Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II
Abstract
:1. Introduction
2. Parameter Differentiation of via Kummer Function
2.1. Derivative with Respect to the First Parameter
2.2. Derivative with Respect to the Second Parameter
3. Parameter Differentiation of via Integral Representations
3.1. Derivative with Respect to the First Parameter
3.2. Application to the Calculation of Infinite Integrals
3.3. Derivative with Respect to the Second Parameter
4. Integral Whittaker Functions and
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation of G(1) (a; a; z)
Appendix B. Calculation of 2F2 (1, 1; 2, 2 + m; x)
Appendix C. Reduction Formulas for the Whittaker Function Wκ,μ (x)
0 | 0 | |
0 | ||
0 | ||
0 | ||
0 | ||
1 | ||
1 | ||
1 | ||
2 |
References
- Whittaker, E.T. An expression of certain known functions as generalized hypergeometric functions. Bull. Am. Math. Soc. 1903, 10, 125–134. [Google Scholar] [CrossRef]
- Mainardi, F.; Paris, R.B.; Consiglio, A. Wright functions of the second kind and Whittaker functions. Fract. Calc. Appl. Anal. 2022, 25, 858–875. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Buchholz, H. The Confluent Hypergeometric Function; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Gradstein, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 52. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
- Slater, L.J. Confluent Hypergeometric Functions; Cambrigde University Press: Cambrigde, UK, 1960. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cabrigdge University Press: Cambrigde, UK, 1963. [Google Scholar]
- Lagarias, J.C. The Schrödinger operator with morse potential on the right half-line. Commun. Number Theory 2009, 3, 323–361. [Google Scholar] [CrossRef]
- Laurenzi, B.J. Derivatives of Whittaker functions wκ,1/2 and mκ,1/2 with respect to order κ. Math. Comput. 1973, 27, 129–132. [Google Scholar]
- Omair, M.A.; Tashkandy, Y.A.; Askar, S.; Alzaid, A.A. Family of distributions derived from Whittaker function. Mathematics 2022, 10, 1058. [Google Scholar] [CrossRef]
- Abad, J.; Sesma, J. Successive derivatives of Whittaker functions with respect to the first parameter. Comput. Phys. Commun. 2003, 156, 13–21. [Google Scholar] [CrossRef]
- Becker, P.A. Infinite integrals of Whittaker and Bessel functions with respect to their indices. J. Math. Phys. 2009, 50, 123515. [Google Scholar] [CrossRef]
- Buschman, R.G. Finite sum representations for partial derivatives of special functions with respect to parameters. Math. Comput. 1974, 28, 817–824. [Google Scholar] [CrossRef]
- Ancarani, L.U.; Gasaneo, G. Derivatives of any order of the hypergeometric function pFq(a1,…, ap; b1,…, bq; z) with respect to the parameters ai and bi. J. Phys. A-Math. Theor. 2010, 43, 085210. [Google Scholar] [CrossRef]
- Sofotasios, P.C.; Brychkov, Y.A. On derivatives of hypergeometric functions and classical polynomials with respect to parameters. Integr. Transf. Spec. Funct. 2018, 29, 852–865. [Google Scholar] [CrossRef]
- Apelblat, A.; González-Santander, J.L. The Integral Mittag-Leffler, Whittaker and Wright functions. Mathematics 2021, 9, 3255. [Google Scholar] [CrossRef]
- Kölbig, K.S. On the integral xν−1(1 − x)−λ(lnx)mdx. J. Comput. Appl. Math. 1987, 18, 369–394. [Google Scholar] [CrossRef]
- Geddes, K.O.; Glasser, M.L.; Moore, R.A.; Scott, T.C. Evaluation of classes of definite integrals involving elementary functions via differentiation of special functions. Appl. Algebra Eng. Commun. 1990, 1, 149–165. [Google Scholar] [CrossRef]
- Apelblat, A.; Kravitsky, N. Integral representations of derivatives and integrals with respect to the order of the Bessel functions Jν(t), Iν(t), the Anger function Jν(t) and the integral Bessel function Jiν(t). IMA J. Appl. Math. 1985, 34, 187–210. [Google Scholar] [CrossRef]
- Ancarani, L.; Gasaneo, G. Derivatives of any order of the confluent hypergeometric function 1F1(a, b, z) with respect to the parameter a or b. J. Math. Phys. 2008, 49, 063508. [Google Scholar] [CrossRef]
- González-Santander, J.L. Closed-form expressions for derivatives of Bessel functions with respect to the order. J. Math. Anal. Appl. 2018, 466, 1060–1081. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Higher derivatives of the Bessel functions with respect to the order. Integr. Transf. Spec. Funct. 2016, 27, 566–577. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Geddes, K.O. On the derivatives of the Bessel and Struve functions with respect to the order. Integr. Transf. Spec. Funct. 2005, 16, 187–198. [Google Scholar] [CrossRef]
- Apelblat, A. Bessel and Related Functions: Mathematical Operations with Respect to the Order; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
1 | ||
2 | ||
3 |
0 | 0 | 0 |
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
0 | ||
0 |
0 | ||
0 | ||
0 | ||
0 | ||
1 | ||
1 | ||
2 |
0 | ||
0 | ||
0 | ||
0 | 0 | |
1 | ||
1 | ||
2 | ||
2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apelblat, A.; González-Santander, J.L. Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II. Axioms 2023, 12, 382. https://doi.org/10.3390/axioms12040382
Apelblat A, González-Santander JL. Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II. Axioms. 2023; 12(4):382. https://doi.org/10.3390/axioms12040382
Chicago/Turabian StyleApelblat, Alexander, and Juan Luis González-Santander. 2023. "Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II" Axioms 12, no. 4: 382. https://doi.org/10.3390/axioms12040382
APA StyleApelblat, A., & González-Santander, J. L. (2023). Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Wκ,μ(x) Function II. Axioms, 12(4), 382. https://doi.org/10.3390/axioms12040382