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Abstract: Ski goggles help protect the eyes and enhance eyesight. The most important part of ski
goggles is their lenses. The quality of the lenses has leaped with technological advances, but there are
still defects on their surface during manufacturing. This study develops a deep learning-based defect
detection system for ski goggles lenses. The first step is to design the image acquisition model that
combines cameras and light sources. This step aims to capture clear and high-resolution images on
the entire surface of the lenses. Next, defect categories are identified, including scratches, watermarks,
spotlight, stains, dust-line, and dust-spot. They are labeled to create the ski goggles lenses defect
dataset. Finally, the defects are automatically detected by fine-tuning the mobile-friendly object
detection model. The mentioned defect detection model is the MobileNetV3 backbone used in a
feature pyramid network (FPN) along with the Faster-RCNN detector. The fine-tuning includes:
replacing the default ResNet50 backbone with a combination of MobileNetV3 and FPN; adjusting
the hyper-parameter of the region proposal network (RPN) to suit the tiny defects; and reducing
the number of the output channel in FPN to increase computational performance. Our experiments
demonstrate the effectiveness of defect detection; additionally, the inference speed is fast. The
defect detection accuracy achieves a mean average precision (mAP) of 55%. The work automatically
integrates all steps, from capturing images to defect detection. Furthermore, the lens defect dataset is
publicly available to the research community on GitHub. The repository address can be found in the
Data Availability Statement section.

Keywords: ski goggles lenses; surface defect; automatic optical inspection; Faster-RCNN; fine-tune;
MobileNetV3; FPN; RPN
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1. Introduction

Winter sports such as skiing, snowboarding, and snowshoeing offer great enjoyment,
and ski goggles are the necessary equipment to perform better in these activities. There
are many advantages that can help protect the eyes from harmful ultraviolet rays, provide
both facial and ocular safety protection, and offer color and contrast enhancement. Figure 1
shows some samples of ski goggles.Axioms 2023, 12, x FOR PEER REVIEW 2 of 23 
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• Image Acquisition Devices: High-resolution cameras [6,7], often fitted with special-

ized lenses, capture images of inspected items. These devices may employ various 
imaging technologies, such as monochrome, color, or infrared, contingent on the ap-
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• Lighting: Customized illumination sources [8], including LED lights [9] or lasers, are 
employed to enhance the contrast and visibility of features under inspection. The 
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The most critical component of ski goggles is the lenses, which offer an unrivaled
visual experience. In the manufacturing process of ski goggles, there are unavoidable
defects [1,2] on the surface of the lenses. Therefore, lens manufacturers should implement
a visual defect inspection system [3,4] to enhance product quality.

There are some challenging issues in the defect inspection for the lenses of ski goggles.
Firstly, the lens surfaces are curved and vary in size, making it difficult to design an
image acquisition system that captures their entire surface. As depicted in Figure 2, the
usual lens samples exhibit distinct curvatures and sizes. Secondly, the lenses are coated
with various tints, presenting a challenge in customizing the light source due to multiple
reflections. Thirdly, some surface defects are extremely small, which are inconspicuous
and subtle. Thus, the detection of such minor defects is particularly difficult and requires
higher precision.
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Artificial intelligence (AI) technology can help organizations gain an edge over their
competitors [5]. AI has proven especially beneficial for improving product quality and
lowering costs. For manufacturers, AI promises benefits at every level of the value chain.
The AI-based system can detect defects faster and more accurately than the human eye. A
typical industrial visual inspection system based on deep learning incorporates several
fundamental components to facilitate accurate and efficient product quality assessment.
These components, critical to the system’s operation, include:

• Image Acquisition Devices: High-resolution cameras [6,7], often fitted with special-
ized lenses, capture images of inspected items. These devices may employ various
imaging technologies, such as monochrome, color, or infrared, contingent on the
application’s demands.

• Lighting: Customized illumination sources [8], including LED lights [9] or lasers, are
employed to enhance the contrast and visibility of features under inspection. The
choice and configuration of lighting are instrumental in achieving optimal image
quality for precise defect detection.

• Deep Learning Algorithms: Deep learning-based defect detection typically requires
training object detection models or alternative specialized architectures on the exten-
sively labeled datasets of defect images. Object detection methodologies have been
extensively applied in the detection of defects on the surfaces of industrial products,
such as steel, plastic, wood, and silk [10–12]. The task of object detection in computer
vision encompasses two primary functions: localization [13] and classification [14].
In traditional computer vision, classifiers [15] such as SVM, KNN, and K-means clus-
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tering have played a vital role in categorizing classes. Meanwhile, object localization
mainly employs fast template-matching-based algorithms [16].

In recent years, significant progress has been made in neural networks, machine learn-
ing, and deep learning. Classifiers such as ResNet [17], VGG [18], EfficientNet [19], and Vi-
sion Transformer [20] have achieved state-of-the-art results for classification tasks. Concur-
rently, object localization has been applied to anchor-based and anchor-free methods [21].
The anchor-based approach, known as the two-stage object detector, includes the Faster
R-CNN [22] family. The anchor-free technique, referred to as the one-stage object detectors,
comprises models such as YOLO [23] and FCOS [24].

The remarkable success in this field stems from the seamless integration of localization
and classification tasks in deep learning. To gain a deeper insight, it is crucial to understand
the Faster R-CNN architecture’s automatic pipeline. The Faster R-CNN model systemat-
ically combines customizable neural sub-network blocks, including the backbone block,
region proposal network [25], and ROI-head block.

Figure 3 illustrates the fundamental components of an optical initialization system,
which include a light source, camera, and hardware to execute image processing algorithms.
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In light of the aforementioned challenges and emerging trends, this paper aims to
develop an automatic defect detection system for ski goggles lenses, utilizing deep learning
techniques. To accomplish this objective, the following steps are undertaken:

(1) Design of an image acquisition model that integrates cameras and light sources to
effectively capture the entire surface of ski goggles lenses.

(2) Identification of lens defect categories and construction of a comprehensive ski goggles
lens defect dataset.

(3) Fine-tuning of the integrated object detection model that combines Faster R-CNN,
FPN, and MobileNetV3 by implementing the following modifications: replacement
of the default ResNet50 backbone with a combination of MobileNetV3 and feature
pyramid network (FPN) to optimize computational efficiency and performance; ad-
justment of the region proposal network (RPN) hyperparameters to accommodate the
detection of minuscule defects; and a reduction of the output channel count in the
FPN to enhance computational performance without sacrificing accuracy.

By executing these steps, the paper presents a novel deep learning-based approach for
detecting defects on ski goggles lenses, demonstrating potential applicability to various
manufacturing quality control scenarios.

The structure of the paper is organized as follows. Section 1 provides an introduction
to the study. Section 2 introduces the image acquisition technique, data labeling for
defects, and the defect detection method. Sections 3 and 4 present the research results
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and subsequent discussions, respectively. Finally, Section 5 offers concluding remarks and
summarizes the paper’s findings.

2. Materials and Methods

The deep learning-based defect detection system for ski goggles lenses presented in
this study is depicted in Figure 4. The system comprises two modules: the image acquisition
module and the defect detection module. The former is responsible for capturing images
of ski goggles lenses, extracting regions of interest, and labeling data. The latter trains the
customized model using input data and detects defects during inference.
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Figure 4. The flowchart of the proposed method. There are two modules for processing images.
The first one is the image acquisition to capture the raw image, extract regions of interest, and data
labeling. The second module is defect detection, which involves training data and inferencing defects.
This module combines Faster R-CNN, MobileNetV3, and FPN to create the customized end-to-end
model. It is compatible with data of the ski goggles lenses.

Image Acquisition Module: This module is responsible for obtaining high-quality
images of ski goggles lenses. An optimized image acquisition setup, which combines
cameras and light sources, is employed to ensure the entire surface of the lenses is captured
with minimal glare and distortion. The regions of interest are extracted from the captured
images, and the data are meticulously labeled to identify and categorize defects present in
the lenses.

Defect Detection Module: A customized object detection model, based on the Faster
R-CNN architecture, is designed and integrated into this module. The model involves
replacing the backbone of Faster R-CNN with MobileNetV3 and integrating FPN for
efficient feature extraction and multi-scale representation. The customized model is trained
using the labeled input data and subsequently employed for detecting defects during the
inference phase.
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2.1. Image Acquisition Module

This module aims to collect accurate and high-quality images from the surface of the
ski goggles lenses. It also prepares the well-formatted data for the next module.

2.1.1. Capture Image

The first part of the module is image capture, which consists of cameras, light sources,
and ski goggles lens samples. To design the image capture system for the ski goggles,
lenses need to overcome some challenges mentioned in Section 1. The surface of the lens is
broad, and one camera cannot cover the whole of the lens surface. Therefore, we designed
the image acquisition system using five cameras. Each camera will focus on each region
marked on the lens, as in Figure 5.
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Figure 5. The ski goggles’ lens sample. It is wide and curved; thus, we mark its surface to be easily
controlled by cameras.

Furthermore, the surface is also curved, so we designed the custom light source as in
Figure 6. The curvature of the light source is similar to the curvature of the lens, which
helps to reflect uniform rays over the lens surface. The custom light source has five pieces
of flat LED lights connected by an angle of 125 degrees. Figure 7 describes the detailed
design diagram of the image acquisition system. The ray of each flat LED piece transits
through the lens to the cameras opposite, respectively. Figure 8 depicts the actual pieces of
equipment when deployed.
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The parameters of a camera, such as resolution, sensor, pixel size, and frame rate, are
significantly influential in designing the distance from the camera lens to the inspected
object. Table 1 lists the parameters of the image acquisition system.

Table 1. The equipment description of the image acquisition system.

Equipment Producer Specification

Camera Basler Model acA4112-30uc, sensor Sony IMX352, resolution
12 mp, pixel size 3.45 × 3.45 µm, frame rate 30 fps.

Acquisition Card Basler USB 3.0 Interface Card PCIe, Fresco FL1100, 4HC, x4, 4Ports.
Data transfer with rates of up to 380 MB/s per port.

Vision Lens Tokina Model TC3520-12MP, image format 4/3 inch, mount C, focal
length 35 mm, aperture range F2.0-22.

Light Source Custom The custom-designed light source comprises five-dot matrix
LED modules that are connected by an angle of 125◦.

Computer Asus
Windows 10 Pro; hardware based on: mainboard Asus

Z590-A, CPU Intel I7-11700K, RAM 16G, VGA gigabyte RTX
3080Ti 12 GB.

For ease of visualization, Figure 9 shows the input and output of the system. Inputs are
lens samples. The system captures its surface and outputs images of the lens surface. We
also developed a Python program to simultaneously control five cameras and automatically
crop the areas of interest (ROI).
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Figure 9. Input and Output of image acquisition. Input is some lens samples of ski goggles, and
output is raw images from five cameras.

2.1.2. Regions of Interest

The system uses five cameras to capture the whole of the lens surface, and each camera
only focuses on a portion of the lens. There are, however, limitations in the experiment,
such as that the cameras can capture the overlapping or out-boundary parts. Therefore,
we need to generate the ROIs from each raw image so that when stitched together, they
become the image of the whole lens. The first line of Figure 10 shows five natural photos
taken from the cameras, each containing redundant portions such as overlaps or areas
outside of the lens. The five below images are the results of creating ROIs, respectively. We
developed a program to capture images and generate ROIs seamlessly. The program was
inherited from the Pypylon package of Basler and PyTorch framework.
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2.1.3. Data Labeling

Based on our practical experience with the imaging system and discussing with the ski
goggles manufacturer, we conclude that there are the following common types of defects
on the surface of ski goggles lenses: scratch, watermark, spotlight, stain, dust-line, and
dust-spot. Figure 11 illustrates the detailed defect types.
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Because detect detection is based on supervised deep learning methods, the image
data need to be labeled for the training phase. We used the LabelMe tool [26] to mark the
defect regions with bounding boxes. Figure 12 illustrates the defect-labeling interface using
the label tool.

From the 37 ski goggles lens pieces provided by the manufacturer, the image acqui-
sition system captured and created a total of 654 images of 1330× 800 pixels in size. We
carry out defect labeling for the defect detection task. As outlined in Table 2, the count of
labeled defects constitutes the initial dataset.

It is crucial to acknowledge that the distribution of defects in the dataset is imbalanced,
with dust-line being the most prevalent (7292 instances) and watermark being the least
prevalent (120 instances). This imbalance may result in a biased model. Consequently,
the flip technique is employed to generate supplementary synthetic data. The quantity of
underrepresented defect categories, including spotlight, stain, and watermark, is expected
to increase. As depicted in Figure 13, the synthetic image is generated from a small
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batch of defects and backgrounds. A total of 200 synthetic images are generated and
subsequently labeled. Table 3 presents the statistics regarding the categories of defects in
the synthetic dataset.
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Table 3. The statistics of the number of defects in the synthetic dataset.

Type Defects Type Defects Type Defects

scratch 0 spotlight 1093 dust-line 0
watermark 973 stain 1328 dust-spot 0

Total 3394

Imbalanced and underrepresented data are a common challenge in collecting real-world
data, which may impact detection results. To address this issue, a synthetic dataset is gen-
erated and subsequently merged with the initial dataset, forming a combined dataset as
detailed in Table 4.

Table 4. The statistics of the defect categories from the combined dataset, which merges the initial
and synthetic datasets.

Type Defects Type Defects Type Defects

scratch 1972 spotlight 1322 dust-line 7292
watermark 1093 stain 1609 dust-spot 1898

Total 3394

For a comprehensive and in-depth analysis of the dataset, Table 5 enumerates the
number of images corresponding to each defect category.

Table 5. The number of images containing each defect category is extracted from the JSON file
containing the labels.

Defect
Type Scratch Watermark Spotlight Stain Dust-Line Dust-Spot

Images 447 199 352 316 546 612
Instances 1972 1093 1322 1609 7292 1898

The next section will describe the defect detection model, which is trained and utilized
for inference using the aforementioned dataset.
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2.2. Defect Detection Module

Finding a suitable object detection model for each data type is difficult. Faster R-CNN
architecture is the two-state object detector which has proven to have high accuracy
and be end-to-end trainable. Our work is to fine-tune this architecture by integrating
the MobileNetV3 [27] backbone and feature pyramid network for extracting multi-scale
features [28]. MobileNetv3 model is a lightweight neural network suitable for devices with
a limited computational resource budget. Furthermore, we also reduce the number of
channels to reduce latency in inference.

The following sections will cover the overview method of supervised machine learning
theory, and the overview of the integrated Faster-RCNN architecture is shown in Figure 4.
The backbone, RPN, and ROI-Head are the three main sub-networks in the defect detection
module. First, the backbone block combines MobilenetV3 and FPN to extract multi-scale
feature maps. Second, the RPN will create and propose the candidate defect regions. Finally,
the ROI-Head block will locate the position of defects and classify them. Related theories,
such as the bounding box regression, binary classification, multiclass classification, and
assigning the boxes to the level of feature maps, are also discussed in detail.

2.2.1. Object Detection Problem Setting Based on Supervised Learning Approach

There are various machine-learning paradigms, such as supervised, unsupervised,
and reinforcement learning. Because of the tasks related to detecting and classifying defects,
we apply the supervised learning approach. This direction is related to the input data,
labels, generative networks, loss functions, and measure metrics. This section describes the
basic theory of supervised learning.

Description: When given an image, determine whether or not there are instances of
objects from predefined classes and, if present, return the bounding box of each instance.

Input: A collection of N annotated images Xtrain and a label set Ytrain.

Xtrain = {x1, x2, . . . , xN} (1)

Ytrain = {y1, y2, . . . , yN} (2)

where yi is annotation in image xi, and each yi has Mi objects belong to C classes.

yi =
{
(bi

1,ci
1), (b

i
2,ci

2), . . . , (bi
Mk

,ci
Mk

)
}

(3)

where bi
j and ci

j denote the bounding box of jth object in xi and the class, respectively.
Algorithm: Optimize the loss function L of classification Lcls and bounding-box

regression Lbox−reg:
L = Lcls + Lbox−reg (4)

Formally, Lbox is based on the sum of squared errors (SSE) loss function, and Lcls is
based on the cross-entropy loss function. The loss function is optimized by training the
neural network after a specific amount of epochs.

Prediction: For xi
test, the prediction result is yi

pred,

yi
pred =

{
(bi

pred1
,ci

pred1
,pi

pred1
), (bi

pred2
,ci

pred2
,pi

pred2
), . . .

}
(5)

where bi
predj

, ci
predj

, pi
predj

are results of the bounding box, object class, and reliability.
For filtering the object detection results, we use a predefined threshold that compares
the reliability.
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Evaluation metric: The primary metric used to evaluate the object detection algorithms’
performance is the mean average precision (mAP). This metric considers the prediction of
correct category labels and accuracy location. There are two main performance evaluation
criteria: precision (P) and recall (Recall). The statistic of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) are needed to measure the P and
Recall values of the network model in the testing phase. The intersection-over-union (IoU)
is a critical concept to determine whether the test results are correct or not. TP, FP, TN, and
FN values depend on the IoU threshold. The formula of IoU is defined in Equation (6).

IoU(bpred, blb) =
Area(bpred ∩ blb)

Area(bpred ∪ blb)
(6)

The P and Recall of each category of one image can be calculated as follows:

PCij =
TPCij

TPCij + FPCij

(7)

RecallCij =
TPCij

TPCij + FNCij

(8)

where PCij and RecallCij represent Precision and Recall of category Cij in the jth image, respectively.
The average precision (AP) of the category Ci can be calculated:

APCi =
1
m

m

∑
j=1

PCij (9)

The dataset has multiple categories, the mAP of the entire category can be calculated
as follows:

mAP =
1
n

n

∑
i=1

APCij (10)

There are also many other criteria, but in this work’s scope, the performance evaluation
is measured mainly by the mAP metric.

2.2.2. Backbone: Feature Extractor Based on MobileNetV3 and Feature Pyramid Networks

MobileNetV3: It is important to emphasize the integration of the MobileNetV3 model
into the faster R-CNN architecture by its suitability for optic inspection systems [29]. Most
hardware of the inspection systems are low resource use cases, therefore, mobile-friendly
models should be applied to reduce latency. MobileNetV3 backbone plays the role of a
feature extractor in object detectors. MobileNetV1 [30] proposed depth-wise separable
convolution to reduce the number of parameters to improve computation efficiency, and
MobileNetV2 [31] introduced the inverted residual block to expand to a higher-dimensional
feature space internally to make more efficient layer structures. MobileNetV3 inherited
advances of V1 and V2; it deployed the Squeeze-and-Excitation [32] in the inverted residual
bottleneck and flexibly used the h-swish nonlinearity to significantly improve the accuracy
of neural networks.

The inverted residual is the main building block of the MobileNetV3 network. The
block follows a narrow–wide–narrow approach by input–output channels. As an example
in Figure 14, the input channel is 24, the space expansion channel is 72, and the output
channel is 40. The inverted residual block uses a combination of the expand convolution,
the depth-wise convolution, the squeeze-excitation block, and the projection convolution,
as in Figure 14.
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FPN [33]: The object detection field has many more innovative algorithms, but cur-
rent image data have become much more challenging, for instance, small object detection 
issues with only a few pixels. It is hard to extract the information about small objects in 
feature maps. FPN proposes a method to improve small object detection performance. It 
is an essential component that exploits the features of small objects on different levels of 

Figure 14. This is an instant of the inverted-residual block in MobileNetV3 architecture. First is
a convolutional expand layer that widens channels from 24 to 72. Second is the convolutional
depth-wise layer for better efficiency than traditional convolution. Its input and output channels are
equal to 72, and the striking attribute of convolution halves the resolution. Next is the squeeze and
excitation module to improve the power of features in the network. The final convolutional projection
layer presents features in the lower dimension space, from 72 to 40.

FPN [33]: The object detection field has many more innovative algorithms, but current
image data have become much more challenging, for instance, small object detection issues
with only a few pixels. It is hard to extract the information about small objects in feature
maps. FPN proposes a method to improve small object detection performance. It is an
essential component that exploits the features of small objects on different levels of feature
maps. FPN is an extended idea of pyramidal feature hierarchy that its architecture is a
combination between top–down pathway, bottom–up pathway, and lateral connections.

As in Figure 15, the backbone architecture combines the MobilenetV3 and FPN. It
is to extract multi-scale feature maps from the input image. The input is fed to Mo-
bilenetV3, which has 15 inverted residual blocks. The output is the multi-scale feature
maps {C1, C2, C3, C4, C5}, which are the input for FPN. FPN convolute and upsample Ci to
output the better quality multi-scale feature maps {P1, P2, P3, P4, P5}.
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Figure 15. Backbone: the feature pyramid network and MobileNetV3 backbone together. The input
is the image of size H, W. Firstly, The MobileNetV3 extracts the image to many multi-scale feature
maps {C1, C2, C3, C4, C5}. Secondly, the multi-scale output of MobileNetV3 is the input for FPN. The
final result is the feature maps at multiple levels {P1, P2, P3, P4, P5}.
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The output channels of FPN present the multi-scale feature maps {P1, P2, P3, P4, P5}.
This hyper-parameter is vital to guarantee the quality of feature maps. Its default value
is 256 for the large benchmark dataset. With the customized dataset, we will fine-tune
the number of the output channels to obtain better performance. The results are shown
in Section 3.2.

The output feature maps from FPN are {P1, P2, P3, P4, P5}, which are also the input to
the feature pyramid network and the ROI-Head. In the next section, we will describe these
two blocks in detail.

2.2.3. RPN: Region Proposal Network

Detecting the position of objects is one of the two main tasks in object detection. The
theoretical basis for initializing the temporary object position remains more challenging. In
classical computer vision, selective search [34], multiscale combinatorial grouping [35], and
CPMC [36] apply a strategy based on grouping super-pixels. EdgeBoxes [37] and objectness
in Windows [38] use the window scoring technique. In deep learning-based computer
vision, Shaoqing et al. [22] propose region proposal networks to create the box anchors to
filter the potential positions. Anchor boxes are defined by two parameters: the wide range
of scales and the aspect ratios.

RPN initialized a set of anchor boxes on each image or feature map by two hyper-parameters:
scales and aspect ratio. They have a large impact on the final accuracy. Hence, we try to
exploit them for optimal results. Figure 16 illustrates the creation of anchors on an image.
The left image is an original, consisting of the red defect labels. The right imageinitializes
a set of anchor boxes with scales

{
322, 642, 1282, 2562, 5122} and a range of aspect ratios

{1 : 2, 1 : 1, 2 : 1}. Anchors are white, black, yellow, green, and blue rectangular boxes in
the right image.
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containing some red ground-truth boxes. RPN generates the reference boxes called “anchors” to map
to ground-truth boxes. The multi-scale anchors are generated on the right image at various positions.
They are the rectangular boxes marked with white, black, yellow, green, and blue colors.

The number of anchors generated is copious. RPN now tries to find anchors similar
to the ground boxes (labels). The metric that determines whether an anchor is similar to
the ground boxes is the IoU calculation. The pre-defined IoU thresholds are set to label
the anchors as foreground, background, or ignored. If IoU is larger than the first threshold
(typically 0.7), the anchor is assigned to one of the ground-truth boxes and labeled as
foreground (‘1’). If IoU is smaller than the second threshold (typically 0.3), the anchor is
either labeled as a background (‘0’) or otherwise ignored (‘−1’).
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In practice, the majority of anchors are background (the label is “0”), and so it is
difficult to learn the foreground anchors due to the label imbalance. To solve the imbalance
issue, the target number of foreground boxes N and the target number of background M
are pre-defined.

At this time, we have the labeled anchor set and a target set, as shown in Figure 17. The
RPN should learn to find rules to recognize the exact locations and shapes of ground-truth
boxes. This issue is known as bounding-box regression, which will be presented in the
next section.
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The role of RPN is to propose the potential regions that contain the defects. To
achieve this task, training the RPN is to regress the anchor boxes to the defect regions and
classify anchors as the labels “1” or “0”. Because of the large number of anchors, we only
choose some of the quality anchors called proposals for the next sub-network. The loss
function of RPN includes the L1 [20] loss function for bounding-box regression and binary
cross-entropy loss function for classifying the anchor as ground-truth or background.

LRPN = Lbox−reg−RPN + Lbinary−cls (11)

The following section details the bounding box regression and its loss function.

2.2.4. Bounding Box Regression

Bounding box regression will find some rules to scale-invariant transform a bounding
box (anchor) to another bounding box (ground-truth/defect). The best idea is to consider
the relationship between the center coordinates, where their width–height dimensions
are significant. This section describes the formula between the ground-truth box and
anchor. Figure 18 illustrates the parameters involved in transforming an anchor (the blue
dotted-line rectangle) into a ground-truth box (the green rectangle) during the training
phase, with the parameters are calculated using Equation (12).

δx = (bx−ax)/aw, δy = (by−ay)/ah
δw = log(bw/aw), δh = log(bh/ah)

(12)

where “a” and “b” denote anchor box and ground-truth box, respectively. Each one is
represented by a 4-tuple in the form of (x, y, w, h), where (x, y) is the center coordinate and
(w, h) is the width and height dimension. The regressor f aims to predict the transformation
δ from the anchor a to the target ground-truth box b, represented as follows:
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Figure 18. Illustration of transformation δ from the anchor a to the ground-truth box b. The formula
is in Equation (12).

The image feature, denoted as x, is used as the input for the regressor f . Consiquently,
the output is a prediction represented by δ̂ = f (x). The training process will minimize the
bounding-box loss function:

L(δ̂, δ) = ∑
p∈{x,y,w,h}

Lsmooth
1 (δ̂p − δp), (13)

where the function Lsmooth
1 (.) is the robust L1 loss defined in Equation (14).

Lsmooth
1 (t) =

{
0.5t2i f

∣∣t| < 1
|t| − 0.5 otherwise

(14)

To calculate the final prediction box coordinates, the regressed anchor is inferred based
on the inverse transformation of Equation (15) as follows:

apred
x = δ̂xaw + ax, apred

y = δ̂yah + ay

apred
w = awexp(δ̂w), apred

h = ahexp(δ̂h)
(15)

The final summary is as follows: the bounding-box regressor f is a neural network
with the input T, which are the image or feature maps, and the label is δ. A prediction
is δ̂ = f (T). The training process will optimize the loss function Lsmooth

1 (δ− δ̂). With the
formulas δ, Lsmooth

1 and δ̂ in Equations (12) and (14), and formula δ̂ = f (T), respectively.

2.2.5. ROI-Head

ROI-Head converts the selected proposals on each feature map into a small fixed
window (usually 7 × 7 pixels), and next is fed to the linear neural network to regress the
bounding boxes and classify defects.

The inputs of ROI-Head are: The feature maps {P2, P3, P4, P5} from the backbone
block; the proposal boxes from the RPN block; and the label of defects. The ratio of
foreground and background boxes will be customized to accelerate the training. The
proposals with higher IoU than the threshold are counted as foreground and the others as
background. This step will choose the best k proposals based on the IoU metric.

Before entering the ROI process, the top-k proposals are assigned to each level Pi of
the appropriate feature maps based on the formula in Equation (16).

LPi = f loor(k0 + log2(

√
w ∗ h

canonical_box_size
)) (16)
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where k0 is the reference value, which is generally set to 4; w and h are the the width and
height of the ROI area, respectively; and canonical_box_size is the canonical box size in pix-
els, set to 224, corresponding to the size of the pre-training image of the ImageNet dataset.

The ROIAlignV2 [37] process crops the rectangular regions on the feature maps speci-
fied by the proposal boxes. The linear neural network feeds the results of ROI to regress
the proposals to ground boxes and classify the defect type.

When training the ROI-Head network, the loss function sums up the cost of classifica-
tion Lde f ect−cls and bounding-box regression Lbox−reg−ROI , as in Equation (17).

Ldetector = Lde f ect−cls + Lbox−reg−ROI (17)

where Lde f ect−cls is the defect classification loss function that computes the cross-entropy
loss; and Lbox−reg−ROI is the smooth L1 loss as in Equation (13).

2.2.6. End-to-End Learning

The RPN block needs the cost to classify anchors as background or foreground (binary
cross-entropy) and find proposals for the candidate locations of defects (bounding-box
regression). Meanwhile, the ROI-Head network also incurs a cost to classify the defect
type (cross-entropy) and locate the defects’ position (bounding-box regression). Therefore,
the network can be trained in an end-to-end manner using the multi-task loss function
as follows:

L = LRPN + Ldetector (18)

where LRPN and Ldetector are based on the formulae in Equations (7) and (13), respectively.

3. Results
3.1. Experimental Setting

Defects are labeled and converted to COCO format to be compatible with object
detection models. All images are resized to 1333 px for long edge and 800 px for short
edge. We split the dataset into the training and test sets by a ratio of 80:20. In the first step,
we train and test on some of the standard defect detection architectures such as two-stage
object detectors (Faster-RCNN) and one-stage object detectors (Retina, FCOS). All models
are implemented using PyTorch Vision’s default configuration [39]. Table 6 displays the
experimental outcomes obtained from training Faster R-CNN-based models with ResNet50,
MobileNetV3-large, and MobileNetV3-small backbones, as well as the RetinaNet model,
and the FCOS model, using the initial dataset. In the second step, for increment accuracy,
we fine-tune the hyper-parameter in RPN, while for computational efficiency, we reduce the
output channel of FPN in the backbone. The final result is presented in the following section.

Table 6. Comparison of defect detection between each architecture trained on the ski goggles defect
dataset without any hyper-parameters adaptation.

Architecture BACKBONE
IoU Metric SPEED (S/IT)

AP AP50 AP75 TRAIN TEST

Faster-RCNN
RESNET50 56.3 78.5 63.3 0.528 0.126

MOBILE-LARGE 41.3 72.8 38.1 0.127 0.059
MOBILE-SMALL 10.0 25.1 08.4 0.086 0.045

FCOS RESNET50 59.6 78.6 64.0 0.352 0.126
RetinaNet RESNET50 10.2 25.2 05.9 0.331 0.140
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The models are trained with 2 GPUs with a batch size of 8 for 26 epochs using
SGD optimizer. The learning rate is initialized to 0.02 and learning ratio step at 16 and
22. Computer configuration is a CPU AMD Ryzen5 3600X, 64G RAM, 2 GPUs Gigabyte
2060 6G.

The method evaluates detection results based on the standard COCO-style average
precision measured at IoU thresholds ranging from 0.5 to 0.75.

3.2. Defect Detection Results

To have a defect detection result baseline for the defect dataset on the surface of
ski goggles lenses, we train and test different architectures and backbones. Parame-
ters of Faster-RCNN-ResNet50, Faster-RCNN-Mobile-large, Faster-RCNN-Mobile-small,
FCOS-Resnet50, and Retina-Resnet50 models are 41.1 M, 18.9 M, 15.8 M, 31.85 M, and
32.05 M, respectively. Table 6 shows the linear result of the larger architecture (more param-
eter) having better accuracy, but slower computational efficiency (speed, s/it). The balance
between accuracy and computational efficiency is an issue in automatic optical inspection
as hardware characteristics are compact. We recognize that the Faster-RCNN-Mobile-large
model has gained a balanced result in terms of accuracy and computational efficiency. From
this, we decide to fine-tune the Faster R-CNN with backbone Mobile-large to achieve a
better result.

Faster R-CNN has proven to be a state-of-the-art object detector with high accuracy
and flexible modular ability. Therefore, it can be integrated into some sub-network to
improve performance. We implement the Faster R-CNN-based detector that uses an
FPN-style backbone that extracts features from different convolutions of the MobileNetV3
model. The advance of MobileNetV3 block helps to improve speed; alternatively, FPN
presents the invariant of feature maps, leading to an improvement in the small defect
detection. However, Faster R-CNN has a drawback due to the complicated computation
in creating anchor boxes. Its hyper-parameters in RPN are often sensitive to the final
detection performance. The above disputation leads to fine-tuning Faster R-CNN to archive
high performance.

First, we fine-tune the output channel of FPN to improve the network’s speed. All
feature maps extracted from the MobileNetV3 network have their output projected down
to the number of channels by the FPN block. The default number of the output channel is
256. This parameter is finetuned within the value set {256, 128, 96, 64} to obtain the best
possible performance.

Second, we fine-tune the anchor scale factor in RPN to improve the accuracy. The anchor
scales affect the handling of the bounding boxes of different sizes. Its invalid value setting
causes the imbalance between negative and positive samples in training. The default value
of anchor scales in the Faster R-CNN model is

{
322, 642, 1282, 2562, 5122}. We augment

two values:
{

162, 322, 642, 1282, 2562} and
{

82, 162, 322, 642, 1282} in the RPN block.
Table 7 shows the aggregate results of fine-tuning the output channel number in FPN

and the anchor scales in RPN. When the output channel of FPN decreases, the training and
testing speed improves, while accuracy slightly decreases. Observing the efficiency of
anchor scales, configuration

{
162, 322, 642, 1282, 2562} achieved better results than the

other two configurations,
{

322, 642, 1282, 2562, 5122} and
{

82, 162, 322, 642, 1282}, with
the same channel as FPN. With the channel reduction in FPN from 256 to 128, and the re-
placement of the anchor scale

{
322, 642, 1282, 2562, 5122} by

{
162, 322, 642, 1282, 2562},

the accuracy is 55.0 mAP, which is close to the best accuracy, while the APs metric achieved
the best accuracy with 47.0. From this result, we choose the optimistic parameter set with
the output channel equal to 128 and the anchor scales equal to

{
162, 322, 642, 1282, 2562}

for balance in computational efficiency and accuracy.
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As mentioned in Section 2.1.3, the combined dataset (CoDS) arises from the fusion of
initial (InDS) and synthetic datasets. Comparing these datasets is crucial to illustrate the
efficacy in addressing a few data and imbalances. Table 8 depicts the evaluation outcomes
for both datasets when training the Faster R-CNN model with optimal parameters.

Table 7. Defect detection results from fine-tuning the output channel of FPN and the anchor scale in
RPN.

FPN RPN IOU METRIC SPEED (S/IT)

Out Channel Anchor Scales MAP APS TRAIN TEST

256 {82, 162, 322, 642, 1282} 55.3 46.4 0.4864 0.1161
256 {162, 322, 642, 1282, 2562} 49.2 42.8 0.4867 0.1179
128 {82, 162, 322, 642, 1282} 53.6 45.4 0.3040 0.1133
128 {162, 322, 642, 1282, 2562} 55.0 47.0 0.3080 0.1074
96 {82, 162, 322, 642, 1282} 46.7 39.6 0.2857 0.1094
96 {162, 322, 642, 1282, 2562} 51.8 42.7 0.2860 0.1046
64 {82,162, 322, 642, 1282} 47.6 38.3 0.2517 0.0993
64 {162,322, 642, 1282, 2562} 51.4 46.0 0.2520 0.0968

Table 8. The comparative assessment of the initial dataset and the combined dataset using
COCO metrics.

Model COCO Metric
DATASET

INITIAL DS (INDS) COMBINED DS (CODS)

Faster R-CNN with the
MobileV3 Backbone

The output channel number of
FPN is 64

The anchor scales of RPN
{162,322,642,1282,2562}

AP 51.4 55.1
AP50 71.5 75.8
AP75 40.7 47.4
APS 46.0 48.2
APm 47.3 50.3
APl 59.1 63.4
AR1 31.3 32.6
AR10 50.9 53.8
AR100 55.6 59.4
ARS 45.2 49.7
ARm 61.6 54.6
ARl 60.4 64.9

Figure 19 shows some results on the test set of the lens defect dataset. The red
rectangular boxes mark defects; the above label is the defect category.
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Figure 19. Selected examples of defect detection results. Defects are marked by the red rectangular
boxes and the label above is the defect category. (a–c) display a variety of defect types, including
dust-spot and dust-line. (d) showcases the spotlight defect type, while (e) highlights the stain defect
type. (f–h) and h feature the scratch defect type.

4. Discussion

The data presented in Tables 6 and 7 have been computed using the detection eval-
uation metrics employed in the COCO detection challenge. A comparative analysis of
object detection models, such as Faster R-CNN, FCOS, and RetinaNet, was conducted
based on the data provided in Table 6. The Faster R-CNN model serves as a baseline for
comparison due to its widespread use in object detection tasks. In terms of precision, FCOS
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outperforms Faster R-CNN with a 44.31% improvement in AP, a 7.97% enhancement in
AP50, and a 67.98% increase in AP75. However, FCOS exhibits slower training and testing
speeds, with a 177.17% reduction in training and a 113.56% decrement in testing relative to
Faster R-CNN. Conversely, RetinaNet shows a significantly lower precision performance,
with a 75.30% reduction in AP, a 65.35% decrease in AP50, and an 84.51% decline in AP75,
while also demonstrating slower training and testing speeds (160.63% and 137.29% slower,
respectively), in comparison to Faster R-CNN.

In the context of an optical inspection system, it is crucial to prioritize solutions that
demand minimal hardware resources while maintaining satisfactory performance levels.
A comprehensive analysis of various object detection models, including Faster R-CNN,
FCOS, and RetinaNet, reveals that Faster R-CNN emerges as the most suitable candidate for
deployment. Despite FCOS exhibiting superior overall precision, it significantly necessitates
more hardware resources owing to its slower training and testing speeds, with a 177.17%
reduction in training and a 113.56% decrement in testing compared to Faster R-CNN. In
contrast, Faster R-CNN strikes an optimal balance between performance and resource
efficiency, featuring notable precision performance and faster training and testing speeds in
comparison to FCOS and RetinaNet. Consequently, Faster R-CNN is the preferable choice
for deployment when considering hardware resource constraints.

Additionally, in Table 6, we dive into the performance analysis of some backbones
of the Faster R-CNN model. Comparing speeds between ResNet50, MobileNet-Large,
and MobileNet-Small as Faster R-CNN backbones showcases the trade-offs between per-
formance and resource efficiency. Although the ResNet50 backbone outperforms the
MobileNet-Large backbone in terms of AP, AP50, and AP75, it is notably slower in both
training and testing phases, with training taking 315.75% longer and testing experienc-
ing a 113.56% increase in duration. In contrast, MobileNet-Small provides the quickest
training and testing speeds among the backbones, at 32.28% and 23.73% faster speeds than
MobileNet-Large. However, this speed advantage comes at the cost of significantly reduced
performance metrics. MobileNet-Large balances performance and speed, maintaining
competitive performance metrics while achieving relatively faster training and testing
speeds than ResNet50.

The optimal model for this context combines the strengths of Faster R-CNN, FPN,
and MobileNetV3. The next step in optimizing this model is to fine-tune two parameters:
the output channel number in FPN and the anchor scales in RPN. As shown in Table 7, the
best-performing use-case has an FPN output channel of 256 and RPN anchor scales of {82,
162, 322, 642, 1282}, with a mAP score that is 12.28% higher than the second-best use-case.
Furthermore, the best-performing use-case has an APS score of 46.4, which is 8.62% higher
than the second-best use-case. In cases where speed is prioritized, the fastest use-case is
the one with an FPN output channel of 64 and RPN anchor scales of {162, 322, 642, 1282, 2562}.
Compared to the best-performing use-case, this use-case is 48.78% faster in training and
16.28% faster in testing.

Table 8 compares two InDS and CoDS datasets utilizing various COCO metrics.
Dataset CoDS exhibits superior performance in the majority of metrics when compared to
dataset InDS. Notably, CoDS surpasses InDS in average precision (AP) with a 7.2% increase,
as well as in size-based subcategories (APs, APm, and APl), with enhancements ranging
from 4.8% to 7.3%. Regarding average recall (AR), dataset CoDS exceeds InDS in most
categories, except for the medium object size category (ARm), where InDS outperforms
CoDS by 11.4%. In summary, the combined dataset demonstrates improved performance
relative to the initial dataset.

Imbalanced datasets and scarce data are common challenges when training deep
learning models with real-world data collection. CoDS performs better than InDS, thereby
illustrating that generating additional synthetic data is an effective approach to addressing
these challenges.

Despite the valuable contributions of this study, certain limitations should be ac-
knowledged: the number of labels in the defect dataset is relatively small, which may
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impact the generalizability of the findings; the approach to addressing unbalanced and
rare datasets is not extensively explored; the study does not employ newer defect detection
methods within deep learning to analyze the dataset; and a limited range of metrics is
considered for a detailed evaluation of defects, suggesting that additional performance
measures could provide further insight. Future research may address these limitations by
expanding the dataset, exploring more comprehensive solutions for unbalanced and rare
data, incorporating cutting-edge defect detection techniques, and utilizing a wider array of
evaluation metrics.

5. Conclusions

This paper solved the defect detection problem on the surface of ski goggles lenses
based on the deep learning approach. The work has achieved the design of the image
capture system that has five cameras cover the entire curved surface of the lenses, which
enables it to capture images automatically from all angles at the same time. This work
also presents the development of a surface defect detection dataset for ski goggles lenses,
contributing to the diversification of surface data sources in the deep learning-based
defect detection field. The defect detection result achieved excellent performance by
fine-tuning the reasonable hyper-parameters of the Faster-RCNN modular architecture
by replacing the ResNet backbone with MobileNetV3 and FPN to better extract feature
maps, by reducing the number of the output channel of FPN to increase the computational
performance, and by adjusting the anchor scale factor hyper-parameter in RPN, leading
to better accuracy. This work is helpful for automatic optical inspection systems because
of its limited hardware resource. The experimental results have reinforced the hypothesis
for correctly choosing the Faster-RCNN defect detection architecture and fine-tuning the
hyper-parameters. In the future, we will improve the dataset and make it publicly available
to the research community.
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