A Numerical Approach of Handling Fractional Stochastic Differential Equations
Abstract
:1. Introduction
- .
- for , where indicates a standard normal distribution.
- The two increments and are independent on distinct time intervals for .
2. Preliminaries
3. Modified Three-Point Fractional Formula
4. Handling FSDE Using the Modified Three-Point Fractional Formula
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benramdane, A.; Mezouar, N.; Alqawba, M.; Boulaaras, S.; Cherif, B. Blow-up for a stochastic viscoelastic lamé equation with logarithmic nonlinearity. J. Funct. Spaces 2021, 2021, 9943969. [Google Scholar] [CrossRef]
- Alnafisah, Y.; Ahmed, H.M. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evol. Equations Control Theory 2022, 11, 925–937. [Google Scholar] [CrossRef]
- Ahmed, H.M. Noninstantaneous Impulsive Conformable Fractional Stochastic Delay Integro-Differential System with Rosenblatt Process and Control Function. Qual. Theory Dyn. Syst. 2022, 21, 15. [Google Scholar] [CrossRef]
- Alnafisah, Y. Multilevel MC method for weak approximation of stochastic differential equation with the exact coupling scheme. Open Math. 2022, 20, 305–312. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, H.; Wang, Z. Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. J. Differ. Equ. 2022, 314, 251–286. [Google Scholar] [CrossRef]
- Xie, X.; Wang, T.; Zhang, W. Existence of solutions for the (p,q)-Laplacian equation with nonlocal Choquard reaction. Appl. Math. Lett. 2023, 135, 108418. [Google Scholar] [CrossRef]
- Batiha, I.M.; Alshorm, S.; Jebril, I.; Zraiqat, A.; Momani, Z.; Momani, S. Modified 5-point fractional formula with Richardson extrapolation. AIMS Math. 2023, 8, 9520–9534. [Google Scholar] [CrossRef]
- Albadarneh, R.B.; Batiha, I.M.; Adwai, A.; Tahat, N.; Alomari, A.K. Numerical approach of riemann-liouville fractional derivative operator. Int. J. Electr. Comput. Eng. 2021, 11, 5367–5378. [Google Scholar] [CrossRef]
- Albadarneh, R.B.; Batiha, I.; Alomari, A.K.; Tahat, N. Numerical approach for approximating the Caputo fractional-order derivative operator. AIMS Math. 2021, 6, 12743–12756. [Google Scholar] [CrossRef]
- Ye, R.; Liu, P.; Shi, K.; Yan, B. State Damping Control: A Novel Simple Method of Rotor UAV With High Performance. IEEE Access 2020, 8, 214346–214357. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Zhang, L.; Zhang, S. Multi-AUV Dynamic Maneuver Countermeasure Algorithm Based on Interval Information Game and Fractional-Order DE. Fractal Fract. 2022, 6, 235. [Google Scholar] [CrossRef]
- Song, M.; Yu, H. Convergence and stability of implicit compensated Euler method for stochastic differential equations with Poisson random measure. Adv. Differ. Equ. 2012, 2012, 214. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Farnoosh, R.; Rezazadeh, H.; Sobhani, A.; Behboudi, M. Analytical solutions for stochastic differential equations via martingale processes. Math. Sci. 2015, 9, 87–92. [Google Scholar] [CrossRef]
- Beznea, L.; Deaconu, M.; Lupaşcu-Stamate, O. Numerical approach for stochastic differential equations of fragmentation; application to avalanches. Math. Comput. Simul. 2019, 160, 111–125. [Google Scholar] [CrossRef]
- Milici, C.; Tenreiro Machado, J.; Drăgănescu, G. Application of the Euler and Runge–Kutta Generalized Methods for FDE and Symbolic Packages in the Analysis of Some Fractional Attractors. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 159–170. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Differential Equations of Fractional Order: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2004. [Google Scholar] [CrossRef]
- Batiha, I.; Alshorm, S.; Jebril, I.; Hammad, M. A Brief Review about Fractional Calculus. Int. J. Open Probl. Comput. Sci. Math. 2022, 15, 39–56. [Google Scholar]
- Mhailan, M.; Hammad, M.A.; Horani, M.A.; Khalil, R. On fractional vector analysis. J. Math. Comput. Sci. 2020, 10, 2320–2326. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applications; Springer Nature: Singapore, 2022. [Google Scholar]
- Odibat, Z.M.; Momani, S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Allen, E. Modeling with Itô stochastic differential equations. In Mathematical Modelling Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 22. [Google Scholar]
- Manuel, O.; Machado, J. Fractional definite integral. Fractal Fract. 2017, 1, 2. [Google Scholar]
- Batiha, I.M.; Alshorm, S.; Ouannas, A.; Momani, S.; Ababneh, O.Y.; Albdareen, M. Modified Three-Point Fractional Formulas with Richardson Extrapolation. Mathematics 2022, 10, 3489. [Google Scholar] [CrossRef]
- Rajotte, M. Stochastic Differential Equations and Numerical Applications. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2014. [Google Scholar]
- Bayram, M.; Partal, T.; Buyukoz, G.O. Numerical methods for simulation of stochastic differential equations. Adv. Differ. Equ. 2018, 2018, 17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, I.M.; Abubaker, A.A.; Jebril, I.H.; Al-Shaikh, S.B.; Matarneh, K. A Numerical Approach of Handling Fractional Stochastic Differential Equations. Axioms 2023, 12, 388. https://doi.org/10.3390/axioms12040388
Batiha IM, Abubaker AA, Jebril IH, Al-Shaikh SB, Matarneh K. A Numerical Approach of Handling Fractional Stochastic Differential Equations. Axioms. 2023; 12(4):388. https://doi.org/10.3390/axioms12040388
Chicago/Turabian StyleBatiha, Iqbal M., Ahmad A. Abubaker, Iqbal H. Jebril, Suha B. Al-Shaikh, and Khaled Matarneh. 2023. "A Numerical Approach of Handling Fractional Stochastic Differential Equations" Axioms 12, no. 4: 388. https://doi.org/10.3390/axioms12040388
APA StyleBatiha, I. M., Abubaker, A. A., Jebril, I. H., Al-Shaikh, S. B., & Matarneh, K. (2023). A Numerical Approach of Handling Fractional Stochastic Differential Equations. Axioms, 12(4), 388. https://doi.org/10.3390/axioms12040388