Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation
Abstract
:1. Introduction
2. Preliminaries
3. Fuzzy-Number Hermite–Hadamard Inequalities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef]
- Mumcu, I.; Set, E.; Akdemir, A.O.; Jarad, F. New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral. Numer. Methods Partial Differ. Equ, 2021; Early view. [Google Scholar]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113272. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Type Inequalities and Applications. RGMIA Monographs. 2000. Available online: http://rgmia.vu.edu.au/monographs/hermitehadamard.html (accessed on 10 March 2023).
- Cheng, J.-F.; Chu, Y.-M. Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. 2011, 2011, 587068. [Google Scholar] [CrossRef]
- Cheng, J.-F.; Chu, Y.-M. On the fractional difference equations of order (2, q). Abstr. Appl. Anal. 2011, 2011, 497259. [Google Scholar] [CrossRef]
- Cheng, J.-F.; Chu, Y.-M. Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, 2012, 918529. [Google Scholar] [CrossRef]
- Hu, X.-M.; Tian, J.-F.; Chu, Y.-M.; Lu, Y.-X. On Cauchy–Schwarz inequality for N-tuple diamond-alpha integral. J. Inequalities Appl. 2020, 2020, 8. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chu, Y.-M. Schurm-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequalities Appl. 2019, 2019, 57. [Google Scholar] [CrossRef]
- Wang, M.-K.; Chu, Y.-M.; Jiang, Y.-P. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016, 46, 679–691. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Flores-Franulic, A.; Chalco-Cano, Y.; Román-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; Volume 35, pp. 1459–1462. [Google Scholar]
- Chalco-Cano, Y.; Flores-Franulic, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 1, 457–472. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
- Bhunia, A.; Samanta, S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 72, 169–178. [Google Scholar] [CrossRef]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Wang, M.-K.; Chu, H.-H.; Li, Y.-M.; Chu, Y.-M. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math. 2020, 14, 255–271. [Google Scholar] [CrossRef]
- Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
- Wang, M.-K.; Chu, Y.-M.; Qiu, Y.-F.; Qiu, S.L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011, 24, 887–890. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, Y.-M.; Wang, H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011, 2011, 896483. [Google Scholar] [CrossRef]
- Liu, F.W.; Feng, L.B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42, 491–501. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. Rev. De La Real Acad. De Cienc. Exactas Físicas Naturales. Ser. A. Matemáticas 2022, 116, 53. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
- Işcan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Abdalla, B.; Althobaiti, A. Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Math. 2022, 7, 349–370. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some new versions of Hermite–Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex Functions via fuzzy-interval-valued settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Bede, B. Mathematics of fuzzy sets and fuzzy logic. In Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 295. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential inclusions: Set-valued maps and viability theory. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Stević, Ž.; Maash, A.A.; Noor, M.A.; Soliman, M.S. Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation. Axioms 2023, 12, 399. https://doi.org/10.3390/axioms12040399
Khan MB, Stević Ž, Maash AA, Noor MA, Soliman MS. Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation. Axioms. 2023; 12(4):399. https://doi.org/10.3390/axioms12040399
Chicago/Turabian StyleKhan, Muhammad Bilal, Željko Stević, Abdulwadoud A. Maash, Muhammad Aslam Noor, and Mohamed S. Soliman. 2023. "Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation" Axioms 12, no. 4: 399. https://doi.org/10.3390/axioms12040399
APA StyleKhan, M. B., Stević, Ž., Maash, A. A., Noor, M. A., & Soliman, M. S. (2023). Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation. Axioms, 12(4), 399. https://doi.org/10.3390/axioms12040399