

	
−0.0170

	
0.1209

	
1.3838




	
70

	
  α  

	
0.6272

	
0.6506

	
1.9889

	
0.0103

	
0.0211

	
0.5549

	
0.0174

	
0.0216

	
0.5545

	
0.0031

	
0.0208

	
0.5482

	
0.0109

	
0.0212

	
0.5542

	
0.0037

	
0.0211

	
0.5534




	
  β  

	
0.4289

	
0.2312

	
0.8523

	
0.0337

	
0.0225

	
0.4743

	
0.0412

	
0.0224

	
0.4810

	
0.0263

	
0.0234

	
0.4664

	
0.0347

	
0.0219

	
0.4746

	
0.0215

	
0.0329

	
0.4695




	
  γ  

	
0.2217

	
0.1809

	
1.9889

	
0.0047

	
0.0249

	
0.6148

	
0.0144

	
0.0252

	
0.6171

	
−0.0012

	
0.0246

	
0.6083

	
0.0071

	
0.0249

	
0.6162

	
0.0019

	
0.0248

	
0.6135




	
150

	
  α  

	
0.5738

	
0.6187

	
1.8251

	
0.0103

	
0.0094

	
0.3702

	
0.0184

	
0.0097

	
0.3721

	
0.0029

	
0.0093

	
0.3688

	
0.0105

	
0.0095

	
0.3698

	
0.0023

	
0.0093

	
0.3696




	
  β  

	
0.4170

	
0.1999

	
0.6333

	
0.0330

	
0.0075

	
0.3050

	
0.0424

	
0.0078

	
0.3067

	
0.0254

	
0.0072

	
0.3026

	
0.0340

	
0.0075

	
0.3052

	
0.0204

	
0.0072

	
0.3030




	
  γ  

	
0.0464

	
0.1263

	
1.8251

	
0.0046

	
0.0106

	
0.3980

	
0.0082

	
0.0107

	
0.3987

	
0.0012

	
0.0105

	
0.3975

	
0.0051

	
0.0106

	
0.3979

	
0.0018

	
0.0106

	
0.3994
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Table 6. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 2 , β = 0.4  .






Table 6. Bias, MSE and LCI for MLE and Bayesian estimation methods for   α = 2 , β = 0.4  .





	
    α = 2 , β = 0.4    

	
MLE

	
SELF

	
LINEX c = −1.2

	
LINEX c = 1.2

	
ELF c = −1.2

	
ELF c = 1.2






	
  γ  

	
n

	

	
Bias

	
MSE

	
LACI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI

	
Bias

	
MSE

	
LCCI




	
0.5

	
40

	
  α  

	
0.0083

	
0.3381

	
2.2801

	
0.0033

	
0.1169

	
1.3099

	
0.0386

	
0.1191

	
1.3204

	
−0.0320

	
0.1181

	
1.3132

	
0.0064

	
0.1163

	
1.3090

	
−0.0323

	
0.1268

	
1.3544




	
  β  

	
0.1379

	
0.0285

	
0.3821

	
0.0967

	
0.0328

	
0.3317

	
0.1068

	
0.0570

	
0.3433

	
0.0867

	
0.0179

	
0.3178

	
0.0994

	
0.0344

	
0.3362

	
0.0647

	
0.0148

	
0.3092




	
  γ  

	
0.1991

	
0.1262

	
2.2801

	
0.1147

	
0.0360

	
0.5585

	
0.1295

	
0.0428

	
0.5770

	
0.1000

	
0.0299

	
0.5391

	
0.1183

	
0.0373

	
0.5626

	
0.0722

	
0.0234

	
0.4975




	
70

	
  α  

	
0.0450

	
0.1868

	
1.6861

	
0.0078

	
0.0253

	
0.6177

	
0.0154

	
0.0257

	
0.6219

	
0.0002

	
0.0251

	
0.6164

	
0.0084

	
0.0253

	
0.6186

	
0.0008

	
0.0254

	
0.6197




	
  β  

	
0.1253

	
0.0207

	
0.2775

	
0.0586

	
0.0078

	
0.2400

	
0.0618

	
0.0084

	
0.2440

	
0.0554

	
0.0073

	
0.2366

	
0.0597

	
0.0080

	
0.2398

	
0.0459

	
0.0061

	
0.2308




	
  γ  

	
0.1478

	
0.0545

	
1.6861

	
0.0579

	
0.0110

	
0.3304

	
0.0623

	
0.0119

	
0.3397

	
0.0535

	
0.0102

	
0.3230

	
0.0592

	
0.0112

	
0.3312

	
0.0436

	
0.0089

	
0.3162




	
150

	
  α  

	
−0.0186

	
0.2928

	
2.1209

	
0.0105

	
0.0116

	
0.4142

	
0.0140

	
0.0116

	
0.4153

	
0.0071

	
0.0115

	
0.4144

	
0.0108

	
0.0116

	
0.4140

	
0.0073

	
0.0116

	
0.4153




	
  β  

	
0.1209

	
0.0170

	
0.1923

	
0.0555

	
0.0049

	
0.1684

	
0.0570

	
0.0051

	
0.1699

	
0.0539

	
0.0047

	
0.1648

	
0.0560

	
0.0050

	
0.1693

	
0.0493

	
0.0041

	
0.1606




	
  γ  

	
0.1692

	
0.0742

	
2.1209

	
0.0484

	
0.0059

	
0.2218

	
0.0506

	
0.0062

	
0.2305

	
0.0462

	
0.0056

	
0.2179

	
0.0491

	
0.0060

	
0.2239

	
0.0413

	
0.0049

	
0.2118




	
1.7

	
40

	
  α  

	
0.3465

	
0.1953

	
1.0757

	
0.0181

	
0.1107

	
1.3160

	
0.0507

	
0.1143

	
1.3186

	
−0.0142

	
0.1096

	
1.2998

	
0.0209

	
0.1104

	
1.3154

	
−0.0133

	
0.1159

	
1.3541




	
  β  

	
0.1095

	
0.0159

	
0.2446

	
0.0443

	
0.0092

	
0.1889

	
0.0481

	
0.0156

	
0.1912

	
0.0407

	
0.0058

	
0.1861

	
0.0454

	
0.0097

	
0.1893

	
0.0325

	
0.0048

	
0.1839




	
  γ  

	
0.5075

	
0.4021

	
1.0757

	
0.0860

	
0.0925

	
1.1049

	
0.1165

	
0.1052

	
1.1401

	
0.0556

	
0.0823

	
1.0806

	
0.0888

	
0.0932

	
1.1016

	
0.0544

	
0.0864

	
1.1150




	
70

	
  α  

	
0.2739

	
0.1824

	
1.0594

	
0.0058

	
0.0258

	
0.5942

	
0.0131

	
0.0261

	
0.6032

	
−0.0015

	
0.0256

	
0.5983

	
0.0064

	
0.0258

	
0.5922

	
−0.0009

	
0.0259

	
0.6005




	
  β  

	
0.1106

	
0.0145

	
0.1856

	
0.0332

	
0.0025

	
0.1311

	
0.0344

	
0.0026

	
0.1328

	
0.0319

	
0.0024

	
0.1298

	
0.0336

	
0.0025

	
0.1316

	
0.0278

	
0.0021

	
0.1288




	
  γ  

	
0.6235

	
0.3596

	
1.0594

	
0.0265

	
0.0218

	
0.5531

	
0.0332

	
0.0225

	
0.5546

	
0.0197

	
0.0211

	
0.5511

	
0.0271

	
0.0218

	
0.5517

	
0.0192

	
0.0214

	
0.5540




	
150

	
  α  

	
0.2996

	
0.1379

	
0.8608

	
0.0041

	
0.0115

	
0.4127

	
0.0153

	
0.0117

	
0.4174

	
0.0087

	
0.0113

	
0.4112

	
0.0123

	
0.0115

	
0.4127

	
0.0090

	
0.0114

	
0.4123




	
  β  

	
0.1026

	
0.0116

	
0.1287

	
0.0323

	
0.0020

	
0.0917

	
0.0330

	
0.0023

	
0.0925

	
0.0316

	
0.0019

	
0.0913

	
0.0326

	
0.0021

	
0.0920

	
0.0296

	
0.0016

	
0.0903




	
  γ  

	
0.5119

	
0.3213

	
0.8608

	
0.0233

	
0.0111

	
0.4042

	
0.0362

	
0.0116

	
0.4083

	
0.0294

	
0.0107

	
0.3999

	
0.0331

	
0.0112

	
0.4044

	
0.0293

	
0.0108

	
0.4013
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Table 7. Estimates of MLE and various measures of fit for food chain data.
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	Models
	   α   
	   β   
	   γ   
	   ρ   
	   θ   
	AIC
	CAIC
	BIC
	HQIC
	CVM
	AD
	KSD
	PVKS





	KMWE
	0.085
	34770.449
	89.070
	-
	-
	103.606
	106.593
	105.106
	104.189
	0.033
	0.246
	0.094
	0.994



	SEWE
	25.458
	5.854
	0.097
	0.010
	-
	105.516
	108.183
	109.499
	106.294
	0.032
	0.232
	0.097
	0.991



	EGWGP
	12.999
	0.003
	0.282
	0.123
	0.907
	119.739
	124.025
	124.718
	120.711
	0.032
	0.232
	0.197
	0.420



	EGWGP
	272.716
	45.047
	1048.387
	22.000
	0.073
	140.606
	144.892
	145.585
	141.578
	0.033
	0.238
	0.331
	0.025



	WL
	39.638
	94.626
	0.209
	4.361
	-
	108.018
	110.685
	112.001
	108.796
	0.068
	0.481
	0.142
	0.818



	MOAPW
	8.685
	13.482
	14.556
	94.164
	
	108.963
	111.629
	112.946
	109.740
	0.049
	0.370
	0.131
	0.880



	EOWL
	57.762
	0.923
	1.414
	-
	163.848
	106.082
	108.749
	110.065
	106.860
	0.028
	0.218
	0.100
	0.988



	MKITL
	112.748
	0.174
	-
	-
	-
	104.023
	104.729
	106.014
	104.412
	0.068
	0.482
	0.142
	0.817



	OWITL
	113.746
	82.382
	-
	-
	0.170
	106.022
	107.522
	109.009
	106.605
	0.068
	0.482
	0.142
	0.817



	EW
	38.762
	132.052
	-
	-
	55.135
	106.086
	107.586
	109.073
	106.669
	0.069
	0.488
	0.142
	0.813
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Table 8. Point and interval estimates and SE for parameters of the KMWE model for food chain data.
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Methods

	

	
Estimates

	
SE

	
Lower

	
Upper

	
CV






	
MLE

	
  α  

	
0.0849

	
0.0110

	
0.0632

	
0.1065

	
13.01%




	
  β  

	
34,770.4490

	
2973.6521

	
28,942.0909

	
40,598.8070

	
8.55%




	
  γ  

	
89.0704

	
40.1604

	
10.3561

	
167.7847

	
45.09%




	
Bayesian

	
  α  

	
0.0848

	
0.0088

	
0.0674

	
0.1014

	
10.38%




	
  β  

	
34,769.9281

	
172.2018

	
34,449.7473

	
35,119.9013

	
0.50%




	
  γ  

	
89.0796

	
12.2706

	
64.5373

	
113.3496

	
13.77%
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Table 9. Estimates of MLE and various measures of fit for food and drink wholesaling data.
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	Models
	   α   
	   β   
	   γ   
	   ρ   
	   θ   
	AIC
	CAIC
	BIC
	HQIC
	CVM
	AD
	KSD
	PVKS





	KMWE
	0.082
	20539.668
	18.838
	-
	-
	118.941
	121.928
	120.441
	119.524
	0.027
	0.232
	0.092
	0.996



	SEWE
	27.567
	2.619
	0.017
	0.020
	-
	121.234
	123.900
	125.217
	122.011
	0.029
	0.251
	0.094
	0.995



	EGWGP
	7.494
	0.054
	4.458
	1.189
	0.650
	123.381
	127.667
	128.359
	124.353
	0.031
	0.267
	0.100
	0.989



	WL
	0.002
	45.047
	0.350
	13.751
	-
	124.276
	126.942
	128.259
	125.053
	0.072
	0.523
	0.149
	0.765



	MOAPW
	378.169
	5.184
	449.679
	71.020
	-
	123.167
	125.833
	127.149
	123.944
	0.037
	0.318
	0.106
	0.977



	EOWL
	46.765
	1.246
	1.120
	-
	122.998
	121.761
	124.428
	125.744
	122.539
	0.029
	0.239
	0.100
	0.989



	MKITL
	76.658
	0.173
	-
	-
	-
	120.276
	120.982
	122.268
	120.665
	0.072
	0.523
	0.149
	0.769



	OWITL
	77.449
	38.926
	-
	-
	0.167
	122.275
	123.775
	125.262
	122.858
	0.072
	0.523
	0.149
	0.766



	EW
	26.184
	153.169
	-
	-
	63.485
	122.379
	123.879
	125.366
	122.962
	0.074
	0.532
	0.150
	0.757
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Table 10. Point and interval estimates and SE for parameters of KMWE distribution: data 2.
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Methods

	

	
Estimates

	
SE

	
Lower

	
Upper

	
CV






	
MLE

	
  α  

	
0.082

	
0.007

	
0.067

	
0.101

	
8.58%




	
  β  

	
20,539.668

	
123.556

	
34,449.747

	
35,119.901

	
0.60%




	
  γ  

	
18.838

	
7.919

	
64.537

	
113.350

	
42.04%




	
Bayesian

	
  α  

	
0.082

	
0.007

	
0.068

	
0.095

	
8.46%




	
  β  

	
20,539.536

	
11.230

	
20,517.754

	
20,561.557

	
0.05%




	
  γ  

	
18.831

	
2.834

	
13.536

	
24.629

	
15.05%
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