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Abstract: Win proved a very famous conclusion that states the graph G with connectivity κ(G),
independence number α(G) and α(G) ≤ κ(G) + k − 1 (k ≥ 2) contains a spanning k-ended tree.
This means that there exists a spanning tree with at most k leaves. In this paper, we strengthen the
Win theorem to the following: Let G be a simple 2-connected graph such that |V(G)| ≥ 2κ(G) + k,
α(G) ≤ κ(G) + k (k ≥ 2) and the number of maximum independent sets of cardinality κ + k is at
most n− 2κ− k + 1. Then, either G contains a spanning k-ended tree or a subgraph of Kκ ∨ ((k + κ−
1)K1 ∪ Kn−2κ−k+1).
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1. Introduction

Notation regarding graph theory is not covered in this paper. We refer the reader
to [1]. Let G = (V(G), E(G)) be a graph satisfying vertex set V(G) and edge set E(G).
We denote the set of vertices adjacent to v in G as N(v). We write N(X) =

⋃
x∈X

N(x) for

X ⊆ V(G). We also denote the subgraph of G induced by S as G[S] for S ⊆ V(G). Let H1
and H2 be two subgraphs of G which vertex disjoint, and P be a path of G. A path xPy in
G with end vertices x, y ∈ V(G) is called a path from H1 to H2 if V(xPy) ∩V(H1) = {x}
and V(xPy) ∩ V(H2) = {y}. (x, U)-path is a path from {x} to a vertex set U. We write
an (x, U)-fan of width k for F ⊆ G if F is a union of (x, U)-paths P1, P2, . . . , Pk, where
V(Pi) ∩ V(Pj) = {x} for i 6= j. Let G1 and G2 be two subgraphs of G. We denote by xG1
(G1x, respectively) the Hamilton path of G[{x} ∪V(G1)], which starts at x (terminates at x,
respectively). We denote by xG1y the Hamilton path of G[V(G1) ∪ {x, y}], which starts at
x and terminates at y. We denote by G1xG2 the Hamilton path of G[V(G1) ∪ {x} ∪V(G2)].
A nontrivial graph, G, is considered k-connected if the maximum number of pairwise
internally disjoint xy-paths for any two distinct vertices, x and y, is greater than or equal
to k. A trivial graph is considered 0-connected or 1-connected, but it is not considered k-
connected for any k greater than 1. The connectivity, κ(G), of G is defined as the maximum
value of k for which G is k-connected.

If a graph contains a Hamilton path, then the graph is said traceable, and if a graph
contains a Hamilton cycle, then the graph is said hamiltonian. The sufficient conditions
under which a graph can be traceable involving connectivity (κ(G)) and independence number
(α(G)) were given by Chvátal and Erdős in 1972.

Theorem 1. (Chvátal and Erdős, [2]) If a graph G with |V(G)| ≥ 3 satisfies the conditions α(G) ≤
κ(G), α(G) ≤ κ(G) + 1, respectively, then G is Hamiltonian and traceable, respectively.

Theorem 1 has been extended in various directions, as documented in previous stud-
ies [3–8]. For recent results, see [9–12]. Fouquet and Jolivet [13] conjecture whether a
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graph’s circumference can have a best possible lower bound when its independence num-
ber exceeds its connectivity. This has been proved by Suil O et al.

Theorem 2. (Suil O et al., [14]) If G is a simple graph such that |V(G)| = n and α(G) ≥ κ(G),

then G contains a cycle with length of at least
κ(G)(n− α(G)− κ(G))

α(G)
.

The number of maximum independent sets of H for a subgraph H ⊆ G is denoted by
m(H). In their study [15], Chen et al. presented the following theorem that generalizes
Theorem 1 by bound m(G). Specifically, the authors demonstrated that expanding the
independence number (i.e., α(G) ≤ κ(G) + 2) slightly and bounding m(G) does not alter
the traceability of G. It is worth noting that Ks represents a complete graph with s vertices,
while Ks is the complement of Ks. Additionally, the join G ∨ H of disjoint graphs G and H
is obtained by joining each vertex of G to each vertex of H in the graph G + H.

In the following, we construct three graphs which are excluded. Let Hi(ki) be
a copy of Kki

where i = 1, 2. The graph F0(k1, k2) is defined as (H1(k1) ∨ H2(k2)) ∪
Kn−k1−k2 ∪ M1(k2), where n − k1 − k2 ≥ k2 and M1(k2) is a matching of cardinality k2
between H2(k2) and Kn−k1−k2 . If n − k1 − k2 ≥ k2, then F11(k1, k2) is obtained from
F0(k1, k2) by joining exactly two (nonadjacent) vertices of H2(k2)) or by joining all ver-
tices of V(Kn−k1−k2) \ V(M1(k2)) and some fixed vertex w0 ∈ H2(k2). Let F00(k1, k2) be
the graph (H1(k1) ∨ H2(k2)) ∪ Kn−k1−k2 ∪M2(k2), where n− k1 − k2 ≤ k2 and M2(k2) is
a matching of cardinality n − k1 − k2 between Kn−k1−k2 and H2(k2). Define the graph
F2(k1, k2) = Kk2 ∨ (Kk1 ∪ Kn−k1−k2); see Figure 1.

Kk1

Kn k k- -1 2

F00( , )k k1 2

Kk2

M k2 2( )

Y

Kk1

Kn k k- -1 2

F0( , )k k1 2
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M k1 2( )

Y

Kk1

Kk2

Kn k k- -1 2

F2( , )k k1 2

Y

Figure 1. F0(k1, k2), F00(k1, k2) and F2(k1, k2).

Theorem 3. (Chen et al., [15]) Let G be a 2-connected graph with |V(G)| ≥ 2κ2(G), κ(G) = κ,
α(G) ≤ κ + 1 and m(G) ≤ n− 2κ. Then, either G is Hamiltonian or F11(κ, κ) ⊆ G ⊆ F2(κ, κ),
where F11(κ, κ) and F2(κ, κ) are two graphs defined above.

Theorem 4. (Chen et al., [15]) Let G be a connected graph with |V(G)| ≥ 2κ2(G), κ(G) = κ,
α(G) ≤ κ + 2 and m(G) ≤ n − 2κ − 1. Then either G is traceable or F11(κ + 1, κ) ⊆ G ⊆
Kκ ∨ ((κ + 1)K1 ∪ Kn−2κ−1), where F11(κ + 1, κ) is the graph defined above.

A Hamilton path is viewed as a spanning tree with exactly two leaves. This perspective
allows for the generalization of sufficient conditions for a graph to be traceable to those
for a spanning tree with at most k leaves. A tree is called a k-ended tree if it has at most k
leaves. Our focus now shifts to spanning k-ended trees. Clearly, if s ≤ t, then a spanning
s-ended tree is also a spanning t-ended tree. Theorem 1 demonstrates that each graph G
such that α(G) ≤ κ(G) + 1 is traceable. In [16], Win proved the following theorem, which
generalizes Theorem 1.

Theorem 5. (Win, [16]) Let G be a connected graph and let k ≥ 2 be an integer. If α(G) ≤ κ(G) + k− 1,
then G contains a spanning k-ended tree.

In [17], Lei et al. extend Theorem 5 in cases when κ(G) = 1 to the following direction.
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Theorem 6. (Lei et al., [17]) Let k ≥ 3 and G be a connect graph with |V(G)| ≥ 2k + 2,
α(G) ≤ 1 + k and m(G) ≤ n− 2k− 2. Then G contains a spanning k-ended tree.

In [15], Chen et al. generalize Theorem 1 by bound m(G). The authors demonstrated
that expanding the independence number (i.e., α(G) ≤ κ(G) + 2) slightly and bounding
m(G) does not alter the traceability of G.

In this paper, our focus will be on the existence of spanning k-ended tree. We will
work on extending Theorem 5 to a more general case. A natural question is whether
expanding the independence number can alter the existence of the spanning k-ended tree.
In the following section, we introduce the k-ended system, which is an important tool for
studying the k-ended tree.

k-Ended System

If there exists a set of paths and cycles where the elements are pairwise vertex-disjoint,
we refer to it as a system. This system is often viewed as a subgraph. Let S be a system in a
graph. For S ∈ S , we put f (S) = 2 if S is a path of order at least 3 and f (S) = 1 otherwise
(i.e., S is a vertex, an edge or a cycle). We write V(S) = ⋃

S∈S
V(S) and f (S) = ∑

S∈S
f (S). If

f (S) ≤ k, S is called a k-ended system. Moreover, we call S a spanning k-ended system of G, if
V(S) = V(G). Let

SP = {S ∈ S : f (S) = 2}, SC = {S ∈ S : f (S) = 1}.

Then,
S = SP ∪ SC, V(S) =

⋃
S∈S

V(S).

Additionally, V(SP) and V(SC) can be defined in a similar manner. We use |S|, |SP|
and |SC| to represent the number of elements in S , SP and SC, respectively. For each S ∈ S ,
we assign an orientation denoted by the symbol <, where x < y if x precedes y in the
orientation. Let

−→
S be the orientation of S ∈ S and let

←−
S be the reverse orientation of

−→
S

for S ∈ S . By assigning an orientation to each S ∈ S , we identify S as a system with an
orientation, where each element is ordered relative to the others.

Let S be a system with a defined orientation. For any P ∈ SP, we define vL(P) and
vR(P) as the two end-vertices of P such that vL(P) < vR(P). Additionally, for each C ∈ SC,
we select an arbitrary vertex vC within C. These definitions will be used in subsequent
analyses. Then define

End(SP) =
⋃

P∈SP

{vL(P), vR(P)}, End(SC) =
⋃

C∈SC

{vC}, End(S) = End(SP) ∪ End(SC).

For S ∈ S and x ∈ V(S), we write the first, second and ith predecessor (successor,
respectively) of x as x−, x−− and xi− (x+, x++ and xi+, respectively). For convenience, we
write x = x+ = x−for K1 = x and y = x+ = x− for K2 = xy.

For P ∈ SP, if x = vR(P) (x = vL(P), respectively), we have only the predecessor
of vR(P) (successor of vL(P), respectively). For {x, y} ⊆ V(P), we denote by the section
P(x, y) a path x+x2+x3+...xs+(= y−) of consecutive vertices of P and denote by the section
P[x, y] a path xx+x2+...xs+(= y) of consecutive vertices of P. Moreover, if x = y, then the
section P[x, y] is trivial.

The following lemma illustrates the importance of k-ended systems for spanning
k-ended trees.

Lemma 1. (Win, [16]) Let k ≥ 2 be an integer and let G be a connected simple graph. If G
contains a spanning k-ended system, then G also contains a spanning k-ended tree.
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A k-ended system S in G is considered a maximal k-ended system if there is no other
k-ended system Ŝ in G satisfying V(S) ⊂ V(Ŝ). The following lemma presents some
useful properties of k-ended systems. It is important to note that two distinct elements
of S are connected by a path in G− V(S) if there exists a path in G whose end-vertices
are in elements of S and whose inner vertices are not all contained in V(S). It is worth
mentioning that a path may not have any inner vertex.

Lemma 2. (Akiyama and Kano, [18]) Let k ≥ 2 be an integer and G be a connected simple
graph. Assume that G does not contain a spanning k-ended system and let S be a maximal
k-ended system of G satisfying the cardinality of the maximum value of SP subject to the
maximum value of V(S). Then the following characterizations are true.

(i) There is no path connecting two distinct elements of SC whose inner vertices are in
V(G) \V(S).

(ii) There is no path connecting an element of SC and one end-vertex of an element of
SP whose inner vertices are in V(G) \V(S).

(iii) There is no path connecting an end-vertex of an element of SP and an end-vertex
of another element of SP whose inner vertices are in V(G) \V(S).

(iv) There are no two internally disjoint paths Q1 and Q2 connecting two distinct
elements of SC whose inner vertices are in V(G) \V(S) with |V(Q1) ∩V(Q2)| = 1.

2. Methods

In this paper, our focus will be on the existence of spanning k-ended tree. We will
work on extending Theorem 5 to a more general case. We tried to prove that it does not
change the existence of spanning k-ended tree if we expand the independent numbers a
little bit and bound m(G). The proof will follow an approach similar to Theorem 6, but with
additional considerations for the increased connectivity of the graph. Our proof follows
a method of contradiction. We primarily utilize the crucial tool of the maximal k-ended
system, as mentioned above, to derive contradictions. The subsequent section is the crucial
property of the maximal k-ended system which we obtained. This property plays a pivotal
role in our proof.

Important Properties of Maximal k-Ended System

In this section, for convenience, we assume the following: Let k ≥ 2 and G be a
graph with |V(G)| > 2κ(G) + k, κ(G) = κ ≥ 2, α(G) = κ + k and m(G) ≤ n− 2κ − k + 1.
Suppose that there is no spanning k-ended system in G and let S be a k-ended system of G
satisfying the following:

(I) The cardinality of the set V(S) is maximized.
(II) The cardinality of SP is maximized subject to condition (I).

Then S is a set of subgraphs of G satisfying the hypothesis of Lemma 2. Let H = G−V(S).
Then |V(H)| ≥ 1. Let w ∈ (V(G)− V(S). The following lemma is easily obtained from
the selection of S and we omit the proof.

Lemma 3. The following characterizations are true.

(1) For any P ∈ SP, vL(P) and vR(P) are not in N(H).
(2) For any C ∈ SC such that C ∼= K1, N(H) ∩V(C) = ∅.

By the Fan Lemma, there exists a (w, V(S))-fan L with width κ. For S ∈ S with
V(S) ∩ V(L) 6= ∅, let V(S) ∩ V(L) = {uS,1, · · · , uS,tS} (where uS,1, · · · , uS,tS are the ver-
tices of S along the direction of S) and LS,i be the path of L between w and uS,i. Then
U =

⋃
S∈S{V(S) ∩V(L)} and LS = {LS,1, · · · , LS,tS} is the set of paths between w and S.

Denote U+ = {u+ : u ∈ U} and U− = {u− : u ∈ U}. By Lemma 3(1),(2), U+ and U− are
well defined and hence |U+| = |U−| = |U|.

The proof of the following lemmas can be easily obtained from the choice of S and we
will omit it.
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Lemma 4. A graph G cannot have a k′-ended system T that includes all vertices in a k-ended
system S , where k′ < k.

Lemma 5. The following characterizations are true:

(1) Both U+ and End(S) are independent sets of G.
(2) N(w) ∩U+ = ∅.
(3) | {C ∈ SC : V(C) ∩U 6= ∅} |≤ 1.
(4) Let x ∈ U+ ∩V(P), where P ∈ SP. Then N(x)∩ (End(SP) \ {vR(P)}) = ∅. Furthermore,

if x 6= u+
P,tP

, then N(x) ∩ End(SP) = ∅.

Lemma 6. Let v1 ∈ End(S) and S1 ∈ S with v1 ∈ V(S1). Then the following statements
are true:

(1) [(N(v1) ∩ V(S))− ∪ (N(v1) ∩ V(S))+] ∩ N(v) = ∅ for any v ∈ V(SC − {S, S1}) ∪
End(S − {S, S1}) and S ∈ S − {S1}.

(2) If v1 = vL(P) (v1 = vR(P), respectively), then (N(v1) ∩V(S1))
− ∩ N(v) = ∅ (N(v1) ∩

(N(v) ∩V(S1))
− = ∅, respectively) for any v ∈ V(SC) ∪V(H) ∪ (End(S) \ {v1}).

Let Y be an independent set of G with size k + κ. Then the following lemma holds.

Lemma 7. Let S′ belong to V(G) which satisfies S′ ∩Y having precisely one vertex, denoted as z,
i.e, S′ ∩Y = {z}. If N(x) ∩Y = {z} for each x ∈ S′ \ {z}, then G[S′] forms a clique.

Proof of Lemma 7. We begin by assuming the opposite and using a proof by contradiction.
Suppose that x1x2 /∈ E(G) for some pair of vertices x1 and x2 in S′, where x1 6= x2. Then,
(Y \ {z})∪ {x1, x2} forms an independent set of G with a size of k + κ + 1. This contradicts
the fact that α(G) = k + κ. Hence, G[S′] is a clique.

For convenience, suppose that x is an element of V(P). For each P ∈ SP, we define
−→Q (x, P) as follows:

−→Q (x, P) =


vR(P), if x = vR(P),
xvR(P), if x+ = vR(P),
x
−→
P vR(P)x, if xvR(P) ∈ E(G) (x 6= vR(P), x+ 6= vR(P)).

Similarly, we define
←−Q (x, P) as follows:

←−Q (x, P) =


x = vL(P), if x = vL(P),
xvL(P), if x− = vL(P),
x
←−
P vL(P)x, if xvL(P) ∈ E(G) (x 6= vL(P), x− 6= vL(P)).

Therefore, f (
−→Q (x, P)) = 1 and f (

←−Q (x, P)) = 1. We say that C(G0) is a spanning
subgraph of G0 satisfying f (C(G0)) = 1 if G0 ⊆ G.

Some properties of S are described in the following lemmas, as proved in Appendix B.

Lemma 8. U ⊆ V(SP) and | SP |= 1.

By Lemma 8, SP = {P} (say). Then U = V(P) ∩V(L) = {uP,1, · · · , uP,tP} and tP = κ.
For convenience, denote that U = {u1, u2, · · · , uκ} and

X =

{
End(S) ∪U+ ∪ {w}, if End(S) ∩U+ 6= ∅,
(End(S) ∪U+ ∪ {w}) \ {u+

κ }, i f End(S) ∩U+ = ∅.

Lemma 9. The following statements hold.
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(1) N(u+
κ ) ∩ End(SC) 6= ∅ or f (

−→Q (u+
κ , P)) = 1 and N(u−1 ) ∩ End(SC) 6= ∅ or f (

←−Q (u−1 ,
P)) = 1.

(2) If f (
−→Q (u+

κ , P)) 6= 1 and f (
←−Q (u−1 , P)) 6= 1, then there exist at least two elements C,

C′ ∈ SC such that u+
κ vC′ ∈ E(G), u−1 vC ∈ E(G).

(3) X forms an independent set of G with size k + κ.
(4) If N(u+

κ ) ∩ End(SC) 6= ∅ and u2+
κ 6= vR(P), then u2+

κ vR(P) ∈ E(G).
(5) Let y ∈ V(P) satisfy |V(P[y+, vR(P)])| ≥ 1, yvR(P) ∈ E(G) and V(P[y, vR(P)]) ∩U =

∅. Then G[V(P[y+, vR(P)])] forms a clique. Additionally, if the intersection of N(y) and X
is {vR(P)}, then the graph G[V(P[y, vR(P)])] forms a clique.

(6) G[V(C)] forms a clique for any C ∈ SC. Furthermore, N(x) ∩ X = {vC} for any
x ∈ V(C) \ {vC}.

3. Results and Discussion

In [17], the authors provide a novel extension by imposing a limit on the maximum
number of independent sets, although the limit is not sharp. Note that G has no spanning
k1 + 1− k2-ended tree for each G ∈ {F0(k1, k2), F00(k1, k2), F2(k1, k2)}. In this paper, we
extend Theorem 5 to the case where κ(G) ≥ 2 and the bound on the number of maximum
independent sets is already sharp.

Theorem 7. Let k ≥ 2 and G be a graph with |V(G)| ≥ 2κ(G) + k , κ(G) = κ ≥ 2, α(G) ≤
κ + k and m(G) ≤ n − 2κ − k + 1. Then G contains a spanning k-ended tree, unless either
F0(k + κ − 1, κ) ⊆ G ⊆ F2(k + κ − 1, κ) for n > 3κ + k − 1, or F00(k + κ − 1, κ) ⊆ G ⊆
F2(k + κ − 1, κ) for 2κ + k ≤ n ≤ 3κ + k− 1.

Note that a spanning tree having exactly two leaves is called a Hamilton path. Then,
we can immediately obtain the following result.

Corollary 1. Let G be a graph with |V(G)| ≥ 2κ(G) + 2, κ(G) = κ ≥ 2, α(G) ≤ κ + 2 and
m(G) ≤ n − 2κ − 1. Then G is traceable, unless either F0(κ + 1, κ) ⊆ G ⊆ F2(κ + 1, κ) for
n > 3κ + 1, or F00(κ + 1, κ) ⊆ G ⊆ F2(κ + 1, κ) for 2κ + 2 ≤ n ≤ 3κ + 1.

In the case of 2-connected, the bounds of |V(G)| can do better. Clearly, Corollary 1 im-
proves the result of Theorem 4. It demonstrated that expanding the independence number
slightly and bounding m(G) also does not alter the traceability in highly connected graphs.

If F0(k + κ − 1, κ) ⊆ G ⊆ F2(k + κ − 1, κ) for n > 3κ + k − 1, or F00(k + κ − 1, κ) ⊆
G ⊆ F2(k + κ − 1, κ) for 2κ + k ≤ n ≤ 3κ + k− 1, then m(G) = n− 2κ − k + 1. Hence, we
can obtain the following result immediately.

Corollary 2. Let k ≥ 2 and G be a graph of order n ≥ 2κ(G) + k such that κ(G) = κ ≥ 2,
α(G) ≤ κ + k and m(G) ≤ n− 2κ − k. Then G contains a spanning k-ended tree.

4. Proof of Theorem 7

In this section, we employ the same terminology and notation in Section 2.

Proof of Theorem 7. Let k ≥ 2 and G be a graph with |V(G)| > 2κ(G) + k, κ(G) = κ ≥ 2,
α(G) ≤ κ + k and m(G) ≤ n− 2κ − k + 1. We begin by assuming the opposite and using
a proof by contradiction. Suppose that G does not have a spanning k-ended tree. This
assumption, along with Theorem 5, implies the following equation:

α(G) = κ(G) + k. (1)

Thus, by Lemma 1, G cannot have a spanning k-ended system. We select a maximal k-
ended system S of G that satisfies conditions (I) and (II) outlined in Section 2. Define
H = G−V(S). Clearly |V(H)| ≥ 1. Let w ∈ (V(G)−V(S)).
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We will show that F0(k + κ − 1, κ) ⊆ G ⊆ F2(k + κ − 1, κ) for n > 3κ + k − 1, or
F00(k + κ − 1, κ) ⊆ G ⊆ F2(k + κ − 1, κ) for 2κ + k ≤ n ≤ 3κ + k− 1.

Fact 1. m(G) ≥ n− 2κ − k + 1.

Proof of Fact 1. We consider a (w, V(S))-fan L in Section 2. By Lemma 8, we choose
U = {u1, u2, · · · , uκ} and SP = {P} in Section 2.

We consider a (w, V(S))-fanL in Section 2. By Lemma 8, we choose U = {u1, u2, · · · , uκ}
and SP = {P} in Section 2.

Claim 1. N(u+
κ ) ∩V(SC) = ∅ and N(u−1 ) ∩V(SC) = ∅.

Proof of Claim 1. Using symmetry, we can focus on proving that N(u+
κ )∩V(SC) = ∅. By

contradiction, suppose that N(u+
κ ) ∩V(SC) 6= ∅; say v ∈ N(u+

κ ) ∩V(SC) and v ∈ V(C′).
By Lemma 2(ii), u+

κ 6= vR(P).
Denote

A =

{
V(P[u3+

κ , vR(P)]), if u+
κ vR(P) /∈ E(G),

V(P[u2+
κ , vR(P)]), if u+

κ vR(P) ∈ E(G).

If u+
κ vR(P) /∈ E(G), then, by Lemma 9(4), u2+

κ vR(P) ∈ E(G). Therefore, by Lemma 9(5),
G[V(P[u3+

κ , vR(P)])] forms a clique. If u+
κ vR(P) ∈ E(G), then, according to Lemma 9(5),

G[V(P[u2+
κ , vR(P)])] forms a clique. Hence,

G[A] f orms a clique. (2)

As G is a connected graph, N(A) ∩V(G− A) 6= ∅. For y ∈ N(A) ∩V(G− A), there
exists a vertex x ∈ A with xy ∈ E(G). We will show that

y ∈ {u+
κ , u2+

κ }. (3)

By contradiction, suppose that y /∈ {u+
κ , u2+

κ }. By Lemma 6(2) and (2), y /∈ V(SC) ∪V(H).
We will examine the following two scenarios to reach a contradiction:

• Suppose that y ∈ V(P[vL(P), u−1 ]). By Lemma 9(1), f (
←−Q (u−1 , P)) = 1 or N(u−1 ) ∩

V(SC) 6= ∅. We will show that u2−
1 vL(P) ∈ E(G). If f (

←−Q (u−1 , P)) = 1, then, by sym-

metry and Lemma 9(5), u2−
1 vL(P) ∈ E(G). If f (

←−Q (u−1 , P)) 6= 1, then, by Lemma 9(1),
N(u−1 ) ∩ V(SC) 6= ∅. By symmetry and Lemma 9(4), u2−

1 vL(P) ∈ E(G). Then,
by symmetry and Lemma 9(5) and (2), either the set of vertices of the subgraph
C′u+

κ
−→
P x−vR(P)

←−
P xy
−→
P uκ Lκw and

←−Q (y−, P) is equal to V(P ∪ C′) ∪ {w}, which con-
tradicts (I); or C′u+

κ
−→
P x−vR(P)

←−
P xvL(P)

−→
P uκ in G is equal to V(P ∪ C′), which con-

tradicts Lemma 4.
• Assume that y ∈ V(P[u1, uκ ]). Then, by Lemma 9(1)(2) and (2), the set of vertices of

the subgraph

Q1 =


C′u+

κ
−→
P x−vR(P)

←−
P xy
−→
P uκ LκwL1u1

−→
P y−, if y ∈ V(P(u1, uκ)),

C′u+
κ
−→
P x−vR(P)

←−
P xu1

−→
P uκ Lκw, if y = u1,

C′u+
κ
−→
P x−vR(P)

←−
P xuκ

←−
P u1L1w, if y = uκ ,

and

Q2 =

{
Cu−Q,1

←−
Q vL(Q), if f (

←−Q (u−Q,1, Q)) 6= 1,
←−Q (u−Q,1, Q), if f (

←−Q (u−Q,1, Q)) = 1.

is equal to V(P ∪ C ∪ C′) ∪ {w} or V(P ∪ C′) ∪ {w}, which contradicts (I).
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This contradiction shows that (3) holds.
If y = u+

κ and u+
κ vR(P) /∈ E(G), then, u2+

κ vR(P) ∈ E(G). By (2), G[V(P[u+
κ , vR(P)])]

has a cycle Cκ = vR(P)
←−
P xu+

κ
−→
P x−vR(P). By (2), we structure a new path P′ such that

P′ = vL(P)
−→
P u+

κ x
−→
P vR(P)x−

←−
P u2+

κ by rearranging the order of the vertices in P. Then
vR(P′) = u2+

κ . It is easy to verify that G[V(P[u+
κ , vR(P)])] ∼= G[V(P′[u+

κ , vR(P′)])]. Note
that u+

κ vR(P′) ∈ E(G). By Lemma 9(5), the subgraph G[V(P′[x, vR(P′)])] forms a clique.
Let A′ = V(P′[u+

κ , vR(P′)]) \ {u+
κ } = V(P′[x, vR(P′)])]. Since G is connected, N(A′) ∩

V(G− A′) 6= ∅. For y′ ∈ N(A′)∩V(G− A′), there exists a vertex x′ ∈ A with x′y′ ∈ E(G).
By the proof of (3), y′ = u+

κ . That means |N(A′) ∩V(G− A′)| = 1, contradicting |N(A′) ∩
V(G − A′)| ≥ κ ≥ 2. Therefore, by (3), we have either y = u2+

κ and u+
κ vR(P) /∈ E(G)

or y = u+
κ and u+

κ vR(P) ∈ E(G). Then, |N(A) ∩ V(G − A)| = 1, contradicting |N(A) ∩
V(G− A)| ≥ κ ≥ 2. This contradiction indicates that Claim 1 is true.

According to Claim 1 and Lemma 9(1), f (
−→Q (u+

κ , P)) = 1 and f (
←−Q (u−1 , P)) = 1.

Denote

X =

{
End(S) ∪U+ ∪ {w}, if End(S) ∩U+ 6= ∅,
(End(S) ∪U+ ∪ {w}) \ {u+

κ }, otherwise(i.e., i f End(S) ∩U+ = ∅).

By Lemma 9(3), X is an independent set of G with size κ + k. Thus,

N(v) ∩ X 6= ∅ f or any v ∈ V(G) \ X . (4)

Claim 2. G[V(P[u+
κ , vR(P)])] and G[V(P[vL(P), u−1 ])] form cliques.

Proof of Claim 2. By virtue of symmetry, we may restrict our consideration to prove that
G[V(P[u+

κ , vR(P)])] forms a clique. As G[V(P[u+
κ , vR(P)])] is connected, we can assume

that |V(P[u+
κ , vR(P)])| ≥ 3. According to Lemma 5(1) (4) and Claim 1, N(u+

κ ) ∩ (X \
{vR(P)}) = ∅. By (4), N(u+

κ ) ∩ X = {vR(P)}. By Lemma 9(5), G[V(P[u+
κ , vR(P)])] forms

a clique.

Claim 3. N(V(H)) ∩V(SC) = ∅.

Proof of Claim 3. By contradiction, suppose that N(V(H)) ∩ V(SC) 6= ∅; say
x ∈ N(V(H)) ∩V(C) for some C ∈ SC. This implies that there is a vertex v ∈ V(H)
with e = vx. By Lemma 8, v 6= w.

We will show that
v /∈ V(L). (5)

Suppose, by way of contradiction, that v ∈ V(Li0) for some i0 ∈ {1, · · · , κ}. Suppose
that v ∈ V(L1) ∪ V(Lκ). By symmetry, we may only think of v ∈ V(L1). Then, by
Claim 2, vR(P)

←−
P u1L1vC and

←−Q (u−1 , P) cover V(P) ∪V(C) ∪ {v}, contradicting (I). There-
fore, v ∈ V(Li0) for some i0 ∈ {2, · · · , κ − 1}. Then, by Claim 2, the set of vertices of the

subgraph vL(P)
−→
P uκ LκwLi0 vC and

−→Q (u+
κ , P) in G is equal to V(P)∪V(C)∪ {w, v}, which

again contradicts (I). Thus, we have shown that (5) holds.
Next, we will prove that

vw ∈ E(G). (6)

By contradiction, suppose that vw /∈ E(G). Note that x ∈ V(C). We consider the neigh-
bourhood of the vertex x+. According to Lemma 2(i)(ii), N(x+) ∩ (End(S) \ {vC}) = ∅.
If x+ and u+

i ∈ V(P) for some i ∈ {1, · · · , κ− 1} are adjacent in G, then, by Claim 2 and (5),

vL(P)
−→
P uiLiwLκuκ

←−
P u+

i Cv and
−→Q (u+

κ , P) in G covers V(P)∪V(C)∪ {w, v}, contradicting
(I). Hence, N(x+) ∩ (U+ \ {u+

κ }) = ∅. If v and u+
i ∈ V(P) for some i ∈ {1, · · · , κ − 1}

are adjacent in G, then, by Claim 2 and (5), vL(P)
−→
P uiLiwLκuκ

←−
P u+

i vC and
−→Q (u+

κ , P) in
G covers V(P) ∪V(C) ∪ {w, v}, contradicting (I). Hence, N(v) ∩ (U+ \ {u+

κ }) = ∅. Note
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that vw /∈ E(G). Therefore, by Lemma 2(i)(ii), {vL(P), vR(P), x+, w, v} ∪ (U+ \ {u+
κ }) ∪

(End(SC) \ {vC}) forms an independent set of size κ + k + 1. This contradicts the fact that
α(G) = κ + k and thus establishes that (6) holds.

Then, by Claim 2, (5) and (6), the set of vertices of the subgraph vL(P)
−→
P uκ LκwvC

and
−→Q (u+

κ , P) is equal to V(P ∪ C) ∪ {w, v}. This contradicts (I) and establishes that
N(V(H)) ∩V(C) = ∅.

Claim 4. N(V(C)) ∩ (V(G) \V(C)) = U for each element C ∈ SC.

Proof of Claim 4. Since G is connected, N(V(C)) ∩ (V(G) \ V(C)) 6= ∅ for any C ∈ SC.
For z ∈ N(V(C)) ∩ (V(G) \V(C)), there exists a vertex x ∈ V(C) with xz ∈ E(G). Accord-
ing to Lemma 2 (i), (ii), z /∈ V(SC \ {C}). By Claim 3, z /∈ V(H). This implies that

z ∈ V(P). (7)

Next, we will show that z ∈ U. By contradiction, suppose that z /∈ U. By Lemma 6(2)
and Claim 2, z does not belong to V(P(u+

κ , vR(P)]) ∪ V(P[vL(P), u−1 )). To arrive at a
contradiction, we will examine the following three scenarios using (7):

• Suppose that z ∈ {u+
κ , u−1 }. Then N(u+

κ ) ∩ V(SC) 6= ∅ or N(u−1 ) ∩ V(SC) 6= ∅,
contradicting Claim 1.

• Suppose that z ∈ U+ \ {u+
κ } or U− \ {u−1 }. By symmetry, we consider that z ∈ U+ \

{u+
κ } say z = u+

i for some i ∈ {1, · · · , κ − 1}. Then, by Claim 2, Cu+
i
−→
P uκ LκwLiui

←−
P

vL(P) and
−→Q (u+

κ , P) cover V(P ∪ C) ∪ {w}, contradicting (I).
• Suppose that z ∈ V(P[u2+

i , u2−
i+1]) for some i ∈ {1, · · · , κ − 1}. We consider the

neighbourhood of the vertex z+. We claim that N(z+) ∩ X = {vC}. Suppose oth-
erwise that there exists a vertex y ∈ N(z+) ∩ X such that y 6= vC. By Lemma 6(1),
y /∈ End(SC) \ {vC}. According to the definition of X , we will examine the following
two scenarios to reach a contradiction.

– Assume that y ∈ U+ ∩ X ; say y = u+
j for some j ∈ {1, · · · , κ − 1}. If j > i, then,

by Claim 2, the set of vertices of the subgraph vR(P)
←−
P u+

j z+
−→
P ujLjwL1u1

−→
P zC

and
←−Q (u−1 , P) is equal to V(P ∪ C) ∪ {w}, which contradicts (I). If j ≤ i, then,

by Claim 2, the set of vertices of the subgraph vL(P)
−→
P ujLjwuκ

←−
P z+u+

j
−→
P zC ∪

−→Q (u+
κ , P) is equal to V(P ∪ C) ∪ {w}, which again contradicts (I).

– Assume that y ∈ End(SP). By Lemma 6(2), y = vR(P). Then, by Claim 2, the set

of vertices of the subgraph u−κ
←−
P z+vR(P)

←−
P uκ LκwL1u1

−→
P zC ∪←−Q (u−1 , P) is equal

to V(P ∪ C) ∪ {w}, which contradicts (I).

This contradiction establishes that N(z+) ∩ X ⊆ {vC}. By (4), N(z+) ∩ X = {vC}. If
x 6= vC and |V(C)| > 1 or |V(C)| = 1, then, by Lemma 9(6), the set of vertices of the
subgraph vL(P)

−→
P zCz+

−→
P vR(P) is equal to V(P ∪ C), which contradicts Lemma 4. If

x = vC and |V(C)| > 1, then, according to Lemma 9(6), N(v+C )∩X = {vC}. Note that
N(z+) ∩ X = {vC}. If z+v+C /∈ E(G), then, by Lemma 9(6), (X \ {vC}) ∪ {z+, v+C }
would be an independent set of cardinality κ + k + 1, contradicting (1). Therefore,
z+v+C ∈ E(G). Then the set of vertices of the subgraph vL(P)

−→
P zCz+

−→
P vR(P) is equal

to V(P ∪ C), which contradicts Lemma 4.

This contradiction establishes that z ∈ U. Since |N(V(C)) ∩ (V(G) \ V(C))| ≥ κ and
|U| = κ, N(V(C)) ∩ (V(G) \V(C)) = U for any element C ∈ SC.

Claim 5. Let C ∈ SC with |V(C)| > 1. For any two disjoint vertices ui, uj ∈ U, there exist two
disjoint vertices v, v′ ∈ V(C) such that uiv, ujv′ ∈ E(G).
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Proof of Claim 5. We establish Claim 5 by contradiction. Suppose that either N(ui0) ∩
V(C) = N(uj0) ∩ V(C) = ∅ or N(ui0) ∩ V(C) = N(uj0) ∩ V(C) = {v} and v ∈ V(C) for
some ui0 , uj0 ∈ U.

If N(ui0) ∩ V(C) = N(uj0) ∩ V(C) = ∅, then N(V(C)) ∩ (V(G) \ V(C)) 6= U, con-
tradicting Claim 4. Now suppose that N(ui0) ∩ V(C) = N(uj0) ∩ V(C) = {v}. Let
Û = (U \ {ui0 , uj0}) ∪ {v} and Ĉ = C− v. Since |V(C)| > 1, Ĉ 6= ∅. Then, by hypothesis
and Claim 4, N(V(Ĉ)) ∩ (V(G) \ V(Ĉ)) ⊆ Û. However, |Û| = κ − 1, contradicting the
hypothesis that G is κ-connected. These contradictions establish that Claim 5 is true.

Claim 6. G[V(H)] forms a clique.

Proof of Claim 6. We will only focus on the case where |V(H)| ≥ 2. For every vertex
v ∈ V(H) \ {w}, N(v) ∩X 6= ∅. We assume that there is at least one vertex x ∈ N(v) ∩X
with x 6= w. By Claim 3, x is not an element of End(SC). By Lemma 3(1), x /∈ End(SP).
Then, x ∈ X ∩U+; say x = u+

i for some i ∈ {1, · · · , κ − 1}. Then, by Claims 2, 4 and 5,

there exist a path Q and
−→Q (u+

κ , P) cover V(P) ∪V(C) ∪ {v}, see Figure 2, contradicting (I).
This contradiction shows that N(v) ∩ X ⊆ {w}. By (4), N(v) ∩ X = {w} for every vertex
v ∈ V(H) \ {w}. Let S′ = V(H). Then, according to Lemma 7, G[V(H)] forms a clique.

w v

uu
i

i
+v

L(P) v
R
(P)

Figure 2. vu+
i ∈ E(G) (i 6= κ).

Denote A1 = V(P[vL(P), u−1 ]) and A2 = V(P[u+
κ , vR(P)]).

Claim 7. The following two statements are true.

(1) N(Ai) ∩ (G− Ai) = U for i ∈ {1, 2};
(2) N(V(H)) ∩V(S) = U.

Proof of Claim 7. We will prove the first statement. By symmetry, we have only proved
that N(A2) ∩ (G − A2) = U. Let C∗ = G[A2]. By Claim 2(1), f (C∗) = 1. We pick an
element C ∈ SC, by Claim 4, a new path Q = vL(P)

−→
P uκC would be obtained. We structure

a new system S∗ such that S∗ = S∗C ∪ S∗P, S∗P = {Q} and S∗C = (SC \ {C}) ∪ {C∗}. It
is easy to verify that V(S∗) = V(S), |S∗C| = |SC| and |S∗P| = |SP|. Hence, S∗ is also a
k-ended system satisfying (I), (II). Then, by Claim 4, N(A2) ∩ (G− A2) = U.

Next, we need to prove the second statement. The proof here is similar to Claim 4.
(For details, see Appendix A.)

Claim 8. Suppose that |V(H)| > 1. For any two disjoint vertices ui, uj ∈ U, there exist two
disjoint vertices v, v′ ∈ V(H) such that uiv, ujv′ ∈ E(G).

Proof of Claim 8. The proof here is similar to Claim 5. (For details, see Appendix A.)

Claim 9. u−i+1u+
i ∈ E(G) for each i ∈ {1, · · · , κ − 1}.

Proof of Claim 9. Since G[V(P[u+
i , u−i+1])] is connected, we only need to focus on the case

where |V(P[u+
i , u−i+1])| ≥ 3. By contradiction, suppose that u−i0+1u+

i0
/∈ E(G) for some
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i0 ∈ {1, · · · , κ − 1}. By (4), there exists at least one vertex y ∈ N(u−i0+1) ∩ X satisfying
y 6= u+

i0
. By Claim 4, y /∈ End(SC). We will examine the following two scenarios to reach a

contradiction, based on the definition of X :

• Assume that y ∈ X ∩ (U+ \ {u+
i0
}); say y = u+

j for some j ∈ {1, · · · , κ − 1} \ {i0}. If

j > i0, then, by Claim 4, the set of vertices of the subgraph vL(P)
−→
P u−i0+1u+

j
−→
P uκ Lκw

Li0+1ui0+1
−→
P ujC∪

−→Q (u+
κ , P) is equal to V(P∪C)∪{w}, which contradicts (I). If j < i0,

then, by Claims 4 and 5, the set of vertices of the subgraph vL(P)
−→
P ujLjwLκuκ

←−
P ui0+1C

ui0
−→
P u−i0+1u+

j
−→
P u−i0 ∪

−→Q (u+
κ , P) is equal to V(P∪C)∪ {w}, which again contradicts (I).

• Assume that y ∈ End(SP). If y = vL(P), then vR(P)
←−
P ui0+1Li0+1wLi0 ui0

←−
P vL(P)u−i0+1←−

P u+
i0

covers V(P) ∪ {w}, which contradicts (I). Therefore, y = vR(P). Then vL(P)
−→
P u−i0+1vR(P)

←−
P ui0+1 Li0+1w covers V(P) ∪ {w}, which again contradicts (I).

This contradiction demonstrates that N(u−i+1)∩X ⊆ {u
+
i }. By (4), N(u−i+1)∩X = {u+

i }.

By Claim 9, it holds that u−i+1u+
i ∈ E(G) for every i ∈ {1, · · · , κ − 1}. Let

Ci = G[E(P[u+
i , u−i+1] ∪ {u

+
i u−i+1})] for every i ∈ {1, · · · , κ − 1}.

Claim 10. For each section P[u+
i , u−i+1], the following two statements are true.

• G[V(P[u+
i , u−i+1])] forms a clique;

• N(V(P[u+
i , u−i+1])) ∩ (V(G) \V(P[u+

i , u−i+1])) = U.

Proof of Claim 10. We pick an element C ∈ SC; by Claims 4 and 5, a new path
Qi = vL(P)

−→
P uiCui+1

−→
P vR(P) would be obtained. We structure a new system Si such

that Si = SiC ∪ SiP, SiP = {Qi} and SiC = (SC \ {C}) ∪ {Ci}. It is easy to verify
that V(Si) = V(S), |SiC| = |SC| and |SiP| = |SP|. Hence, Si is also a k-ended sys-
tem satisfying (I), (II). According to Lemma 9(6), G[V(Ci)] forms a clique; by Claim 4,
N(V(Ci)) ∩ (V(G) \V(Ci)) = U. Claim 10 is proved.

By Claims 2–10 and Lemma 9(6), ω(G−U) = k + κ and every component of G−U
forms a clique. Then,

m(G) = |V(H)| · |V(P[vL(P), u−1 ])| · |V(P[u+
κ , vR(P)])| ·

κ−1
∏
i=1
|V(P[u+

i , u−i+1])| · ∏
C∈SC

|V(C)| ≥ 1 · 1 · · · · · 1 · 1︸ ︷︷ ︸
κ+k

·[n− 2κ − k + 1] = n− 2κ − k + 1. This completes the proof of

Fact 1.

Fact 2. |V(H)| = 1 and m(G) = n− 2κ − k + 1.

Proof of Fact 2. By Fact 1 and the condition of Theorem 5, m(G) = n− 2κ − k + 1. Then,
we will show that |V(H)| = 1.

By contradiction, suppose that |V(H)| ≥ 2. Then |V(P[u+
i , u−i+1])| = 1 for any

i ∈ {1, · · · , κ − 1}. Otherwise, m(G) > n − 2κ − k + 1, contradicting m(G) = n −
2κ − k + 1. Let x = V(P[u+

i0
, u−i0+1]) for some i0 ∈ {1, · · · , κ − 1}. By Claims 7(2) and 8,

vL(P)
−→
P ui0 Hui0+1

−→
P vR(P) in G cover (V(P) \ {x}) ∪ V(H), which contradicts (I). This

contradiction shows that |V(H)| = 1.

Denote

J(r) =


G[V(P[u+

i , u−i+1])], if r ∈ U+ \ {u+
κ }, say r = u+

i ,
G[V(P[vL(P), u−1 ])], if r = vL(P),
G[V(P[u+

κ , vR(P)])], if r = vR(P),
G[V(C)]. if r = vC.
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Finally, we need to prove that G is isomorphic to one of those graphs F with
F0(κ + k− 1, κ) ⊆ F ⊆ F2(κ + k− 1, κ) or F00(κ + k − 1, κ) ⊆ F ⊆ F2(κ + k − 1, κ). De-
note R = End(S) ∪ (U+ \ {u+

κ }). By Fact 2, |V(S)| = n − 1 and there exists at most
one vertex r0 ∈ R such that |J(r0)| ≥ 2. Then |J(r0)| = n − 2κ − k + 1 = m(G). Let
W1(G) = {w} ∪ (R \ {r0}). It follows that W1(G) is an independent set of G with a car-
dinality of k + κ − 1. Additionally, W1(G) ∪ {x} is a maximum independent set of G for
any vertex x ∈ J(r0). By Claims 4, 7 and 10, y ∈ R \ {r0} is not adjacent to any vertex in
J(r0) ∪ {w}; it should be adjacent to ui for all i ∈ {1, · · · , κ}. Now let H1 = G[W1(G)] and
H2 = G[U]. This implies that F0(κ + k− 1, κ) ⊆ G ⊆ F2(κ + k− 1, κ) and n > 3κ + k− 1
or F00(κ + k − 1, κ) ⊆ G ⊆ F2(κ + k − 1, κ) and 2κ + k ≤ n ≤ 3κ + k − 1 (note that
J(r0) ∼= Kn−2κ−k+1), which completes the proof of Theorem 7.

5. Conclusions

We demonstrats that it does not change the existence of spanning k-ended tree if we
expand the independent numbers a little bit and bound m(G). Therefore, we generalize
Theorem 5 and the bound on the number of maximum independent sets is already sharp.
Note that a Hamilton path is viewed as a spanning tree with exactly two leaves; in other
words, a Hamilton path is a spanning 2-ended tree. Hence, our results extend Theorem 4,
which has significant implications for traceability and the existence of spanning trees.
Moreover, we extend Theorem 5 to the case where κ(G) ≥ 2. This extension has important
implications for the study of independent sets in highly connected graphs.

The proof of the results is currently too complex and difficult. We hope to find a more
clever and concise proof technique for Theorem 7 in the future.
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Appendix A. Some Proofs of Claims of Theorem 7

Proof of Claim 7(2). Since G is connected, N(V(H)) ∩ V(S) 6= ∅. For z ∈ N(V(H)) ∩
(V(G) \ V(H)), there exists a vertex v ∈ V(H) with vz ∈ E(G). By Claim 3, z /∈ V(SC).
This implies that z ∈ V(P). We will prove that z ∈ U. Suppose, by way of contradiction,
that z /∈ U. We will examine the following three scenarios to reach a contradiction.

• Assume that z ∈ V(P(u+
κ , vR(P)]) or V(P[vL(P), u−1 )). By symmetry, it would there-

fore suffice to consider that z ∈ V(P(u+
κ , vR(P)]). (By) Claim 2(1), the set of vertices of

the subgraph vL(P)
−→
P z−vR(P)

←−
P zv is equal to V(P) ∪ {v}, which contradicts (I).

• Assume that z ∈ U+ or U−. By symmetry, it would therefore suffice to think about

z ∈ U+; say z = u+
i for some i ∈ {1, · · · , κ}. If v = w, then vL(P)

−→
P uiLiwu+

i
−→
P vR(P)

covers V(P) ∪ {w}, contradicting (I). If v 6= w, then, by Claim 6, the set of vertices of
the subgraph vL(P)

−→
P ui Hu+

i
−→
P vR(P) is equal to V(P ∪ H), which contradicts (I).
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• Assume z belongs to V(P[u2+
i , u2−

i+1]) for some i ∈ {1, · · · , κ − 1}. We consider
the neighbourhood of the vertex z+. By (4), N(z+) ∩ X 6= ∅; say y ∈ N(z+) ∩ X .
By Claim 4, y /∈ End(SC). We will consider the following two cases to obtain
a contradiction.

– Assume that y ∈ X ∩U+; say y = u+
j for some j ∈ {1, · · · , κ − 1}. Suppose, first,

that j > i. If v 6= w, then, by Claim 6, the set of vertices of the subgraph
vL(P)

−→
P zHuj

←−
P z+u+

j
−→
P vR(P) is equal to V(P ∪ H), which contradicts (I). If

v = w, then the set of vertices of the subgraph vL(P)
−→
P zwLjuj

←−
P z+u+

j
−→
P vR(P) is

equal to V(P)∪ {w}, which also contradicts (I). Suppose, now, that j ≤ i. If v 6= w,
then, by Claim 6, vL(P)

−→
P uj Hz

←−
P u+

j z+
−→
P vR(P) covers V(P) ∪V(H), which con-

tradicts (I). If v = w, then vL(P)
−→
P ujwz

←−
P u+

j z+
−→
P vR(P) covers V(P) ∪ {w},

which also contradicts (I).
– Assume that y ∈ End(SP). Let us take y = vR(P) without loss of generality. If v 6= w,

then, by Claim 6, the set of vertices of the subgraph vL(P)
−→
P zHuκ

←−
P z+vR(P)

←−
P

u+
κ is equal to V(P ∪ H), which contradicts (I). If v = w, then vL(P)

−→
P zwLκuκ←−

P z+vR(P)
←−
P u+

κ covers V(P) ∪ {w}, which also contradicts (I).

This contradiction shows that N(z+) ∩ X = ∅, contradicting (4).

This contradiction shows z ∈ U. Since |N(V(H)) ∩ (V(G) \ V(H))| ≥ κ and |U| = κ,
N(V(H)) ∩ (V(G) \V(H)) = U.

Proof of Claim 8. By contradiction, suppose that either N(ui0) ∩V(H) = N(uj0) ∩V(H) = ∅
or N(ui0) ∩V(H) = N(uj0) ∩V(H) = {v} and v ∈ V(H) for some ui0 , uj0 ∈ U.

Suppose first that N(ui0) ∩ V(H) = N(uj0) ∩ V(H) = ∅. Then N(V(H)) ∩ (V(G) \
V(H)) 6= U, contradicting Claim 7(2). Suppose now that N(ui0) ∩ V(H) = N(uj0) ∩
V(H) = {v}. Let Û = (U \ {ui0 , uj0}) ∪ {v} and Ĥ = H − v. Since |V(H)| > 1,
Ĥ 6= ∅. Then, by hypothesis and Claim 7(2), N(V(Ĥ)) ∩ (V(G) \ V(Ĥ)) ⊆ Û. How-
ever, |Û| = κ − 1, contradicting the hypothesis that G is κ-connected. These contradictions
show that Claim 8 holds.

Appendix B. Proof of Lemmas 8 and 9

In this section, we employ the same terminology and notation in Section 2.
In order to prove Lemmas 8 and 9, we first do some preparatory work.
Denote X+ = End(S)∪U+ ∪ {w} and X− = End(S)∪U− ∪ {w}. If U ∩V(SC) 6= ∅,

then, by Lemma 5(3), |{C : C ∈ SC and U ∩V(C) 6= ∅}| = 1; say CU ∈ SC.

Lemma A1. (Akiyama and Kano, [18]) The following statements are true.

(1) If U ∩V(SC) 6= ∅, then X+ \ {vCU} forms an independent set of G with a size of k + κ.
(2) If U ⊆ V(SP) and End(S) ∩U+ 6= ∅, then End(S) ∩U+ = {vR(P)} for some P ∈ SP

and X+ forms an independent set of G with a size of κ + k.
(3) If U ⊆ V(SP) and End(S) ∩U+ = ∅, then:

(i) The set X+ does not include four distinct vertices x1, x2, x3, x4 with {x1x2, x3x4} ⊆ E(G);
(ii) G[X+] is triangle-free;
(iii) U+ is an independent set of G.

Lemma A2. Suppose that U ⊆ V(SP). The following statements are true.

(1) If End(S) ∩U+ = ∅, then G[X+] has exactly one nontrivial component denoted by S(X+)
such that S(X+) is a star with S(X+) = (V(S(X+)) ∩U+) ∨ (V(S(X+)) ∩ End(S));

(2) If End(S) ∩U− = ∅, then G[X−] has exactly one nontrivial component denoted by S(X−)
such that S(X−) is a star with S(X−) = (V(S(X−)) ∩U−) ∨ (V(S(X−)) ∩ End(S)).
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Proof of Lemma A2. By symmetry, it would therefore suffice to show that (1) is true. By
Lemmas 3 and 5(1), End(S)∪ {w} is an independent set of G. By Lemma 5(1)(2), U+ ∪ {w}
is an independent set of G. Since |X+| = k + κ + 1, there must exist some edges between
U+ and End(S). By Lemma A1(3)(i)(ii), G[X+] has exactly one nontrivial component
S(X+) and S(X+) is a star.

Remark A1. S(X+) and S(X−) always denote the stars in Lemma A2 in the following. From
Lemma A3 to Lemma A6, for convenience, we assume U ⊆ V(SP) and End(S) ∩U+ = ∅.

Lemma A3. Let C ∈ SC and P ∈ SP. Then for each vertex v ∈ V(C) with vu+
P,i ∈ E(G) for

some i ∈ {1, · · · , tP}, it holds that N(v+) ∩ (U+ \ {u+
P,i}) = ∅.

Proof of Lemma A3. By contradiction, suppose that N(v+) ∩ (U+ \ {u+
P,i}) 6= ∅. Then

there exists a vertex x ∈ N(v+)∩ (U+ \ {u+
P,i}); say x = u+

P′ ,j for some j ∈ {1, · · · , tP′}. Sup-

pose first that P′ = P. If i < j, then the set of vertices of the subgraph vL(P)
−→
P uP,iLP,iwLP,j

uP,j
←−
P u+

P,iCu+
P,j
−→
P vR(P) is equal to V(P ∪ C) ∪ {w}, which contradicts Lemma 4. If i > j,

then vL(P)
−→
P uP,jLP,jwLP,iuP,i

←−
P u+

P,jCu+
P,i
−→
P vR(P) covers V(P ∪ C) ∪ {w}, contradicting

Lemma 4. Now suppose that P′ 6= P. Then vL(P)
−→
P uP,iLP,iwLP′ ,juP′ ,j

←−
P′ vL(P′) and

vR(P)
←−
P u+

P,iCu+
P′ ,j

−→
P′ vR(P′) cover V(P ∪ P′ ∪ C) ∪ {w}, contradicting Lemma 4. These

contradictions show that Lemma A3 holds.

Lemma A4. The cardinality of the set V(S(X+)) ∩ U+ is equal to one and |V(S(X+)) ∩
End(S)| ≥ 1.

Proof of Lemma A4. ByLemmaA2(1), |V(S(X+)) ∩U+| ≥ 1 and |V(S(X+)) ∩ End(S)| ≥ 1.
In other words, we need to prove that |V(S(X+)) ∩U+| = 1.

By contradiction, suppose that |V(S(X+)) ∩ U+| 6= 1. Then, by Lemma A2(1),
there exists a vertex x ∈ End(S) such that xu+

P,i, xu+
P′ ,j ∈ E(G) and u+

P,i 6= u+
P′ ,j for

some i ∈ {1, · · · , tP} and some j ∈ {1, · · · , tP′}. By Lemma 5(4), x /∈ End(SP). Then,
x ∈ End(SC); say x = vC. By Lemma A2(1), X+ \ {vC} is an independent set of G with
size k + κ. By Lemma A3, |V(C)| ≥ 2. We consider the neighbourhood of the vertex
v+C . By Lemma A3, N(v+C ) ∩ (U+ \ {u+

P,i}) = ∅ and N(v+C ) ∩ (U+ \ {u+
P′ ,j}) = ∅. Then,

N(v+C ) ∩U+ = ∅. According to Lemma 2 (i)(ii), N(v+C ) ∩ (End(S) \ {vC}) = ∅. Hence,
(X+ \ {vC}) ∪ {v+C } forms an independent set with a cardinality of κ + k + 1, which con-
tradicts α(G) = κ + k. This contradiction show that Lemma A4 holds.

Remark A2. If U ⊆ V(SP) and End(S) ∩ U+ = ∅, then, by Lemma A4, |V(S(X+)) ∩
U+| = 1; say V(S(X+)) ∩U+ = {u+

P,i} for some P ∈ SP and some i ∈ {1, · · · , tP}. Denote
X+

i = X+ \ {u+
P,i}. Then, by Lemmas A1(3), A2(1) and A4, X+

i is an independent set of G with
size k + κ. If End(SP) ∩V(S(X+)) 6= ∅, then, by Lemmas 5(4) and A4,

u+
P,i = u+

P,tP
and u+

P,tP
vR(P) ∈ E(G). (A1)

Lemma A5. Let C ∈ SC. Then, for some P ∈ SP, the following statements are true.

(1) If vCu+
P,i ∈ E(G) for some i ∈ {1, · · · , tP}, then N(x) ∩ (U+ \ {u+

P,i}) = ∅ for each
x ∈ V(C) \ {vC};

(2) If S(X+) = u+
P,ivC for some i ∈ {1, · · · , tP}, then u+

P,i is adjacent to all vertices in C.

Proof of Lemma A5. First, we will show that (1) holds. Let |V(C)| ≥ 2 and C = vCv+C · · · v
t+
C

· · · v(|V(C)|−1)+
C vC. We prove Lemma A5(1) by induction on t. Note that U ⊆ V(SP),

End(S)∩U+ = ∅ and vCu+
P,i ∈ E(G). According to Lemma A3, N(v+C ) ∩ (U+ \ {u+

P,i}) = ∅.
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This implies that Lemma A5(1) holds for t = 1. Next, we assume that Lemma A5(1) holds
for all positive integers t ≤ t0. Then N(vt0+

C ) ∩ (U+ \ {u+
P,i}) = ∅. We need to prove that

it holds for t = t0 + 1. By Lemma 2(i)(ii), N(vt0+
C ) ∩ (End(S) \ {vC}) = ∅. Note that

vCu+
P,i ∈ E(G). By Lemma A4, V(S(X+)) ∩U+ = {u+

P,i}. Then X+
i is an independent set

of G with size k + κ. Hence, vt0+
C vC ∈ E(G). Otherwise, X+

i ∪ {v
t0+
C } is an independent set

of G with size κ + k + 1, contradicting α(G) = κ + k.
We claim that G[{vC, v+C , . . . , vt0+

C }] forms a clique. Since G[{vC, v+C , . . . , vt0+
C }] is con-

nected, we only need to focus on the case when |V(G[{vC, v+C , . . . , vt0+
C }])| ≥ 3. By contra-

diction, suppose that vt1+
C vt2+

C /∈ E(G) for some pair of vertices vt1+
C , vt2+

C ∈ {vC, v+C , . . . , vt0+
C }

with vt1+
C 6= vt2+

C , then (Xi \ {vC)}) ∪ {vt1+
C , vt2+

C } is an independent set of G with size
k + κ + 1, contradicting α(G) = k + κ. Hence, G[{vC, v+C , . . . , vt0+

C }] is a clique.
By our claim, G[{v+C , . . . , vt0+

C }] contains a subgraph C(G[{v+C , . . . , vt0+
C }]) such that

f (C(G[{v+C , . . . , vt0+
C }])) = 1 and V(G[{v+C , . . . , vt0+

C }]) = V(C(G[{v+C , . . . , vt0+
C }])).

Next, we will show that Lemma A5(1) holds for t = t0 + 1. By contradiction, suppose
that N(v(t0+1)+

C ) ∩ (U+ \ {u+
P,i}) 6= ∅. Then there exists a vertex x ∈ N(v(t0+1)+

C ) ∩ (U+ \
{u+

P,i}); say x = u+
P′ ,j for some j ∈ {1, · · · , tP′}. Suppose first that P′ = P. Then, by our

claim, the set of vertices of the subgraph

Q2 =

 vL(P)
−→
P uP,jLP,jwLP,iuP,i

←−
P u+

P,jv
(t0+1)+
C

−→
C vCu+

P,i
−→
P vR(P), if j < i,

vL(P)
−→
P uP,iLP,iwLP,juP,j

←−
P u+

P,ivC
←−
C v(t0+1)+

C u+
P,j
−→
P vR(P), if j > i,

and C(G[{v+C , . . . , vt0+
C }]) is equal to V(P ∪ C) ∪ {w}, which contradicts (I). Now suppose

that P′ 6= P. Then, by our claim, the set of vertices of the subgraph vL(P)
−→
P uP,iLP,iwLP′ ,juP′ ,j←−

P′ vL(P′), vR(P)
←−
P u+

P,ivC
←−
C v(t0+1)+

C u+
P′ ,j

−→
P′ vR(P′) and C(G[{v+C , . . . , vt0+

C }]) is equal to V(P
∪ P′ ∪ C) ∪ {w}, which contradicts (I). These contradictions show that Lemma A5(1) holds
for t = t0 + 1. Thus, Lemma A5(1) is proved.

Now, we start to prove Lemma A5(2). If S(X+) = u+
P,ivC, then X+ \ {u+

P,i} and X+ \
{vC} are two independent sets of G. For any x ∈ V(C) \ {vC}, N(x) ∩ (U+ \ {u+

P,i}) = ∅
by Lemma A5(1). According to Lemma 2(i)(ii), N(x) ∩ (End(S) \ {vC}) = ∅. Hence,
xu+

P,i ∈ E(G). Otherwise, (X+ \ {vC}) ∪ {x} is an independent set of G with size κ + k + 1,
contradicting α(G) = κ + k. Lemma A5(2) is proved.

Remark A3. Suppose U ⊆ V(SP) and End(S) ∩ U+ = ∅. For some P ∈ SP and some
i ∈ {1, · · · , tP}, if S(X+) = u+

P,ivC for C ∈ SC, then, by Lemma A5(2), G[V(C) ∪ {u+
P,i}]

contains a spanning subgraph C(G[V(C) ∪ {u+
P,i}]) with f (C(G[V(C) ∪ {u+

P,i}])) = 1.

For some P ∈ SP and i ∈ {1, 2, . . . , tP}, we consider the following configuration.
(i) S(X+) = u+

P,ivC, for some C ∈ SC.
(ii) G[{u+

P,i, vC, vC′}] ⊆ S(X+), for some {C, C′} ⊆ SC.
(iii) For given P′ ∈ SP \ {P} and C ∈ SC, S(X+) = u+

P,ivC and {u+
P,ivC, xvC} ⊆ E(G)

for some x ∈ V(P′).
(iv) For some P′ ∈ SP \ {P} and {C, C′} ⊆ SC, {u+

P,ivC, xvC′} ⊆ E(G) for some
x ∈ V(P′).

Then we denote

Q∗ =

{
C(G[V(C) ∪ {u+

P,i}]), if (i) occurs,
Cu+

P,iC
′, if (ii) occurs,
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Q? =

{
vR(P)

←−
P u+

P,iCx
←−
P′ vL(P′), if (iii) occurs,

Cu+
P,i
−→
P vR(P) and C′x

←−
P′ vL(P′), if (iv) occurs,

Lemma A6. Suppose that U+ ∩V(S(X+)) = {u+
P,i} and End(SC) ∩V(S(X+)) 6= ∅ for some

P ∈ SP and i ∈ {1, · · · , tP}. If u2+
P,i /∈ {vR(P), uP,i+1}, then u2+

P,i vR(P) ∈ E(G).

Proof of Lemma A6. By contradiction, suppose that u2+
P,i vR(P) /∈ E(G). Note that X+

i is an
independent set of G with size k + κ. Then there exists at least one vertex x ∈ N(u2+

P,i )∩ X+
i

with x 6= vR(P). Recall that End(SC) ∩V(S(X+)) 6= ∅, we assume that vC ∈ End(SC) ∩
V(S(X+)). In other words, vCu+

P,i ∈ E(G). By Lemma 6(1)(2), x /∈ End(SP) \ {vR(P)}.
According to the definition of X+

i , we will consider the following three cases in order to
arrive at a contradiction.

• Assume that x ∈ End(SC). According to Lemma 6(1), N(u+
P,i)∩ End(SC) = N(u2+

P,i )∩
End(SC) = {vC}, then S(X+) = vCu+

P,i. By (A1) and Lemma 6(2), End(SP) ∩
V(S(X+)) = ∅. Note that End(SC) ∩ V(S(X+)) 6= ∅. By Lemma A5(2), the set
of vertices of the subgraph vL(P)

−→
P u+

P,iCu2+
P,i
−→
P vR(P) in G is equal to V(P∪ C), which

contradicts Lemma 4.
• Assume that x ∈ (X+

i ∩ U+) ∩ V(P); say x = u+
P,j for some j ∈ {1, · · · , tP} \ {i}.

If End(SP) ∩ V(S(X+)) 6= ∅, then, by (A1), the set of vertices of the subgraph
u+

P,tP
vR(P)

←−
P u2+

P,tP
u+

P,j
−→
P uP,tP LP,tP wLP,juP,j

←−
P vL(P) in G is equal to V(P)∪{w}, which

contradicts Lemma 4. Therefore, End(SP) ∩ V(S(X+)) = ∅. Note that End(SC) ∩
V(S(X+)) 6= ∅. Then (i) or (ii) occurs. By Lemma A5(2),

Q3 =

{
vR(P)

←−
P u2+

P,i u+
P,j
−→
P uP,iLP,iwLP,juP,j

←−
P vL(P), if j < i,

vR(P)
←−
P u+

P,ju
2+
P,i
−→
P uP,jLP,jwLP,iuP,i

←−
P vL(P), if j > i,

Q∗ cover V(P ∪ C) ∪ {w} or V(P ∪ C ∪ C′) ∪ {w}, which contradicts (I).
• Suppose that x ∈ U+ ∩V(P′) for P′ ∈ SP \ {P}; say x = u+

P′ ,j for some j ∈ {1, · · · , tP′}.
If End(SP) ∩ V(S(X+)) 6= ∅, then, by (A1), the set of vertices of the subgraph

Cu+
P,tP

vR(P)
←−
P u2+

P,tP
u+

P′ ,j

−→
P′ vR(P′)∪ vL(P)

−→
P uP,tP LP,tP wLP′ ,juP′ ,j

←−
P′ vL(P′) is equal to V

(P∪ P′ ∪C)∪ {w}, which contradicts Lemma 4. Therefore, End(SP)∩V(S(X+)) = ∅.
Note that End(SC) ∩V(S(X+)) 6= ∅. Then (i) or (ii) occurs. By Lemma A5(2), the set

of vertices of the subgraph vR(P)
←−
P u2+

P,i u+
P′ ,j

−→
P′ vR(P′) ∪ vL(P)

−→
P uP,iLP,iwLP′ ,juP′ ,j

←−
P′

vL(P′) ∪Q∗ is equal to V(P ∪ P′ ∪ C) ∪ {w} or V(P ∪ P′ ∪ C ∪ C′) ∪ {w}, which con-
tradicts (I).

The contradiction indicates that N(u2+
P,i ) ∩ X+

i ⊆ {vR(P)}. Note that N(u2+
P,i ) ∩ X+

i 6= ∅.
Therefore, N(u2+

P,i ) ∩ X+
i = {vR(P)}. Lemma A6 holds.

Lemma A7. If U ⊆ V(SP), then there exists exactly one path Q ∈ SP such that N(u+
Q,tQ

) ∩

End(SC) 6= ∅ or f (
−→Q (u+

Q,tQ
, Q)) = 1.

Proof of Lemma A7. First, we claim that there is a path Q ∈ SP with N(u+
Q,tQ

) ∩ End(SC) 6= ∅

or f (
−→Q (u+

Q,tQ
, Q)) = 1. To prove this claim, we will consider the following two cases.

• Suppose that U ⊆ V(SP) and End(S) ∩U+ 6= ∅. Then, by Lemma A1(2), there is a

path Q ∈ SP with u+
Q,tQ

= vR(Q), i.e., f (
−→Q (u+

Q,tQ
, Q)) = 1.

• Assume that U ⊆ V(SP) and End(S) ∩U+ = ∅. According to Lemma A4, End(S) ∩
V(S(X+)) 6= ∅. Suppose first that End(SP) ∩ V(S(X+)) 6= ∅. By Lemmas 5(4)
and A4, there is a path Q ∈ SP satisfying End(SP) ∩ V(S(X+)) = {vR(Q)} and
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U+ ∩V(S(X+)) = {u+
Q,tQ
}, i.e., f (

−→Q (u+
Q,tQ

, Q)) = 1. Now, suppose that End(SP) ∩
V(S(X+)) = ∅, i.e., End(SC) ∩ V(S(X+)) 6= ∅; say vC ∈ End(SC) ∩ V(S(X+)). By
Lemma A4, |V(S(X+)) ∩U+| = 1; say V(S(X+)) ∩U+ = {u+

Q,i} for some Q ∈ SP

and i ∈ {1, · · · , tQ}. It should be noted that X+ \ {u+
Q,i} forms an independent set

of G with a cardinality of k + κ. By Lemmas A2 and A4, N(vC) ∩ U+ = {u+
Q,i}.

We will show that u+
Q,i = u+

Q,tQ
. Suppose otherwise that u+

Q,i 6= u+
Q,tQ

. By (A1),

End(SP) ∩ V(S(X+)) = ∅. Note that u+
Q,ivC ∈ E(G). Then (i) or (ii) occurs. By

Lemmas A5(2) and A6, the set of vertices of the subgraph

Q4 =

{
vL(Q)

−→
Q uQ,iLQ,iwLQ,i+1uQ,i+1

−→
Q vR(Q), if |V(Q[u+

Q,i, u−Q,i+1])| = 1,

u+
Q,tQ

−→
Q vR(Q)u2+

Q,i
−→
Q uQ,tQ LQ,tQ wLQ,iuQ,i

←−
Q vL(Q), if |V(Q[u+

Q,i, u−Q,i+1])| > 1

∪Q∗ in G is equal to V(Q ∪ C) ∪ {w} or V(Q ∪ C′ ∪ C) ∪ {w}, which contradicts (I).
The contradiction indicates that u+

Q,i = u+
Q,tQ

. Then N(u+
Q,tQ

) ∩ End(SC) 6= ∅.

Hence, our claim is proved.
Now, we will prove Lemma A7. We begin by assuming the opposite and using a

proof by contradiction. Suppose that there exists another path P ∈ SP with N(u+
P,tP

) ∩
End(SC) 6= ∅ or f (

−→Q (u+
P,tP

, P)) = 1. To arrive at a contradiction, we consider the following
two cases:

• Assume that End(S) ∩ U+ 6= ∅. If u+
P,tP

= vR(P) and u+
Q,tQ

= vR(Q), then X+

does not form an independent set of G with a cardinality of k + κ, contradicting
Lemma A1(2). Therefore, u+

P,tP
6= vR(P) or u+

Q,tQ
6= vR(Q). Without loss of generality,

suppose that u+
P,tP
6= vR(P), then u+

P,tP
vR(P) ∈ E(G) or N(u+

P,tP
) ∩ End(SC) 6= ∅.

Hence, there exist two adjacent vertices in X+, contradicting Lemma A1(2).
• Assume that End(S) ∩ U+ = ∅. Then u+

Q,tQ
6= vR(Q) and u+

P,tP
6= vR(P). Then,

G[X+] has at least two stars, contradicting Lemma A2(1).

This statement indicates that Lemma A7 is true.

Let

X =


X+ \ {vCU}, if U ∩V(SC) 6= ∅,
X+ \ {u+

Q,tQ
}, if U ⊆ V(SP) and U+ ∩ End(S) = ∅,

X+, if U ⊆ V(SP) and U+ ∩ End(S) 6= ∅.

Then, by Lemmas A1, A4 and A7, X forms an independent set of G satisfying size k + κ and

N(v) ∩ X 6= ∅ f or any v ∈ V(G) \ X. (A2)

Otherwise, there is a vertex v0 ∈ V(G) \ X satisfying X ∪ {v0} being an independent set of
G with size κ + k + 1, which contradicts α(G) = κ + k.

Lemma A8. Suppose that U ⊆ V(SP). The following two statements are true.

(1) SP contains exactly one path Q such that N(u+
Q,tQ

)∩ End(SC) 6= ∅ or f (
−→Q (u+

Q,tQ
, Q)) = 1

and N(u−Q,1) ∩ End(SC) 6= ∅ or f (
←−Q (u−Q,1, Q)) = 1;

(2) If f (
−→Q (u+

Q,tQ
, Q)) 6= 1 and f (

←−Q (u−Q,1, Q)) 6= 1, then there exist at least two elements C,

C′ ∈ SC with u+
Q,tQ

vC′ ∈ E(G), u−Q,1vC ∈ E(G).

Proof of Lemma A8. By symmetry and Lemma A7, SP has exactly one path P (say) such
that N(u−P,1) ∩ End(SC) 6= ∅ or f (

←−Q (u−P,1, P)) = 1. First, we will show Q = P. By
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contradiction, suppose that Q 6= P. Denote Q5 = vL(Q)
−→
Q uQ,tQ LQ,tQ wLP,1uP,1

−→
P vR(P). To

arrive at a contradiction, we consider the following three cases using Lemma A7:

• Assume that f (
−→Q (u+

Q,tQ
, Q)) = 1 and f (

←−Q (u−P,1, P)) = 1. Then the set of vertices of

the subgraph Q5 ∪
−→Q (u+

Q,tQ
, Q) ∪←−Q (u−P,1, P) in G is equal to V(Q ∪ P) ∪ {w}, which

contradicts (I).
• Assume that either f (

−→Q (u+
Q,tQ

, Q)) 6= 1 and f (
←−Q (u−P,1, P)) = 1 or f (

←−Q (u−P,1, P)) 6= 1

and f (
−→Q (u+

Q,tQ
, Q)) = 1. By symmetry, suppose that f (

−→Q (u+
Q,tQ

, Q)) 6= 1 and

f (
←−Q (u−P,1, P)) = 1. According to Lemma A7, N(u+

Q,tQ
) ∩ End(SC) 6= ∅; say vC′ ∈

N(u+
Q,tQ

) ∩ End(SC). Then the set of vertices of the subgraph Q5 ∪ vR(Q)
←−
Q u+

Q,tQ
C′ ∪

←−Q (u−P,1, P) in G is equal to V(Q ∪ P ∪ C′) ∪ {w}, which contradicts (I).

• Suppose that f (
−→Q (u+

Q,tQ
, Q)) 6= 1 and f (

←−Q (u−P,1, P)) 6= 1. Applying symmetry and

using Lemma A7, N(u+
Q,tQ

) ∩ End(SC) 6= ∅ and N(u−P,1) ∩ End(SC) 6= ∅. Then
(iii) or (iv) occurs. By Lemma A5(2), Q5 and Q? in G cover V(Q ∪ P ∪ C) ∪ {w} or
V(Q ∪ P ∪ C′ ∪ C) ∪ {w}, contradicting Lemma 4 or (I).

This contradiction shows that Lemma A8(1) holds.
Next, we will demonstrate Lemma A8(2). By Lemma A8(1), N(u+

Q,tQ
) ∩ End(SC) 6= ∅

and N(u−Q,1) ∩ End(SC) 6= ∅. We begin by assuming the opposite and using a proof by
contradiction. Suppose that there is precisely one element C ∈ SC with u+

Q,tQ
vC ∈ E(G)

and u−Q,1vC ∈ E(G). Note that f (
−→Q (u+

Q,tQ
, Q)) 6= 1 and f (

←−Q (u−Q,1, Q)) 6= 1. By Lemma A4,

S(X+) = u+
Q,tQ

vC and S(X−) = u−Q,1vC. Then, by Lemmas A5(2) and A6, the set of

vertices of the subgraph vL(Q)
−→
Q u−Q,1Cu+

Q,tQ

←−
Q uQ,1LQ,1w ∪ −→Q (u2+

Q,tQ
, Q) in G is equal to

V(Q ∪ C) ∪ {w}, which contradicts (I). This contradiction demonstrates that Lemma A8(2)
is true.

Remark A4. If f (
−→Q (u+

Q,tQ
, Q)) 6= 1, then, by Lemma A7, N(u+

Q,tQ
)∩ End(SC) 6= ∅; say vC′ ∈

N(u+
Q,tQ

) ∩ End(SC). If f (
←−Q (u−Q,1, Q)) 6= 1, then, by Lemma A8(1), N(u−Q,1) ∩ End(SC) 6= ∅;

say vC ∈ N(u−Q,1) ∩ End(SC). If f (
−→Q (u+

Q,tQ
, Q)) 6= 1 and f (

←−Q (u−Q,1, Q)) 6= 1, then, by
Lemma A8(2), V(C) ∩V(C′) = ∅. For convenience, we denote

Q6 =

 C′u+
Q,tQ

−→
Q vR(Q), if f (

−→Q (u+
Q,tQ

, Q)) 6= 1,
−→Q (u+

Q,tQ
, Q) if f (

−→Q (u+
Q,tQ

, Q)) = 1.

Q7 =

{
Cu−Q,1

←−
Q vL(Q), if f (

←−Q (u−Q,1, Q)) 6= 1,
←−Q (u−Q,1, Q), if f (

←−Q (u−Q,1, Q)) = 1.

Let

S ′ =
{
S \ {CU}, if U ∩V(SC) 6= ∅,
S \ {Q}, if U ∩V(SC) = ∅,

and S ′C = S ′ ∩ SC, S ′P = S ′ ∩ SP.

Lemma A9. Let C ∈ S ′C and x ∈ V(C) \ {vC}. It follows that N(x) ∩ X = {vC}.
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Proof of Lemma A9. First, we assert that for each vertex x ∈ V(C) \ {vC}, N(x) ∩ (X ∩
U+) = ∅. To prove this, we will use a proof by contradiction. Assume that N(x) ∩
(X ∩ U+) 6= ∅. According to Lemma 2(i), N(x) ∩ (V(SC) ∩ U+) = ∅. Then, there
is at least one vertex u+

P,i ∈ N(x) ∩ (X ∩ V(SP) ∩ U+) for some P ∈ SP and some
i ∈ {1, · · · , tP}. Assuming U ∩ V(SC) 6= ∅. Then, the set of vertices of the subgraph
vL(P)

−→
P uP,iLP,iwG[V(LCU ,1) ∪ V(CU)] ∪ Cu+

P,i
−→
P vR(P) in G is equal to V(P ∪ CU ∪ C) ∪

{w}, which contradicts (I). Therefore, U ⊆ V(SP). Suppose first that P = Q. If N(u+
Q,tQ

) ∩
End(SC) 6= ∅, (say vC′ ∈ N(u+

Q,tQ
) ∩ End(SC)) and C = C′, then the set of vertices of the

subgraph vL(Q)
−→
Q uQ,iLQ,iwLQ,tQ uQ,tQ

←−
Q u+

Q,iCu+
Q,tQ

−→
Q vR(Q) in G is equal to V(Q ∪ C) ∪

{w} or V(Q ∪ C) ∪ {w}; see Lemma 4. Otherwise, by Lemma A7, vL(Q)
−→
Q uQ,iLQ,i

wLQ,tQ uQ,tQ

←−
Q u+

Q,i C and Q6 in G cover V(Q ∪ C ∪ C′) ∪ {w} or V(Q ∪ C) ∪ {w}, contra-

dicting (I). Suppose now that P 6= Q, i.e., P ∈ S ′P. Let Q′ = vL(P)
−→
P uP,iLP,i

wLQ,tQ uQ,tQ

←−
Q vL(Q). If N(u+

Q,tQ
) ∩ End(SC) 6= ∅, (say vC′ ∈ N(u+

Q,tQ
) ∩ End(SC)) and

C = C′, then the set of vertices of the subgraph Q′ ∪ vR(Q)
←−
Q u+

Q,tQ
Cu+

P,i
−→
P vR(P) in G is

equal to V(P ∪ Q ∪ C) ∪ {w}, which contradicts Lemma 4. Otherwise, by Lemma A7,
Q′, Q6 and Cu+

P,i
−→
P vR(P) in G cover V(P ∪ Q ∪ C ∪ C′) ∪ {w} or V(P ∪ Q ∪ C) ∪ {w},

contradicting (I). These contradictions show that our claim holds.
According to Lemma 2(i)(ii), N(x) ∩ (End(S) \ {vC}) = ∅. Combining this with our

claim, we arrive at N(x) ∩ (X \ {vC}) = ∅. By (A2), N(x) ∩ X = {vC}.

Lemma A10. For any C ∈ S ′C, G[V(C)] forms a clique.

Proof of Lemma A10. As G[V(C)] is connected, we only need to focus on the case when
|V(C)| ≥ 3. It isworthnotingthat V(C)∩X = {vC}. AccordingtoLemmaA9, N(x) ∩ X = {vC}
for every vertex x ∈ V(C) \ {vC}. Let S′ = V(C). Then, according to Lemma 7, G[V(C)]
forms a clique.

Lemma A11. Suppose that V(S ′P) ∩U = ∅. The following two statements are true.

(1) Let P ∈ SP and y ∈ V(P) such that yvR(P) ∈ E(G), |V(P[y+, vR(P)])| ≥ 1 and
V(P[y, vR(P)]) ∩U = ∅. Then G[V(P[y+, vR(P)])] forms a clique. Moreover, if N(y) ∩
X = {vR(P)}, then G[V(P[y, vR(P)])] also forms a clique;

(2) Let P ∈ SP and x ∈ V(P) such that xvL(P) ∈ E(G), |V(P[vL(P), x−])| ≥ 1 and
V(P[vL(P), x]) ∩U = ∅. Then G[V(P[vL(P), x−])] forms a clique. Moreover, if N(x) ∩
X = {vL(P)}, then G[V(P[vL(P), x])] also forms a clique.

Proof of Lemma A11. By virtue of symmetry, we may restrict our consideration to demon-
strate the truth of (1). As G[V(P[y+, vR(P)])] is connected, it is sufficient to focus on the
case where |V(P[y+, vR(P)])| ≥ 3. Suppose that there is at least one vertex v ∈ N(y+) ∩ X
with v 6= vR(P). According to Lemma 6(1)(2), v ∈ U+ ∩ X ∩ V(SP). Note that V(S ′P) ∩
U = ∅. Then U ⊆ V(SP). We assume that v = u+

Q,j for some j ∈ {1, · · · , tQ − 1}.
If P 6= Q, then the set of vertices of the subgraph vL(P)

−→
P yvR(P)

←−
P y+u+

Q,j
−→
Q vR(Q) ∪

vL(Q)
−→
Q uQ,jLQ,jw in G is equal to V(Q ∪ P) ∪ {w}, which contradicts (I). If P = Q, then

vL(Q)
−→
Q uQ,jLQ,jwLQ,tQ uQ,tQ

←−
Q u+

Q,jy
+−→Q vR(Q) y

←−
Q u+

Q,tQ
in G covers V(Q) ∪ {w}, contra-

dicting (I). Therefore, we have N(y+) ∩ X = {vR(P)}, which is a contradiction. According
to (A2),

N(y+) ∩ X = {vR(P)}. (A3)

Note that V(P[y+, vR(P)]) ∩ X = {vR(P)}. Let S′ = V(P[y+, vR(P)]). According to
Lemma 7, it would therefore suffice to show that the following characterization holds,

N(y′) ∩ X = {vR(P)} for every vertex y′ ∈ V(P[y+, vR(P))). (A4)
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We apply (A3) repeatedly to obtain (A4).
Next, we will demonstrate that if N(y) ∩ X = {vR(P)} and V(P[y, vR(P)]) ∩U = ∅,

then G[V(P[y, vR(P)])] forms a clique. Since G[V(P[y, vR(P)])] is connected, we can as-
sume that |V(P[y, vR(P)])| ≥ 3. It is important to note that N(y) ∩ X = {vR(P)}, which
combined with (A4) implies that N(x) ∩ X = {vR(P)} for every vertex x ∈ V(P[y, vR(P))).
Let S′ = V(P[y, vR(P)]). According to Lemma 7, we can conclude that G[V(P[y, vR(P)])]
forms a clique.

Denote
T1(P) :={x ∈ V(P) : P ∈ S ′P, f (P[vL(P), x]) = 1, V(P[vL(P), x+]) ∩U = ∅, x+ 6=

vR(P)};
T2(P) :={x ∈ V(P) : P ∈ S ′P, N(x) ∩ End(S ′C) 6= ∅, V(P[vL(P), x+]) ∩ U = ∅,

x+ 6= vR(P)}.

Remark A5. If x ∈ T2(P), then, according to the definition of T2(P), there is at least one vertex
vC ∈ N(x) ∩ End(S ′C). Let

Q8 =

{ ←−Q (x, P), if x ∈ T1(P),
Cx
←−
P vL(P), if x ∈ T2(P) (say vC ∈ N(x) ∩ End(S ′C)).

Lemma A12. Let P ∈ S ′P, x ∈ V(P) and P′ ∈ S ′P \ {P}. Then the following three characteriza-
tions are true:

(1) If x ∈ T1(P) ∪ T2(P), then N(x+) ∩ (U+ ∩V(P′)) = ∅;
(2) If x ∈ T1(P), then N(x+) ∩ (X \ (End(S ′C) ∪ {vL(P), vR(P)})) = ∅ ;
(3) If x ∈ T2(P), then N(x+) ∩ (X \ (End(S ′C) ∪ {vR(P)})) = ∅ .

Proof of Lemma A12. First, we will prove Lemma A12(1). We begin by assuming the
opposite, i.e., N(x+) ∩ (U+ ∩ V(P′)) 6= ∅; say u+

P′ ,i ∈ N(x+) ∩ (U+ ∩ V(P′)) for some

i ∈ {1, · · · , tP′}. Denote Q9 = vR(P′)
←−
P′u+

P′ ,ix
+−→P vR(P). To arrive at a contradiction, we

will consider the following two situations.

• Suppose that U ∩ V(SC) 6= ∅. Then Q9, vL(P′)
−→
P′uP′ ,iLP′ ,iwG[V(LCU ,1) ∪ V(CU)]

and Q8 in G cover V(P′ ∪ P) ∪ CU) ∪ {w} or V(P′ ∪ P ∪ C ∪ CU) ∪ {w}, which
contradicts (I).

• Assume that U ⊆ V(SP). Then, by Lemma A7, there exists exactly one path Q ∈ SP such

that N(u+
Q,tQ

) ∩ End(SC) 6= ∅ (say vC′ ∈ N(u+
Q,tQ

) ∩ End(SC)) or f (
−→Q (u+

Q,tQ
, Q)) = 1.

Denote Q10 = vL(P′)
−→
P′uP′ ,iLP′ ,iwLQ,tQ uQ,tQ

←−
Q vL(Q). To arrive at a contradiction, we

differentiate between the following two cases:

– Assume that x ∈ T1(P). Then, by Lemma A7, the set of vertices of the subgraph

Q9 ∪Q10 ∪
←−Q (x, P)∪Q6 is equal to V(Q∪ P′ ∪ P∪C′)∪ {w} or V(Q∪ P′ ∪ P)∪

{w}, which contradicts (I).
– Assume that x ∈ T2(P). Then f (

−→Q (u+
Q,tQ

, Q)) 6= 1. Otherwise the set of vertices

of the subgraph Q9 ∪Q10 ∪ Cx
←−
P vL(P) ∪−→Q (u+

Q,tQ
, Q) is equal to V(Q ∪ P′ ∪ P ∪

C) ∪ {w}, which contradicts (I). Then, by Lemma A7, N(u+
Q,tQ

) ∩ End(SC) 6= ∅.
Then (iii) or (iv) occurs. By Lemma A5(2), the set of vertices of the subgraph
Q9 ∪Q10 ∪Q? in G is equal to V(Q ∪ P′ ∪ P ∪ C′) ∪ {w} or V(Q ∪ P′ ∪ P ∪ C′ ∪
C) ∪ {w}, which contradicts Lemma 4 or (I).

This statement indicates that Lemma A12(1) is true.
Next, we assert that if x ∈ T1(P)∪T2(P), then N(x+)∩ (X \ (End(S ′C)∪{vL(P), vR(P)

})) = ∅.
Assuming a contradiction, let us suppose that N(x+)∩ (X \ (End(S ′C)∪{vL(P), vR(P)

})) 6= ∅; say z ∈ N(x+) ∩ (X \ (End(S ′C) ∪ {vL(P), vR(P)})). By Lemma 6(1), z /∈
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End(SP) \ {vL(P), vR(P)}. To derive a contradiction, we differentiate between the fol-
lowing two cases based on the definition of X:

• Assuming z ∈ U+ ∩ V(SC); say z = u+
CU ,i for some i ∈ {1, · · · , tCU}. Then the

set of vertices of the subgraph Q8 ∪ vR(P)
←−
P x+u+

CU ,i
−→
CUuCU ,iLCU ,iw in G is equal to

V(P) ∪V(C) ∪V(CU) ∪ {w} or V(P) ∪V(CU) ∪ {w}, which contradicts (I).
• Assuming z ∈ (X ∩U+) ∩V(SP). To arrive at a contradiction by Lemma A12(1), we

differentiate between the following two cases:

– Assume that U ∩V(SC) 6= ∅; say z = u+
P,j for some j ∈ {1, · · · , tP}. Then the set

of vertices of the subgraph vR(P)
←−
P u+

P,jx
+−→P uP,jLP,jwG[V(LCU ,1) ∪V(CU)] and

Q8 is equal to V(P ∪ C ∪ CU) ∪ {w} or V(P ∪ CU) ∪ {w}, which contradicts (I).
– Assume that U ⊆ V(SP). Let

Q11 =


vR(P)

←−
P u+

P,jx
+−→P uP,jLP,jwLQ,tQ uQ,tQ

←−
Q vL(Q), if z = u+

P,j for some
j ∈ {1, · · · , tP},

vR(P)
←−
P x+u+

Q,j
−→
Q uQ,tQ LQ,tQ wLQ,juQ,j

←−
Q vL(Q), if z = u+

Q,j for some
j ∈ {1, · · · , tQ − 1}.

Assume that x ∈ T1(P). Then, by Lemma A7, the set of vertices of the sub-
graph Q11 ∪ Q6 ∪

←−Q (x, P) is equal to V(Q ∪ P ∪ C′) ∪ {w} or V(Q ∪ P) ∪ {w},
which contradicts (I). Now suppose that x ∈ T2(P). Then f (

−→Q (u+
Q,tQ

, Q)) 6= 1.

Otherwise, the set of vertices of the subgraph Q11 ∪
−→Q (u+

Q,tQ
, Q) ∪ Cx

←−
P vL(P)

is equal to V(Q ∪ P ∪ C) ∪ {w}, which contradicts (I). Then, by Lemma A7,
N(u+

Q,tQ
) ∩ End(SC) 6= ∅. Then (iii) or (iv) occurs. By Lemma A5(2), Q11 and

Q? in G cover V(Q ∪ P ∪ C) ∪ {w} or V(Q ∪ P ∪ C ∪ C′) ∪ {w}, contradicting
Lemma 4 or (I).

This contradiction demonstrates the validity of our claim. Therefore, Lemma A12(2) is true.
Final, we will prove Lemma A12(3). By our claim, if x ∈ T2(P), then N(x+) ∩ (X \

(End(S ′C) ∪ {vL(P), vR(P)})) = ∅. Hence, we only prove that x+vL(P) /∈ E(G). By
contradiction, suppose that x+vL(P) ∈ E(G). Then Cx

←−
P vL(P)x+

−→
P vR(P) in G covers

V(P∪C), which contradicts Lemma 4. This contradiction demonstrates that Lemma A12(3)
is true.

Lemma A13. Let P ∈ S ′P and x ∈ V(P) with V(P(x+, vR(P)]) ∩U 6= ∅. If x ∈ T1(P) ∪
T2(P), then x+vR(P) /∈ E(G).

Proof of Lemma A13. By contradiction, suppose that x+vR(P) ∈ E(G). To arrive at a
contradiction, we differentiate between the following two cases:

• Assume that U ∩V(SC) 6= ∅. Then the set of vertices of the subgraph G[V(LCU ,1) ∪
V(CU)]wLP,1uP,1

←−
P x+vR(P)

←−
P u+

P,1 and Q8 in G cover V(P ∪ C ∪ CU) ∪ {w} or V(P ∪
CU) ∪ {w}, which contradicts (I).

• Suppose that U ⊆ V(SP). Let Q12 = u−P,1
←−
P x+vR(P)

←−
P uP,1LP,1wLQ,tQ uQ,tQ

←−
Q vL(Q).

Suppose first that x ∈ T1(P). Then, by Lemma A7, the set of vertices of the subgraph
Q12 ∪ Q6 ∪

←−Q (x, P) is equal to V(Q ∪ P ∪ C′) ∪ {w} or V(Q ∪ P) ∪ {w}, which con-
tradicts (I). Now suppose that x ∈ T2(P). Then f (

−→Q (u+
Q,tQ

, Q)) 6= 1. Otherwise, the

set of vertices of the subgraph Q12 ∪
−→Q (u+

Q,tQ
, Q) ∪ Cx

←−
P vL(P) is equal to V(Q ∪ P ∪

C) ∪ {w}, which contradicts (I). Then, by Lemma A7, N(u+
Q,tQ

) ∩ End(SC) 6= ∅. Then
(iii) or (iv) occurs. By Lemma A5(2), the set of vertices of the subgraph Q12 ∪Q? is
equal to V(Q∪ P∪C)∪ {w} or V(Q∪ P∪C ∪C′)∪ {w}, which contradicts Lemma 4
or (I).
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This contradiction shows that x+vR(P) /∈ E(G).

Lemma A14. Let P ∈ S ′P, x ∈ T2(P). If x+vR(P) /∈ E(G), then N(x+) ∩ End(S ′C) = ∅.

Proof of Lemma A14. Assuming a contradiction, let us suppose that N(x+) ∩ End(S ′C) 6= ∅.
By Lemma 2(ii), x+ /∈ {vL(P), vR(P)}. Note that N(x) ∩ End(S ′C) 6= ∅. We assume that
vC ∈ N(x) ∩ End(S ′C). By Lemma 6(1), N(x+) ∩ End(S ′C) = {vC}. If x+v+C ∈ E(G),

then the set of vertices of the subgraph vL(P)
−→
P xCx+

−→
P vR(P) in G is equal to V(P ∪ C),

which contradicts Lemma 4. Therefore, |V(C)| ≥ 2 and x+v+C /∈ E(G). By Lemma A9,
N(v+C ) ∩ X = {vC}. By Lemma A12(3), N(x+) ∩ X = {vC}. Then (X \ {vC}) ∪ {x+, v+C }
forms an independent set of size κ + k + 1; this would contradict the fact that α(G) = κ + k.
This contradiction demonstrates that Lemma A14 is true.

Lemma A15. Let P ∈ S ′P with V(P) ∩ U+ 6= ∅. Then u−P,1 6= vL(P) and N(u−P,1) ∩
(End(S ′C) ∪ {vL(P)}) = ∅.

Proof of Lemma A15. Denote

X′ =


X− \ {vCU}, if U ∩V(SC) 6= ∅,
X− \ {u−Q,1}, if U ⊆ V(SP) and U− ∩ End(S) = ∅,
X−, if U ⊆ V(SP) and U− ∩ End(S) 6= ∅.

By symmetry and Lemmas A1, A4 and A8, X′ is an independent set of G with size k + κ.
Then, u−P,1 6= vL(P); otherwise, X′ is an independent set of G with size k + κ− 1, contradict-
ing α(G) = κ + k. Moreover, N(u−P,1) ∩ (End(S ′C) ∪ {vL(P)}) = ∅. Otherwise, X′ is not an
independent set of G.

Lemma A16. S ′P = ∅.

Proof of Lemma A16. By contradiction, suppose that S ′P 6= ∅.

Claim A1. V(P) ∩U = ∅ for any P ∈ S ′P.

Proof of Claim A1. By contradiction, suppose that V(P) ∩U 6= ∅ for some P ∈ S ′P. Now,
we consider the section P[vL(P), u−P,1]. By Lemma A15, |V(P[vL(P), u−P,1])| ≥ 3.

Suppose that vL(P)u2−
P,1 ∈ E(G). Then, by Lemmas A12(2), A13 and A15, we have

N(u−P,1) ∩ X = ∅, contradicting (A2). This contradiction shows that

vL(P)u2−
P,1 /∈ E(G). (A5)

Hence, |V(P[vL(P), u−P,1])| ≥ 4. Then there exists a vertex vL(P)i+ ∈ V(P[vL(P), u2−
P,1))

such that vL(P)vL(P)i+ ∈ E(G) for i ≥ 1. By Lemmas A12(2) and A13, N(vL(P)(i+1)+) ∩
(X \ (End(S ′C) ∪ {vL(P)})) = ∅. By (A2), N(vL(P)(i+1)+) ∩ X 6= ∅. Then there ex-
ists at least one vertex v ∈ N(vL(P)(i+1)+) ∩ (End(S ′C) ∪ {vL(P)}). Suppose that v ∈
End(S ′C). We know N(vL(P)(i+2)+) ∩ X = ∅ by Lemmas A12(3), A13 and A14, contra-
dicting (A2). This contradiction shows that v /∈ End(S ′C). Combining this with (A2) and
Lemmas A12(2), A13, we obtain that N(vL(P)(i+1)+) ∩ X = {vL(P)}. Thus, vL(P)u2−

P,1 ∈
E(G), contradicting (A5). Claim A1 is proved.

According to Lemma 4, for any path P ∈ SP, vL(P)vR(P) /∈ E(G). We can select the
vertex xP from V(P) such that V(P[vL(P), x−P ]) ⊆ N(vL(P)) and xP /∈ N(vL(P)). Denote

x̂P =

{
x+P , if xP 6= vR(P) and xPvR(P) /∈ E(G);
xP, if xP = vR(P) or xPvR(P) ∈ E(G).
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If xP 6= vR(P) and xPvR(P) /∈ E(G), then, by the definition of xP and Lemma A12(2), (A2),
N(xP) ∩ End(S ′C) 6= ∅.

Claim A2. For any path P ∈ S ′P, the following two characterizations are true.

(1) f (G[V(P[vL(P), x−P ])]) = 1 and f (G[V(P[x̂P, vR(P)])]) = 1;
(2) Either x−P or xP is a cut vertex of G.

Proof of Claim A2. First, we will prove Claim A2(1). If xP = vR(P) or xPvR(P) ∈ E(G),
then Claim A2(1) holds. Therefore, xP 6= vR(P) and xPvR(P) /∈ E(G). Note that N(xP) ∩
End(S ′C) 6= ∅. Suppose first that x+P = vR(P). Claim A2(1) holds. Suppose now that x+P 6=
vR(P). Then we consider the neighbourhood of the vertex x+P . If x+P vR(P) /∈ E(G), then, by
Lemmas A12(3) and A14, N(x+P ) ∩ X = ∅, contradicting (A2). Therefore, x+P vR(P) ∈ E(G).
Claim A2(1) holds.

Next, we will prove Claim A2(2). Since G is connected, N(V(P[vL(P), x−P )))∩ (V(G) \
V(P[vL(P), x−P ))) 6= ∅. For z ∈ N(V(P[vL(P), x−P )))∩ (V(G) \V(P[vL(P), x−P ))), there ex-
ists a vertex x′ ∈ V(P[vL(P), x−P )) with x′z ∈ E(G). By the definition of xP and Claim A2(1),
vL(P)x−P ∈ E(G). According to Claim A1 and Lemma A11(2),

G[V(P[vL(P), x−P ))] is a clique. (A6)

We will demonstrate that z belongs to V(P). To begin, we assume the opposite, z is not an
element of V(P). By Lemma 6(2) and (A6), z /∈ V(SC) ∪V(H). To arrive at a contradiction,
we differentiate between the following two cases:

• Assume that z ∈ V(P′) with P′ ∈ S ′P \ {P}. By Lemma 6(2), z /∈ {vL(P′), vR(P′)}.
Therefore, z ∈ V(P′) \ {vL(P′), vR(P′)}. By the definition of xP′ and Claim A2(1),
vL(P′)x−P′ ∈ E(G) and f (G[V(P′[x̂P′ , vR(P′)])]) = 1. Then, by Claim A1 and Lem-
mas A11(1)(2), G[V(P′[vL (P′), x−P′))] and G[V(P′(x̂P′ , vR(P′)])] are cliques. Hence,

there exists a Q′ ∈ {vL(P′)
−→
P′ z−vL (P′), z+

−→
P′ vR(P′)z+} with f (Q′) = 1. By

Lemma A11(2), the set of vertices of the subgraph G[E(P′ \Q′)]x′G[V(P[vL(P), x−P ) \
{x′})]x−P−→
P vR(P) and Q′ in G is equal to V(P ∪ P′), which contradicts Lemma 4.

• Suppose that z ∈ V(Q). To arrive at a contradiction, we differentiate between the
following two cases:

– Assume that z ∈ V(Q[uQ,1, uQ,tQ ]). Then, by Lemmas A8(1)(2), A11(1)(2) and (A6),
the set of vertices of the subgraph

Q13 =



vR(P)
←−
P x−P G[V(P[vL(P), x−P ))]z

−→
Q uQ,tQ LQ,tQ wLQ,1uQ,1

−→
Q z−, if z ∈

V(Q(uQ,1, uQ,tQ)),

vR(P)
←−
P x−P G[V(P[vL(P), x−P ))]z

−→
Q uQ,tQ LQ,tQ w, if z =

uQ,1,
vR(P)

←−
P x−P G[V(P[vL(P), x−P ))]z

←−
Q uQ,1LQ,1w, if z =

uQ,tQ ,

Q6 and Q7 are equal to V(P ∪ Q ∪ C ∪ C′) ∪ {w} or V(P ∪ Q ∪ C) ∪ {w} or
V(P ∪Q ∪ C′) ∪ {w} or V(P ∪Q) ∪ {w}, which contradicts (I).

– Suppose that z ∈ V(P[vL(Q), u−Q,1]) or V(P[u+
Q,tQ

, vR(Q)]). By virtue of symme-

try, we may restrict our consideration to z ∈ V(P[vL(Q), u−Q,1]). By Lemma A8(1),

N(u−Q,1) ∩ End(SC) 6= ∅ or f (
←−Q (u−Q,1, Q)) = 1. Combining this with Lemma A6,

we obtain that u2−
Q,1vL(Q) ∈ E(G). By Claim A1 and Lemma A11(2), G[V(P[vL(Q),

u2−
Q,1))] is a clique. Then, by (A6), either vR(P)

←−
P x−P G[ V(P[vL(P), x−P ))]z

−→
Q vR(Q)
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and
←−Q (z−, Q) in G cover V(P)∪V(Q), or vR(P)

←−
P x−P G[V(P[ vL(P), x−P ))]vL(Q)

−→
Q vR(Q) in G covers V(P ∪Q), which contradicts Lemma 4.

This contradiction demonstrates that

z ∈ V(P). (A7)

To prove Claim A2(2), we differentiate between the following two cases:

• Suppose that x̂P = xP. We will show that there is no pair of edges xPx1 and x−P x2 with
x1 ∈ V(P[vL(P), x−P )) and x2 ∈ V(P(xP, vR(P)]). Suppose otherwise that xPx1 ∈ E(G)
and x−P x2 ∈ E(G). Note that G[V(P(xP, vR(P)])] and G[V(P[vL(P), x−P ))] form cliques.
Then the set of vertices of the subgraph x−P G[V(P(xP, vR(P)])]xPG[V(P[vL(P), x−P ))]x

−
P

in G is equal to V(P), which contradicts Lemma 4. If either x−P x2 ∈ E(G) and
xPx1 /∈ E(G) or xPx1 /∈ E(G) and x−P x2 /∈ E(G), then, by Lemma 6(2) and (A7),
N(x′) ⊆ V(P[vL(P), x−P ]). Therefore, x−P is a cut vertex of G. If xPx1 ∈ E(G) and
x−P x2 /∈ E(G), then, by Lemma 6(2) and (A7), N(x′) ⊆ V(P[vL(P), xP]). Therefore, xP
is a cut vertex of G.

• Suppose that x̂P = x+P . Then xPvR(P) /∈ E(G) and N(xP) ∩ End(S ′C) 6= ∅; say vC ∈
N(xP) ∩ End(S ′C). Suppose, first, that N(xP) ∩ V(P[vL(P), x−P )) = ∅. Then x+P x′ /∈
E(G); otherwise, the set of vertices of the subgraph CxPG[V(P[vL(P), x−P ])]x

+
P
−→
P vR(P)

in G is equal to V(P∪C), which contradicts Lemma 4. Combining this with Lemma 6(2)
and (A7), we obtain that N(x′) ⊆ V(P[vL(P), x−P ]). Then, x−P is a cut vertex of G. Sup-
pose, now, that N(xP)∩V(P[vL(P), x−P )) 6= ∅; say x0 ∈ N(xP)∩V(P[vL(P), x−P )). By
(A6), G[P[vL(P), xP]] has a cycle Cx0 = x0

←−
P vL(P)x+0

−→
P xPx0 with V(P[vL(P), xP]) =

V(Cx0). By (A6), we structure a new path P′ such that P′ = x0
←−
P vL(P)x+0

−→
P xP
−→
P vR(P)

by rearranging the order of the vertices in P. Then vL(P′) = x0. It is easy to verify that
G[V(P)] ∼= G[V(P′)]. We will prove that there is no pair of edges x+P x′1, xPx′2 such that
x′1 ∈ V(P′[vL(P′), xP)) and x′2 ∈ V(P′(x+P , vR(P′)]). Suppose otherwise that x+P x′1 ∈
E(G) and xPx′2 ∈ E(G). Then x+P G[V(P′(x+P , vR(P′)])]xPG[V(P′[vL(P′), x−P ])]x

+
P in G

cover V(P′), contradicting Lemma 4. Let x′′ ∈ V(P[vL(P), x−P ]). By (A7), N(x′′) ⊆
V(P). If xPx′2 ∈ E(G), then x+P x′1 /∈ E(G). By Lemma 6(2) and (A7), N(x′′) ⊆
V(P[vL(P), xP]). Therefore, xP is a cut vertex of G. If x+P x′1 ∈ E(G), then, xPx′2 /∈ E(G).
By Lemma 6(2) and (A7), N(x′′) ⊆ V(P[vL(P), x+P ]). Therefore, x+P is a cut vertex
of G. If x+P x′1 /∈ E(G) and xPx′2 /∈ E(G), then, according to Lemma 6(2) and (A7),
N(x′′) ⊆ V(P[vL(P), xP]). Therefore, xP is a cut vertex of G.

Claim A2(2) is proved.

Claim A2(2) contradicts κ ≥ 2. Hence, Lemma A16 is proved.

Now, let us prove Lemmas 8 and 9 which are mentioned in Section 2.

Proof of Lemma 8. By contradiction, suppose that U ∩ V(SC) 6= ∅. According to
Lemma A16, |SP| = 0. As G is connected and k ≥ 2, there are at least two elements of SC
connected by a path whose inner vertices are in V(G) \V(S), contradicting Lemma 2(i).
Therefore, U ⊆ V(SP). By Lemma A16, |SP| = 1 .

Proof of Lemma 9. By Lemma A8(1)(2), Lemma 9(1)(2) holds. Suppose first that End(S)∩
U+ is not empty. Then, by Lemma A1(2), X forms an independent set of G with size
κ + k. Suppose now that End(S) ∩U+ = ∅. By Lemma 9(1), N(u+

κ ) ∩ End(SC) 6= ∅ or
f (
−→P (u+

κ , P)) = 1. By Lemmas A1(3), A2(1) and A4, X forms an independent set of G with
size k + κ. Therefore, Lemma 9(3) holds. Furthermore, by Lemma A6, Lemma 9(4) holds.
By Lemma A11(1), Lemma 9(5) holds. By Lemmas A9 and A10, Lemma 9(6) holds.
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