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Abstract: In this paper, we provide different variants of the Hermite–Hadamard (H · H) inequality
using the concept of a new class of convex mappings, which is referred to as up and down
harmonically s-convex fuzzy-number-valued functions (UDH s-convex FNVM) in the second
sense based on the up and down fuzzy inclusion relation. The findings are confirmed with certain
numerical calculations that take a few appropriate examples into account. The results deal with
various integrals of the 2ρσ

ρ+σ type and are innovative in the setting of up and down harmonically
s-convex fuzzy-number-valued functions. Moreover, we acquire classical and new exceptional
cases that can be seen as applications of our main outcomes. In our opinion, this will make a
significant contribution to encouraging more research.
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Hermite–Hadamard inequality; Hermite–Hadamard–Fejér inequality
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1. Introduction

The theory of convexity is a fascinating and active field of research. Many researchers
use innovative ideas and effective approaches to broaden and generalize its diverse forms
in different ways. This theory allows us to design and organize a large range of extremely ef-
ficient numerical algorithms to address and solve issues that arise in both pure and applied
sciences. Convexity has recently experienced significant development, generalization, and
extension. Numerous studies have shown that theories of inequalities and convex functions
are intimately connected. Due to numerous generalizations and extensions, the study of
convex analysis and inequalities has become an attractive, exciting, and beneficial topic
for scholars. An analogous type of a convex function, the Hermite–Hadamard inequality,
must fulfill generalized convexity in order to be established. Readers who are interested
are referred to [1–10], which explore convex functions and the related inequalities that have
recently been studied.

However, when measuring uncertainty problems, interval analysis can be a useful
technique. Its rich history extends back to Archimedes’ measurement of p, but it did not
receive the attention it merited until Moore’s [11], which was the first application of interval
analysis for automated error analysis. Numerous conventional integral inequalities have
been extended by Costa et al. [12], Flores-Franuli et al. [13], Chalco-cano et al. [14], and
others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et al. [15]
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developed an interval h-convex function and illustrated the associated integral inequality
using the interval inclusion relation. Khan et al. [16] defined an h-convex interval-valued
function in 2021 using the Kulisch–Miranker order and developed several inequalities for
these kinds of convex functions. Any two intervals might not be comparable because of
the partial order in which these two relations exist. Finding a useful order to examine
inequalities related to interval-valued functions is therefore a challenging but interesting
task. Bhunia et al. [17] calculated the cr-order, a novel rank relationship, in 2014 using
the interval’s center–radius. This connection allows for the comparison of two intervals
because it is a full order. Refer to [18–22] for related papers on interval-valued inequalities.

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional
calculus was developed not long after conventional calculus, but many scientists and
academics are now interested in learning more about its roots and fundamentals, especially
in light of the shortcomings of conventional calculus. See [23–28] and a recent survey
explanatory review paper [29] for examples. It is important to note that fractional integral
inequalities can be utilized to check the uniqueness of fractional ordinary and partial
differential equations. Integral inequalities have connections to mathematical analysis,
differential equations, discrete fractional calculus, difference equations, mathematical
physics, and convexity theory, according to [30].

In recent years, it has become clear that mathematicians strongly prefer to present
well-known inequalities using a variety of cutting-edge theories of fractional integral
operators. The books [31–33] mentioned in this context may be consulted. Işcan [34]
has initiated the exploration of the concept of a harmonic set and finds its application in
the field of inequalities. He introduced the classical Hermite–Hadamard inequalities to
harmonically convex functions. Mihai et al. [35] proposed the definition of h-harmonically
convex functions and related inequalities. Similarly, Khan et al. [36] introduced harmonic
convex functions in a fuzzy environment and explore these concepts by proposing a novel
version of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued
mappings. For more information, we refer the readers to the following articles, [37–48],
and the references therein.

The main goal of this article is to use up and down inclusion relations, more specifically,
up and down fuzzy inclusion relations, to establish a connection between the ideas of fuzzy-
number-valued analysis and fuzzy Aumann integral inequalities. We also present a new
midpoint-type H-H inequality for fuzzy-number-valued functions with up and down
convex properties. Then, using differing integrals of the 2ρσ

ρ+σ type, we provide midpoint
inequalities for the up and down harmonically convex fuzzy-valued functions. For more
studies related to convexity and nonconvexity, see [49,50].

This work is set up as follows: After examining the prerequisite material and important
details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss UDH
s-convex FNVMs with numerical estimates in Section 3. Moreover, in Section 3, we derive
fuzzy-number-valued H · H-type inequalities for UDH s-convex FNVMs. To decide
whether the predefined results are advantageous, numerical estimations of the supplied
results are also taken into consideration. Section 4 explores a quick conclusion and potential
study directions connected to the findings in this work before we finish.

2. Preliminaries

Let XC be the space of all closed and bounded intervals of R and
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of all positive intervals is denoted as X+
C and defined as

X+
C =

{[
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if ε < 0.

(3)
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erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
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we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 
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Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
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Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗
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Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
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Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
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(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
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der relation. 

  

∗

Axioms 2023, 12, x FOR PEER REVIEW 2 of 21 
 

have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
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val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
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calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 
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Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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]
, (6)

Remark 1 ([49]). For a given
[
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inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
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cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 
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Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗] ∈ RI , we say that
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗] ∈ XC, the Hausdorff–Pompeiu distance between intervals
[
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)∗,
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
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only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 
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called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
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fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 
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It is a familiar fact that (XC, dH) is a complete metric space [42,45,46].

Definition 1 ([42,43]). A fuzzy subset L of R is distinguished via the mapping
∼
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called the membership mapping of L. That is, a fuzzy subset L of R is the mapping
∼
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fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1): R→ [0, 1] .
Therefore, for further study, we have chosen this notation. We appoint E to denote the set of all fuzzy
subsets of R.

Let
∼
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are satisfied by
∼
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∼
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(3)
∼
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We appoint EC to denote the set of all fuzzy numbers of R.

Definition 2 ([38,43]). Given
∼
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for all ε ∈ [0, 1] and as
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in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
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inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
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In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
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tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
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functions in a fuzzy environment and explore these concepts by proposing a novel version 
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cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)(κ) > 0
}

. These sets

are known as ε-level sets or ε-cut sets of
∼
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Proposition 1 ([47]). Let
∼
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 

  

∈ EC. Then, the relation “ ≤F ” is given on EC as
∼
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calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)
]ε
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Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 
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and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 

  

]ε
for every ε ∈ [0, 1], and it is a partial-

order relation.
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der relation. 

  

when and only when
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)
]ε

⊇
I
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 

  

]ε

for every ε ∈ [0, 1], and it is an up and down

fuzzy inclusion relation.

Remember the approaching notions, which are offered in the literature. If
∼
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and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
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val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
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cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1),
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called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
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(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
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ε ∈ R, then, for every ε ∈ [0, 1], the arithmetic operations are defined as[∼

Axioms 2023, 12, x FOR PEER REVIEW 2 of 21 
 

have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
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of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
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ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)
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called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
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(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 
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al. [18] developed an interval h-convex function and illustrated the associated integral 
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val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
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in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
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ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 
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erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 
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Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 
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It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
more studies related to convexity and nonconvexity, see [83–96]. 

This work is set up as follows: After examining the prerequisite material and im-
portant details on inequalities and fuzzy-number-valued analysis in Section 2, we discuss 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs with numerical estimates in Section 3. Moreover, in Section 3, 
we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-

fined as Ƿ = [Ƿ∗, Ƿ∗] = ሼ𝜘 ∈ ℝ| Ƿ∗ ≤ 𝜘 ≤ Ƿ∗ሽ, (Ƿ∗, Ƿ∗ ∈ ℝ). (1)
]ε
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we derive fuzzy-number-valued 𝐻 ⋅ 𝐻-type inequalities for 𝑈𝒟ℋ 𝑠-convex ℱ𝒩𝒱ℳs. To 
decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 

2. Preliminaries 
Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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]ε

(10)

These operations follow directly from the Equations (2)–(4), respectively.

Theorem 1 ([42]). The space EC dealing with a supremum metric, i.e., such that for
∼

Axioms 2023, 12, x FOR PEER REVIEW 2 of 21 
 

have been extended by Costa et al. [15], Flores-Franuli et al. [16], Chalco-cano et al. [17], 
and others to interval-valued functions and fuzzy-valued functions. Specifically, Zhao et 
al. [18] developed an interval h-convex function and illustrated the associated integral 
inequality using the interval inclusion relation. Khan et al. [19] defined an h-convex inter-
val-valued function in 2021 using the Kulisch–Miranker order and developed several in-
equalities for these kinds of convex functions. Any two intervals might not be comparable 
because of the partial order in which these two relations exist. Finding a useful order to 
examine inequalities related to interval-valued functions is therefore a challenging but 
interesting task. Bhunia et al. [20] calculated the cr-order, a novel rank relationship, in 
2014 using the interval’s center–radius. This connection allows for the comparison of two 
intervals because it is a full order. Refer to [21–29] for related papers on interval-valued 
inequalities. 

Fractional calculus is the study of arbitrary order integrals and derivatives. Fractional 
calculus was developed not long after conventional calculus, but many scientists and ac-
ademics are now interested in learning more about its roots and fundamentals, especially 
in light of the shortcomings of conventional calculus. See [30–42] and a recent survey ex-
planatory review paper [43] for examples. It is important to note that fractional integral 
inequalities can be utilized to check the uniqueness of fractional ordinary and partial dif-
ferential equations. Integral inequalities have connections to mathematical analysis, dif-
ferential equations, discrete fractional calculus, difference equations, mathematical phys-
ics, and convexity theory, according to [44–54]. 

In recent years, it has become clear that mathematicians strongly prefer to present 
well-known inequalities using a variety of cutting-edge theories of fractional integral op-
erators. The books [55–67] mentioned in this context may be consulted. Işcan [68] has ini-
tiated the exploration of the concept of a harmonic set and finds its application in the field 
of inequalities. He introduced the classical Hermite–Hadamard inequalities to harmoni-
cally convex functions. Mihai et al. [69] proposed the definition of h-harmonically convex 
functions and related inequalities. Similarly, Khan et al. [70] introduced harmonic convex 
functions in a fuzzy environment and explore these concepts by proposing a novel version 
of Hermite–Hadamard inequalities for harmonically convex fuzzy-number-valued map-
pings. For more information, we refer the readers to the following articles, [71–82], and 
the references therein. 

The main goal of this article is to use up and down inclusion relations, more specifi-
cally, up and down fuzzy inclusion relations, to establish a connection between the ideas 
of fuzzy-number-valued analysis and fuzzy Aumann integral inequalities. We also pre-
sent a new midpoint-type H-H inequality for fuzzy-number-valued functions with up and 
down convex properties. Then, using differing integrals of the ଶఘఙఘାఙ type, we provide mid-
point inequalities for the up and down harmonically convex fuzzy-valued functions. For 
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supplied results are also taken into consideration. Section 4 explores a quick conclusion 
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Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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If Ƿ∗ = Ƿ∗, then Ƿ is referred to as degenerate. In this article, all intervals are non-
degenerate intervals. If Ƿ∗ ≥ 0, then [Ƿ∗, Ƿ∗] is referred to as a positive interval. The set 
of all positive intervals is denoted as 𝒳ା and defined as 𝒳ା = ሼ[Ƿ∗, Ƿ∗]: [Ƿ∗, Ƿ∗] ∈ 𝒳 and Ƿ∗ ≥ 0ሽ. (2)

Let 𝜖 ∈ ℝ and 𝜖 ⋅ Ƿ be defined as 

𝜖 ⋅ Ƿ = ቐ  [𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 > 0,ሼ0ሽ if 𝜖 = 0,[𝜖Ƿ∗, 𝜖Ƿ∗] if 𝜖 < 0. (3)

Then, the Minkowski difference Ƕ − Ƿ and the addition Ƿ + Ƕ and multiplication Ƿ × Ƕ for Ƿ, Ƕ ∈ 𝒳 are defined as [Ƕ∗, Ƕ∗] + [Ƿ∗, Ƿ∗]  = [Ƕ∗ + Ƿ∗, Ƕ∗ + Ƿ∗], (4)[Ƕ∗, Ƕ∗] × [Ƿ∗, Ƿ∗] = [minሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ, maxሼǶ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗, Ƕ∗Ƿ∗ሽ]  (5)[Ƕ∗, Ƕ∗] − [Ƿ∗, Ƿ∗]  = [Ƕ∗ − Ƿ∗, Ƕ∗ − Ƿ∗],  (6)

Remark 1 ([83]). For a given [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ ℝூ, we say that [Ƕ∗, Ƕ∗] ≤ூ [Ƿ∗, Ƿ∗] if and 
only if Ƕ∗ ≤ Ƿ∗, Ƕ∗ ≤ Ƿ∗, and it is a partial interval order relation. 

For [Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗] ∈ 𝒳, the Hausdorff–Pompeiu distance between intervals [Ƕ∗, Ƕ∗] 
and [Ƿ∗, Ƿ∗] is defined as 𝑑ு([Ƕ∗, Ƕ∗], [Ƿ∗, Ƿ∗]) = 𝑚𝑎𝜘ሼ|Ƕ∗ − Ƿ∗|, |Ƕ∗ − Ƿ∗|ሽ. (7)

It is a familiar fact that (𝒳, 𝑑ு) is a complete metric space [76,79,80]. 

Definition 1 ([76,77]). A fuzzy subset 𝐿 of ℝ is distinguished via the mapping Ƿ෩: ℝ → [0,1] 
called the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is the mapping Ƿ෩: ℝ → [0,1]. 
Therefore, for further study, we have chosen this notation. We appoint 𝔼 to denote the set of all 
fuzzy subsets of ℝ. 

Let Ƿ෩ ∈ 𝔼. Then, Ƿ෩ is referred to as a fuzzy number or fuzzy interval if the following prop-
erties are satisfied by Ƿ෩: 

(1) Ƿ෩ should be normal if there exist 𝜘 ∈ ℝ and Ƿ෩(𝜘) = 1; 
(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 
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decide whether the predefined results are advantageous, numerical estimations of the 
supplied results are also taken into consideration. Section 4 explores a quick conclusion 
and potential study directions connected to the findings in this work before we finish. 
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Let 𝒳 be the space of all closed and bounded intervals of ℝ and Ƿ ∈ 𝒳 be de-
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(2) Ƿ෩ should be upper semi-continuous on ℝ if for a given 𝜘 ∈ ℝ, there exists 𝜀 > 0 and 

there exists 𝛿 > 0, such that Ƿ෩(𝜘) − Ƿ෩(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 
(3) Ƿ෩  should be fuzzy convex, that is, Ƿ෩൫(1 − 𝜕)𝜘 + 𝜕𝘺൯ ≥ 𝑚𝑖𝑛 ቀǷ෩(𝜘), Ƿ෩(𝘺)ቁ  for all 𝜘, 𝘺 ∈ ℝ, and 𝜕 ∈ [0,1]; 
(4) Ƿ෩ should be compactly supported, that is, 𝑐𝑙൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ is compact. 
We appoint 𝔼 to denote the set of all fuzzy numbers of ℝ. 

Definition 2 ([72,77]). Given Ƿ෩ ∈ 𝔼 , the level sets or cut sets are given as ൣǷ෩൧ఢ =൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 𝜖ൟ for all 𝜖 ∈ [0, 1] and as ൣǷ෩൧ = ൛𝜘 ∈ ℝ| Ƿ෩(𝜘) > 0ൟ. These sets are known as 𝜖-level sets or 𝜖-cut sets of Ƿ෩. 

Proposition 1 ([81]). Let Ƿ෩, Ƕ෩ ∈ 𝔼 . Then, the relation “ ≤𝔽 ” is given on 𝔼 as Ƿ෩ ≤𝔽 Ƕ෩  when and only when ൣǷ෩൧ ≤୍ ൣǶ෩ ൧ for every ϵ ∈ [0, 1],and it is a partial-or-
der relation. 

  

)
= sup

0≤ε≤1
dH

([∼
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]ε

,
[∼
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]ε
)

, (11)

is a complete metric space, where H denotes the well-known Hausdorff metric in a space of intervals.
Now we define and discuss some properties of Riemann integral operators of interval- and

fuzzy-number-valued mappings.

Theorem 2 ([42,44]). If Y : [ρ, σ] ⊂ R→ XC is an interval-valued mapping (I·V·M) satisfying
Y(κ) = [Y∗(κ), Y∗(κ)], then Y is Aumann-integrable (IA-integrable) on [ρ, σ] when and only
when Y∗(κ) and Y∗(κ) are both integrable on [ρ, σ], such that

(IA)
∫ σ

ρ
Y(κ)dκ =

∫ σ

ρ
Y∗(κ)dκ,

∫ σ

ρ
Y∗(κ)dκ

. (12)
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Definition 3 ([48]). Let
∼
Y : I ⊂ R→ EC be referred to as F·N-V·M. Then, for every ε ∈

[0, 1] as well as ε-levels, define the family of I·V·Ms Yε : I ⊂ R→ XC satisfying that Yε(κ) =
[Y∗(κ, ε), Y∗(κ, ε)] for every κ ∈ I. Herein, for every ε ∈ [0, 1], the end point real-valued
mappings Y∗(•, ε), Y∗(•, ε) : I→ R are called the lower and upper mappings of Y.

Definition 4 ([48]). Let
∼
Y : I ⊂ R→ EC be an F·N-V·M. Then,

∼
Y(κ) is referred to as continuous

at κ ∈ I if for every ε ∈ [0, 1], Yε(κ) is continuous when and only when both the end point
mappings Y∗(κ, ε) and Y∗(κ, ε) are continuous at κ ∈ I.

Definition 5 ([44]). Let
∼
Y : [ρ, σ] ⊂ R→ EC be F·N-V·M. The fuzzy Aumann integral ((FA)

integral) of
∼
Y on [ρ, σ], denoted as (FA)

∫ σ
ρ

∼
Y(κ)dκ, is defined level-wise as

[
(FA)

∫ σ

ρ

∼
Y(κ)dκ

]
ε = (IA)

∫ σ

ρ
Yε(κ)dκ =

{∫ σ

ρ
Y(κ, ε)dκ : Y(κ, ε) ∈ S(Yε)

}
, (13)

where S(Yε) = {Y(., ε)→ R : Y(., ε) is integrable and Y(κ, ε) ∈ Yε(κ)} for every ε ∈ [0, 1].
∼
Y is (FA)-integrable on [ρ, σ] if (FA)

∫ σ
ρ

∼
Y(κ)dκ ∈ EC.

Theorem 3 ([47]). Let Y : [ρ, σ] ⊂ R→ EC be an F·N-V·M and ε-levels define the family of
I·V·Ms Yε : [ρ, σ] ⊂ R→ XC satisfying that Yε(κ) = [Y∗(κ, ε), Y∗(κ, ε)] for every κ ∈ [ρ, σ]
and for every ε ∈ [0, 1]. Then, Y is (FA)-integrable on [ρ, σ] when and only when Y∗(κ, ε) and
Y∗(κ, ε) are both integrable on [ρ, σ]. Moreover, if Y is (FA)-integrable on [ρ, σ], then

[
(FA)

∫ σ

ρ
Y(κ)dκ

]
ε =

[∫ σ

ρ
Y∗(κ, ε)dκ,

∫ σ

ρ
Y∗(κ, ε)dκ

]
= (IA)

∫ σ

ρ
Yε(κ)dκ, (14)

for every ε ∈ [0, 1].

Definition 6 ([34]). A set K = [ρ, σ] ⊂ R+ = (0, ∞) is referred to as a convex set if for all
r, y ∈ K,
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Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

∈ [0, 1] we obtain
ry

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

r+ (1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)y
∈ K. (15)

Definition 7 ([34]). Y : [ρ, σ]→ R+ is referred to as a harmonically convex function on [ρ, σ] if

Y
(

ry

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

r+ (1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)y

)
≤ (1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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∈ [0, 1], where Y(r) ≥ 0 for all r ∈ [ρ, σ]. If (11) is reversed, then Y is
referred to as a harmonically concave function on [ρ, σ].

Definition 8. ([35]). The positive real-valued function Y : [ρ, σ]→ R+ is referred to as a harmon-
ically s-convex function in the second sense on [ρ, σ] if
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

∈ [0, 1], where Y(r) ≥ 0 for all r ∈ [ρ, σ] and s ∈ [0, 1]. If (12) is reversed,
then Y is referred to as a harmonically s-concave function in the second sense on [ρ, σ]. The set of
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)(
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Definition 9. ([37]). The FNVM
∼
Y : [ρ, σ]→ EC is referred to as a convex FNVM in the

second sense on [ρ, σ] if

∼
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

s �
∼
Y(y), (18)

for all r, y ∈ [ρ, σ],

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

∈ [0, 1], where Y(r) ≥ 0 for all r ∈ [ρ, σ] and s ∈ [0, 1]. If (18) is reversed,

then
∼
Y is referred to as a concave FNVM on [ρ, σ]. The set of all convex (concave) FNVMs is

denoted as
FSX([ρ, σ],EC, s), (FSV([ρ, σ],EC, s)).

Definition 10. The FNVM
∼
Y : [ρ, σ]→ EC is referred to as an up and down harmonically

s-convex FNVM in the second sense on [ρ, σ] if

∼
Y
(

ry

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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∈ [0, 1],where
∼
Y(r) ≥F

∼
0 for all r ∈ [ρ, σ] and s ∈ [0, 1]. If (19) is reversed,

then
∼
Y is referred to as an up and down harmonically s-concave FNVM in the second sense on

[ρ, σ]. The set of all up and down harmonically s-convex (up and down harmonically s-concave)
FNVMs is denoted as

UDHFSX ([ρ, σ],EC, s)(UDHFSV([ρ, σ],EC, s)).

Theorem 4. Let [ρ, σ] be a harmonically convex set, and let
∼
Y : [ρ, σ]→ EC be an FNVM whose

parametrized form is given as Yε : [ρ, σ] ⊂ R→ K+
C ⊂ KC and defined as

Yε(r) = [Y∗(r, ε), Y∗(r, ε)], ∀r ∈ [ρ, σ]. (20)

for all r ∈ [ρ, σ], ε ∈ [0, 1]. Then,
∼
Y ∈ UDHFSX ([ρ, σ],EC, s) if and only if for all ∈ [0, 1],

Y∗(r, ε) ∈ HSX([ρ, σ],R+, s) and Y∗(r, ε) ∈ (HSV([ρ, σ],R+, s)).

Proof. The proof is similar to the proof of Theorem 2.12 (see [23]). �

Example 1. We consider the FNVMs
∼
Y :
[

1
2 , 1
]
→ EC defined as

∼
Y(r)(∂) =


∂
−r2

1−r2 ∂ ∈
[
r2, 1

]
,

5−er−∂
4−er ∂ ∈ (1, 5− er],

0 otherwise.

Then, for each ε ∈ [0, 1], we obtain Yε(r) =
[
(1− ε)r2 + ε, (1− ε)(5− er) + ε

]
.

Y∗(r, ε) ∈ HSX([ρ, σ],R+, s) and Y∗(r, ε) ∈ (HSV([ρ, σ],R+, s)) with s = 1 for each

ε ∈ [0, 1]. Hence,
∼
Y ∈ UDHFSX ([ρ, σ],EC, s).

Remark 2. If s = 1, then Definition 10 reduces to the definition of a UDH convex FNVM.
If Y∗(r, ε) = Y∗(r, ε) with ε = 1, then a UDH s-convex FNVM in the second sense

reduces to the classical harmonically s-convex function in the second sense (see [35]).
If Y∗(r, ε) = Y∗(r, ε) with ε = 1 and s = 1, then a UDH s-convex FNVM in the second

sense reduces to the classical harmonically convex function (see [34]).
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If Y∗(r, ε) = Y∗(r, ε) with ε = 1 and s = 0, then a UDH s-convex FNVM in the second
sense reduces to the classical harmonically P-function (see [35]).

Herein, we define some new outcomes by applying some mild restriction on the endpoint
functions.

Definition 11. Let
∼
Y : [ρ, σ]→ EC be an FNVM whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C ⊂ KC and defined as

Yε(r) =
[
Y*(r, ε), Y*(r, ε)

]
, ∀r ∈ [ρ, σ].

for all r ∈ [ρ, σ] and for all ε ∈ [0, 1]. Then,
∼
Y is said to be a lower UDH s-convex (s-concave)

FNVM on [ρ, σ] if

Y*

(
ry
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for all ε ∈ [0, 1].

Definition 12. Let
∼
Y : [ρ, σ]→ EC be an FNVM whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C ⊂ KC and defined as

Yε(r) =
[
Y*(r, ε), Y*(r, ε)

]
, ∀r ∈ [ρ, σ].

for all r ∈ [ρ, σ] and for all ε ∈ [0, 1]. Then,
∼
Y is said to be a lower upper UDH s-convex

(s-concave) FNVM on [ρ, σ] if
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(
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)sY*(r) +

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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sY*(y).

for all ε ∈ [0, 1].

Remark 3. If
∼
Y is alower UDH s-convex (s-concave) FNVM with s = 1, then Definition

12 reduces to Definition 9.

If
∼
Y is alower UDH s-convex (s-concave) FNVM with s = 1, then Definition 12 reduces

to the definition of anH- s-convex (s-concave) FNVM.

3. Fuzzy-Number Hermite–Hadamard Inequalities

In this section, inequalities of the Hermite–Hadamard type are established including
the UDH s-convex fuzzy-number-valued mapping for the products of two UDH s-convex
fuzzy-number-valued mappings.
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Theorem 5. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s), whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C and defined as Yε(r) = [Y∗(r, ε), Y∗(r, ε)] for all r ∈ [ρ, σ] , ε ∈ [0, 1].

If
∼
Y ∈ Fr([ρ,σ],ε), then

2s−1 �
∼
Y
(

2ρσ

ρ + σ

)
⊇F

ρσ

σ− ρ
�
∫ σ

ρ

∼
Y(r)
r2 dr ⊇F

∼
Y(ρ)⊕

∼
Y(σ)

1 + s
. (21)

If
∼
Y ∈ UDHFSV([ρ, σ],EC, s), then

2s−1 �
∼
Y
(

2ρσ

ρ + σ

)
⊆F

ρσ

σ− ρ
�
∫ σ

ρ

∼
Y(r)
r2 dr ⊆F

∼
Y(ρ)⊕

∼
Y(σ)

1 + s
. (22)

Proof. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s). Then, by hypothesis, we obtain

2s �
∼
Y
(

2ρσ

ρ + σ

)
⊇F

∼
Y
(

ρσ
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)σ
, ε
)
+ Y∗

(
ρσ

(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

σ
, ε
)

,

2sY∗
(

2ρσ
ρ+σ , ε

)
≥ Y∗

(
ρσ

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

ρ+(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)σ
, ε
)
+ Y∗

(
ρσ

(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

σ
, ε
)

.

Then,

2s∫ 1
0 Y∗

(
2ρσ
ρ+σ , ε

)
d

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

≤
∫ 1

0 Y∗
(

ρσ

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

ρ+(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)σ
, ε
)

d

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

+
∫ 1

0 Y∗
(

ρσ
(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

σ
, ε
)

d

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

,

2s∫ 1
0 Y∗

(
2ρσ
ρ+σ , ε

)
d

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

≥
∫ 1

0 Y∗
(

ρσ

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

ρ+(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)σ
, ε
)

d

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

+
∫ 1

0 Y∗
(

ρσ
(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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It follows that

2s−1Y∗
(

2ρσ
ρ+σ , ε

)
≤ ρσ

σ−ρ

∫ σ
ρ

Y∗(r,ε)
r2 dr,

2s−1Y∗
(

2ρσ
ρ+σ , ε

)
≥ ρσ

σ−ρ

∫ σ
ρ

Y∗(r,ε)
r2 dr.

That is,

2s−1
[

Y∗

(
2ρσ

ρ + σ
, ε

)
, Y∗

(
2ρσ

ρ + σ
, ε

)]
⊇I

ρσ

σ− ρ

[∫ σ

ρ

Y∗(r, ε)

r2 dr,
∫ σ

ρ

Y∗(r, ε)

r2 dr
]

.

Via Theorem 4, we obtain

2s−1 �
∼
Y
(

2ρσ

ρ + σ

)
⊇F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr. (23)

In a similar way as above, we obtain

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ⊇F

∼
Y(ρ)⊕

∼
Y(σ)

s + 1
. (24)
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Combining (23) and (24), we obtain

2s−1 �
∼
Y
(

2ρσ

ρ + σ

)
⊇F

ρσ

σ− ρ
�
∫ σ

ρ

∼
Y(r)
r2 dr ⊇F

∼
Y(ρ)⊕

∼
Y(σ)

s + 1

Hence, we obtain the required result. �

Remark 4. If s = 1, therefore, from (21), we obtain the new version of inequality that follows:

∼
Y
(

2ρσ

ρ + σ

)
⊇F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ⊇F

∼
Y(ρ)⊕

∼
Y(σ)

2
.

If s≡ 0, therefore, from (21), we obtain the new version of inequality that follows:

1
2
�
∼
Y
(

2ρσ

ρ + σ

)
⊇F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ⊇F

∼
Y(ρ)⊕

∼
Y(σ).

If
∼
Y is a lower UDH s-convex FNVM with s = 1, therefore, from (21), we obtain the inequality

that follows (see [36]):

∼
Y
(

2ρσ

ρ + σ

)
≤F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ≤F

∼
Y(ρ)⊕

∼
Y(σ)

2
.

If
∼
Y is a lower UDH s-convex FNVM with s≡ 0, therefore, from (21), we obtain the inequality

that follows (see [36]):

1
2
�
∼
Y
(

2ρσ

ρ + σ

)
≤F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ≤F

∼
Y(ρ)⊕

∼
Y(σ).

Let Y∗(r, ε) = Y∗(r, ε) with ε = 1. Then, from (21) we obtain the inequality that follows (see [35]):

2s−1Y
(

2ρσ

ρ + σ

)
≤

ρσ

σ− ρ

∫ σ

ρ

Y(r)
r2 dr ≤ 1

s + 1
[Y(ρ) + Y(σ)].

If Y∗(r, ε) = Y∗(r, ε) with ε = 1 and s = 1, therefore, from (21), we obtain the inequality that
follows (see [34]):

Y
(

2ρσ

ρ + σ

)
≤

ρσ

σ− ρ

∫ σ

ρ

Y(r)
r2 dr ≤ Y(ρ) + Y(σ)

2
.

Let Y∗(r, ε) = Y∗(r, ε) with ε = 1 and s = 0. Then, from (21), we obtain the inequality that
follows (see [35]):

1
2

Y
(

2ρσ

ρ + σ

)
≤

ρσ

σ− ρ

∫ σ

ρ

Y(r)
r2 dr ≤ Y(ρ) + Y(σ).
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Theorem 6. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s) whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C and defined as Yε(r) = [Y∗(r, ε), Y∗(r, ε)] for all r ∈ [ρ, σ], ε ∈ [0, 1].

If
∼
Y ∈ Fr([ρ,σ],ε), then

4s−1 �
∼
Y
(

2ρσ

ρ + σ

)
⊇F Ω2 ⊇F

ρσ

σ− ρ
� (FA)

∫ σ

ρ

∼
Y(r)
r2 dr ⊇F Ω1 ⊇F

1
s + 1

�
[∼

Y(ρ)⊕
∼
Y(σ)

]
�
[

1
2
+

1
2s

]
, (25)

where

Ω1 =
1

s + 1
�

∼Y(ρ)⊕ ∼Y(σ)
2

⊕
∼
Y
(

2ρσ

ρ + σ

),

Ω2 = 2s−2 �
[∼

Y
(

4ρσ

ρ + 3σ

)
⊕
∼
Y
(

4ρσ

3ρ + σ

)]
,

and Ω1 = [Ω1∗, Ω1
∗], Ω2 = [Ω2∗, Ω2

∗].

If
∼
Y ∈ UDHFSV([ρ, σ],EC, s), then inequality (21) is reversed.

Proof. Taking
[
ρ, 2ρσ

ρ+σ

]
, we obtain

2s �
∼
Y

 ρ
4ρσ
ρ+σ
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

2ρσ
ρ+σ

, ε

)
,

2sY∗
(

ρ
4ρσ
ρ+σ

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

ρ+(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)
2ρσ
ρ+σ

+
ρ

4ρσ
ρ+σ

(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

2ρσ
ρ+σ

, ε

)
≥ Y∗

(
ρ

2ρσ
ρ+σ

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

ρ+(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)
2ρσ
ρ+σ

, ε

)
+ Y∗

(
ρ

2ρσ
ρ+σ

(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

2ρσ
ρ+σ

, ε

)
.

In consequence, we obtain

2s−2Y∗
(

4ρσ
ρ+3σ , ε

)
≤ ρσ

σ−ρ

∫ 2ρσ
ρ+σ

ρ
Y∗(r,ε)

r2 dr,

2s−2Y∗
(

4ρσ
ρ+3σ , ε

)
≥ ρσ

σ−ρ

∫ 2ρσ
ρ+σ

ρ
Y∗(r,ε)

r2 dr.

That is,

2s−2
[

Y∗

(
4ρσ

ρ + 3σ
, ε

)
, Y∗

(
4ρσ

ρ + 3σ
, ε

)]
⊇I

ρσ

σ− ρ

[∫ 2ρσ
ρ+σ

ρ

Y∗(r, ε)

r2 dr,
∫ 2ρσ

ρ+σ

ρ

Y∗(r, ε)

r2 dr

]
.

It follows that

2s−2 �
∼
Y
(

4ρσ

ρ + 3σ

)
⊇F

ρσ

σ− ρ
�
∫ 2ρσ

ρ+σ

ρ

∼
Y(r)
r2 dr. (26)

In a similar way as above, we obtain

2s−2 �
∼
Y
(

4ρσ

3ρ + σ

)
⊇F

ρσ

σ− ρ
�
∫ σ

2ρσ
ρ+σ

∼
Y(r)
r2 dr. (27)



Axioms 2023, 12, 399 11 of 19

Combining (26) and (27), we obtain
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Hence, Theorem 6 has been proved. �

Theorem 7. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s) and

∼
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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, (29)

where
∼
Λ(ρ, σ) =

∼
Y(ρ)⊗

∼
U (ρ)⊕

∼
Y(σ)⊗

∼
U (σ),

∼
∂(ρ, σ) =

∼
Y(ρ)⊗

∼
U (σ)⊕

∼
Y(σ)⊗

∼
U (ρ), and

Λε(ρ, σ) = [Λ∗((ρ, σ), ε), Λ∗((ρ, σ), ε)] and ∂ε(ρ, σ) = [∂∗((ρ, σ), ε), ∂∗((ρ, σ), ε)].
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Proof. Since
∼
Y,
∼
U are UDH s-convex FNVM s-convex FNVMs, then, for each ε ∈ [0, 1],

we obtain

Y∗
(

ρσ
(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

sY∗(ρ, ε) + (1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)sU ∗(σ, ε).

From the definition of the UDH s-convex FNVM s-convexity of FNVMs, it follows that
∼
Y(r) ≥F

∼
0 and

∼
U (r) ≥F

∼
0, so
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Integrating both sides of the above inequality on [0, 1] we obtain
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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that is,

ρσ
σ−ρ

[∫ σ
ρ Y∗(r, ε)×U∗(r, ε)dr,

∫ σ
ρ Y∗(r, ε)×U ∗(r, ε)dr

]
⊇I [Λ∗((ρ, σ), ε), Λ∗((ρ, σ), ε)]

∫ 1
0
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

⊕
∼
∂(ρ, σ)

∫ 1

0

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

s(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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∼
Y ∈ UDHFSX ([ρ, σ],EC, s),

∼
U ∈ UDHFSX ([ρ, σ],EC, s), whose

parametrized forms are given as Yε,Uε : [ρ, σ] ⊂ R→ K+
C and defined as
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

sY∗(ρ, ε) + (1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

sU ∗(σ, ε)
)

+
(
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

sY∗(σ, ε)
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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s}Λ∗((ρ, σ), ε)

]
,

Integrating this on [0, 1], we obtain

22s−1Y∗
(

2ρσ
ρ+σ , ε

)
×U∗

(
2ρσ
ρ+σ , ε

)
≤ 1

σ−ρ

∫ σ
ρ Y∗(r, ε)×U∗(r, ε)dr

+Λ∗((ρ, σ), ε)
∫ 1
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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Theorem 8 has been proved.
First, we will derive the following inequality, which is referred to as the right (or first)

fuzzy H · H Fejér inequality, which is related to the right portion of the classical H · H Fejér
inequality for UDH s-convex FNVMs via up and down fuzzy order relations. �

Theorem 9. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s), whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C and defined as Yε(r) = [Y∗(r, ε), Y∗(r, ε)] for all r ∈ [ρ, σ], ε ∈ [0, 1].

If
∼
Y ∈ Fr([ρ,σ],ε) and B : [ρ, σ]→ R,B

(
1

1
ρ +

1
σ−

1
r

)
= B(r) ≥ 0, then

ρσ

σ− ρ
(FA)

∫ σ

ρ

∼
Y(r)
r2 B(r)dr ⊇F

[∼
Y(ρ)⊕

∼
Y(σ)

]∫ 1

0
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

, (31)

and if
∼
Y ∈ UDHFSV([ρ, σ],EC, s), then inequality (31) is reversed.

Proof. Let Y be an s-convex FNVM. Then, for each ε ∈ [0, 1], we obtain

Y∗
(

ρσ
(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

)ρ+

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 

Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
  

σ
, ε
)

B
(

ρσ
(1−

Axioms 2023, 12, x FOR PEER REVIEW 5 of 21 
 

Definition 6 ([68]). A set 𝐾 = [𝜌, 𝜎] ⊂ ℝା = (0, ∞) is referred to as a convex set if for all 𝓇, 𝔶 ∈𝐾, ϣ ∈ [0, 1] we obtain 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶 ∈ 𝐾.  (15)

Definition 7 ([68]). 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmonically convex function on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)𝛶(𝓇) + ϣ𝛶(𝔶),  (16)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎]. If (11) is reversed, then 𝛶 
is referred to as a harmonically concave function on [𝜌, 𝜎]. 
Definition 8. ([69]). The positive real-valued function 𝛶: [𝜌, 𝜎] → ℝା is referred to as a harmon-
ically 𝑠-convex function in the second sense on [𝜌, 𝜎] if 𝛶 ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ≤ (1 − ϣ)௦𝛶(𝓇) + ϣ௦𝛶(𝔶),   (17)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (12) is re-
versed, then 𝛶 is referred to as a harmonically 𝑠-concave function in the second sense on [𝜌, 𝜎]. 
The set of all harmonically 𝑠-convex (harmonically 𝑠-concave) functions is denoted as 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
Definition 9. ([71]). The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as a convex ℱ𝑁𝒱ℳ in the sec-
ond sense on [𝜌, 𝜎] if 𝛶෨൫(1 − ϣ)𝓇 + ϣ𝔶൯ ≤𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶), (18)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶(𝓇) ≥ 0 for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (18) is re-
versed, then 𝛶෨  is referred to as a concave ℱ𝑁𝒱ℳ on [𝜌, 𝜎]. The set of all convex (concave) ℱ𝑁𝒱ℳs is denoted as 𝐹𝑆𝑋([𝜌, 𝜎], 𝔼, 𝑠), ൫𝐹𝑆𝑉([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Definition 10. The ℱ𝑁𝒱ℳ 𝛶෨: [𝜌, 𝜎] → 𝔼 is referred to as an up and down harmonically 𝑠-
convex ℱ𝑁𝒱ℳ in the second sense on [𝜌, 𝜎] if 𝛶෨ ቀ 𝓇𝔶ϣ𝓇ା(ଵିϣ)𝔶ቁ ⊇𝔽 (1 − ϣ)௦ ⊙ 𝛶෨(𝓇) ⊕ ϣ௦ ⊙ 𝛶෨(𝔶),  (19)

for all 𝓇, 𝔶 ∈ [𝜌, 𝜎], ϣ ∈ [0, 1], where 𝛶෨(𝓇) ≥𝔽 0෨  for all 𝓇 ∈ [𝜌, 𝜎] and 𝑠 ∈ [0, 1]. If (19) is re-
versed, then 𝛶෨  is referred to as an up and down harmonically 𝑠-concave ℱ𝑁𝒱ℳ in the second 
sense on [𝜌, 𝜎]. The set of all up and down harmonically 𝑠-convex (up and down harmonically 𝑠-
concave) ℱ𝑁𝒱ℳ𝑠 is denoted as 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) ൫𝒰𝒟ℋℱ𝒮𝒱([𝜌, 𝜎], 𝔼, 𝑠)൯. 
Theorem 4. Let [𝜌, 𝜎] be a harmonically convex set, and let 𝛶෨: [𝜌, 𝜎] → 𝔼  be an ℱ𝑁𝒱ℳ 
whose parametrized form is given as 𝛶ఢ: [𝜌, 𝜎] ⊂ ℝ → 𝒦ା ⊂ 𝒦 and defined as 𝛶ఢ(𝓇) = [𝛶∗(𝓇, 𝜖), 𝛶∗(𝓇, 𝜖)], ∀ 𝓇 ∈ [𝜌, 𝜎]. (20)

for all 𝓇 ∈ [𝜌, 𝜎], 𝜖 ∈ [0, 1]. Then, 𝛶෨ ∈ 𝒰𝒟ℋℱ𝒮𝒳([𝜌, 𝜎], 𝔼, 𝑠) if and only if for all ∈ [0, 1], 𝛶∗(𝓇, 𝜖) ∈ 𝐻𝑆𝑋([𝜌, 𝜎], ℝା, 𝑠) and 𝛶∗(𝓇, 𝜖) ∈ ൫𝐻𝑆𝑉([𝜌, 𝜎], ℝା, 𝑠)൯. 
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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.

Since B is symmetric, then

= 2[Y∗(ρ, ε) + Y∗(σ, ε)]
∫ 1
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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= ρσ
σ−ρ

∫ σ
ρ Y∗(r, ε)B(r)dr.

(35)

From (34) and (35), we obtain

ρσ
σ−ρ

∫ σ
ρ Y∗(r, ε)B(r)dr

≤ [Y∗(ρ, ε) + Y∗(σ, ε)]
∫ 1

0
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Proof. The proof is similar to the proof of Theorem 2.12 (see [30]). □ 
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that is, [
ρσ

σ−ρ

∫ σ
ρ Y∗(r, ε)B(r)dr, ρσ

σ−ρ

∫ σ
ρ Y∗(r, ε)B(r)dr

]
⊇I [Y∗(ρ, ε) + Y∗(σ, ε), Y∗(ρ, ε) + Y∗(σ, ε)]

∫ 1
0
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,

and this concludes the proof.
Next, we construct the first H·H Fejer inequality for a UDH s-convex FNVM s-

convex FNVM, which first generalizes the H·H Fejer inequality for the classical harmoni-
cally convex function. �

Theorem 10. Let
∼
Y ∈ UDHFSX ([ρ, σ],EC, s), whose parametrized form is given as

Yε : [ρ, σ] ⊂ R→ K+
C and defined as Yε(r) = [Y∗(r, ε), Y∗(r, ε)] for all r ∈ [ρ, σ], ε ∈ [0, 1].

If
∼
Y ∈ Fr([ρ,σ],ε) and B : [ρ, σ]→ R,B

(
1

1
ρ +

1
σ−

1
r

)
= B(r) ≥ 0, then

2s−1
∼
Y
(

2ρσ

ρ + σ

)∫ σ

ρ

∼
Y(r)
r2 dr ⊇F (FA)

∫ σ

ρ

∼
Y(r)
r2 B(r)dr. (36)

If
∼
Y ∈ UDHFSV([ρ, σ],EC, s), then inequality (36) is reversed.

Proof. Since Y is s-convex, then for ε ∈ [0, 1], we obtain

Y∗
(

2ρσ
ρ+σ , ε

)
≤ 1

2s

(
Y∗
(

ρσ
(1−
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∫ σ
ρ Y∗(r, ε)B(r)dr,
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from (38) and (39), we obtain
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2ρσ
ρ+σ , ε

)
≤ 21−s∫ σ

ρ B(r)dr
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ρ Y∗(r, ε)B(r)dr,

Y∗
(

2ρσ
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)
≥ 21−s∫ σ

ρ B(r)dr
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From this, we obtain

[
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2ρσ
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)
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)]
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21−s∫ σ
ρ B(r)dr

[∫ σ
ρ Y∗(r, ε)B(r)dr,
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ρ Y∗(r, ε)B(r)dr
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that is,
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∼
Y
(

2ρσ

ρ + σ

)∫ σ

ρ

∼
Y(r)
r2 dr ⊇F (FA)

∫ σ

ρ

∼
Y(r)
r2 B(r)dr

Then, we complete the proof. �

Remark 5. If B(r) = 1, therefore, from (31) and (36), we obtain inequality (21).
If s = 1, then from inequalities (31) and (36), we acquire the inequality for harmonically

convex FNVMs (see [36]).
If Y∗(r, ε) = Y∗(r, ε) with ε = 1 and s = 1, then from inequalities (31) and (36), we acquire

the inequality forthe classical harmonically convex function.

4. Conclusions

Incorporating an up and down fuzzy relation and the integral inequalities that come
with it is a novel strategy that was examined in this paper. The fuzzy Aumann integral
operator with fuzzy number values was used to generalize Hermite–Hadamard inequalities.
Future research on the Hadamard–Mercer-type and other related integral inequalities will
be very fascinating to see how the concepts of cr-convex fuzzy-number-valued functions
and interval-valued functions are applied.

The techniques and ideas discussed in this work can be used to examine distinct
convex inequalities, with possible applications in optimization and differential equations
with convex shapes.
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