Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- 1.
- * is commutative and associative;
- 2.
- * is continuous;
- 3.
- for every ;
- 4.
- whenever and .
- (i)
- ;
- (ii)
- iff ;
- (iii)
- ;
- (iv)
- ;
- (v)
- is continuous.
- (FB1)
- for all ;
- (FB2)
- iff for all and ;
- (FB3)
- for all ;
- (FB4)
- for all and ;
- (FB5)
- is left continuous;
- (FB6)
- is nondecreasing for all and .
- (FCB1)
- for all ;
- (FCB2)
- iff for all and ;
- (FCB3)
- for all ;
- (FCB4)
- for all and ;
- (FCB5)
- is left continuous;
- (FCB6)
- is nondecreasing for all and .
- (i)
- A sequence is named a bisequence on .
- (ii)
- A bisequence on FCBMS is called a CBS if for each , we can find satisfying as for all , .
3. Main Results
- (i)
- and ;
- (ii)
- and , where .
- (i)
- and ;
- (ii)
- and , here .
- (i)
- and ;
- (ii)
- For and , where is an increasing mapping such that and ∀ .
- (i)
- and ;
- (ii)
- For and .
4. Application
- (T1)
- and ,
- (T2)
- There is a continuous function and such that
- (T3)
- .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 326–334. [Google Scholar]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
- Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
- Senapati, T.; Chanda, A.; Rakocevic, V. Generalized quasi-contractions on weak orthogonal metric spaces. FPT 2022, 23, 371–384. [Google Scholar] [CrossRef]
- Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial. Differ. Equ. 2021, 37, 583–593. [Google Scholar] [CrossRef]
- Tiwari, R.; Rajput, S. A new fixed point result in bipolar controlled fuzzy metric spaces with application. Malaya J. Mat. (MJM) 2022, 10, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Došenović, T.; Rakić, D.; Carić, B.; Radenović, S. Multivalued generalizations of fixed point results in fuzzy metric spaces. Nonlinear Anal. Model. Control 2016, 21, 211–222. [Google Scholar] [CrossRef]
- Gunaseelan, M.; Joseph, G.A.; Ul, H.A.; Fahd, J.; Abbas, B.I. Solving an Integral Equation by Using Fixed Point Approach in Fuzzy Bipolar Metric Spaces. J. Funct. Spaces 2021, 2021, 9129992. [Google Scholar]
- Mani, G.; Gnanaprakasam, A.J.; Javed, K.; Kumar, S. On orthogonal coupled fixed point results with application. J. Funct. Spaces 2022, 2022, 5044181. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; Mitrović, Z.D.; Bota, M.F. Solving an Integral Equation via Fuzzy Triple Controlled Bipolar Metric Spaces. Mathematics 2021, 9, 3181. [Google Scholar] [CrossRef]
- Mihet, D. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744. [Google Scholar] [CrossRef]
- Rakić, D.; Mukheimer, A.; Došenović, T.; Mitrović, Z.D.; Radenović, S. Some new fixed point results in b-fuzzy metric spaces. Inequal. Appl. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some new fixed point results on Ćirić type in fuzzy metric spaces. Mathematics 2020, 8, 297. [Google Scholar] [CrossRef]
- Sedghi, S.; Shobkolaei, N.; Došenović, T.; Radenović, S. Suzuki-type of common fixed point theorems in fuzzy metric spaces. Math. Slovaca 2018, 68, 451–462. [Google Scholar] [CrossRef]
- Shamas, I.; Rehman, S.U.; Aydi, H.; Mahmood, T.; Ameer, E. Unique fixed-point results in fuzzy metric spaces with an application to fredholm integral equations. J. Funct. Spaces 2021, 2021, 4429173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, G.; Gnanaprakasam, A.J.; Kumar, S.; Ege, O.; De la Sen, M. Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces. Axioms 2023, 12, 396. https://doi.org/10.3390/axioms12040396
Mani G, Gnanaprakasam AJ, Kumar S, Ege O, De la Sen M. Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces. Axioms. 2023; 12(4):396. https://doi.org/10.3390/axioms12040396
Chicago/Turabian StyleMani, Gunaseelan, Arul Joseph Gnanaprakasam, Santosh Kumar, Ozgur Ege, and Manuel De la Sen. 2023. "Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces" Axioms 12, no. 4: 396. https://doi.org/10.3390/axioms12040396
APA StyleMani, G., Gnanaprakasam, A. J., Kumar, S., Ege, O., & De la Sen, M. (2023). Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces. Axioms, 12(4), 396. https://doi.org/10.3390/axioms12040396