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Abstract: Win proved a very famous conclusion that states the graph G with connectivity x(G),
independence number «(G) and a(G) < x(G) +k —1 (k > 2) contains a spanning k-ended tree.
This means that there exists a spanning tree with at most k leaves. In this paper, we strengthen the
Win theorem to the following: Let G be a simple 2-connected graph such that |V(G)| > 2x(G) + k,
a(G) < x(G) + k (k > 2) and the number of maximum independent sets of cardinality « + k is at
most n — 2k — k + 1. Then, either G contains a spanning k-ended tree or a subgraph of Ky V ((k +x —
DKy UKy g k11)-
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1. Introduction

Notation regarding graph theory is not covered in this paper. We refer the reader
to[1]. Let G = (V(G),E(G)) be a graph satisfying vertex set V(G) and edge set E(G).

We denote the set of vertices adjacent to v in G as N(v). We write N(X) = |J N(x) for
xeX
X C V(G). We also denote the subgraph of G induced by S as G[S] for S C V(G). Let Hy

and H, be two subgraphs of G which vertex disjoint, and P be a path of G. A path xPy in
G with end vertices x,y € V(G) is called a path from H; to Hy if V(xPy) N V(Hy) = {x}
and V(xPy) N V(H) = {y}. (x,U)-path is a path from {x} to a vertex set U. We write
an (x,U)-fan of width k for F C G if F is a union of (x,U)-paths P;, P,,..., P, where
V(P;) NV (P;) = {x} fori # j. Let G; and G, be two subgraphs of G. We denote by xG;
(Gyx, respectively) the Hamilton path of G[{x} U V(Gy)], which starts at x (terminates at x,
respectively). We denote by xGy the Hamilton path of G[V(Gy) U {x,y}], which starts at
x and terminates at y. We denote by G1xG; the Hamilton path of G[V(G1) U {x} U V(Gp)].
A nontrivial graph, G, is considered k-connected if the maximum number of pairwise
internally disjoint xy-paths for any two distinct vertices, x and y, is greater than or equal
to k. A trivial graph is considered 0-connected or 1-connected, but it is not considered k-
connected for any k greater than 1. The connectivity, x(G), of G is defined as the maximum
value of k for which G is k-connected.

If a graph contains a Hamilton path, then the graph is said traceable, and if a graph
contains a Hamilton cycle, then the graph is said hamiltonian. The sufficient conditions
under which a graph can be traceable involving connectivity (x(G)) and independence number
((G)) were given by Chvétal and Erdgs in 1972.

Theorem 1. (Chuvdtal and Erdds, [2]) If a graph G with |V (G)| > 3 satisfies the conditions a(G) <
k(G), a(G) < k(G) + 1, respectively, then G is Hamiltonian and traceable, respectively.

Theorem 1 has been extended in various directions, as documented in previous stud-
ies [3-8]. For recent results, see [9-12]. Fouquet and Jolivet [13] conjecture whether a
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graph’s circumference can have a best possible lower bound when its independence num-
ber exceeds its connectivity. This has been proved by Suil O et al.

Theorem 2. (Suil O et al., [14]) If G is a simple graph such that |V (G)| = nand a(G) > x(G),
(G)(n —a(G) —x(G))
«(G) '

then G contains a cycle with length of at least £

The number of maximum independent sets of H for a subgraph H C G is denoted by
m(H). In their study [15], Chen et al. presented the following theorem that generalizes
Theorem 1 by bound m(G). Specifically, the authors demonstrated that expanding the
independence number (i.e., «(G) < x(G) + 2) slightly and bounding m(G) does not alter
the traceability of G. It is worth noting that K, represents a complete graph with s vertices,
while K; is the complement of K;. Additionally, the join G V H of disjoint graphs G and H
is obtained by joining each vertex of G to each vertex of H in the graph G + H.

In the following, we construct three graphs which are excluded. Let H;(k;) be
a copy of Fki where i = 1,2. The graph Fy(ky,k;) is defined as (Hj(k1) V Ha(kp)) U
Ky _ky—k, U My (k2), where n — ky — kp > ko and M (k2) is a matching of cardinality k;
between Hp(kz) and K, g, _,. If n —ki —ky > kp, then Fiy(kq,ky) is obtained from
Fy(k1, k2) by joining exactly two (nonadjacent) vertices of Hy(kz)) or by joining all ver-
tices of V(K,,_k,—k,) \ V(M (k2)) and some fixed vertex wy € Ha(kz). Let Foo(k1, k2) be
the graph (Hy(k;) V Ha(k2)) U Ky, g, —k, U Ma(k2), where n — ky — ko < kp and M (kz) is
a matching of cardinality n — ki — ky between K,,_, _, and Hy(k2). Define the graph
Fy(ky,k2) = K, V (Ki, UKy g, _k, ); see Figure 1.

Fo (ki, k2) Foo (ki, k.) F2 (ki k2)
Figure 1. Fo(kq, k2), Foo(k1,k2) and Fp(kq, k2).

Theorem 3. (Chen et al., [15]) Let G be a 2-connected graph with |V (G)| > 2«*(G), x(G) = «,
a(G) < x4+ 1and m(G) < n — 2. Then, either G is Hamiltonian or F11(x,x) C G C F(x, ),
where Fy1(x, k) and F,(x, k) are two graphs defined above.

Theorem 4. (Chen et al., [15]) Let G be a connected graph with |V (G)| > 2«*(G), x(G) = «,
a(G) < k+2and m(G) < n —2x — 1. Then either G is traceable or Fj1(x +1,k) C G C
Kic V ((x + 1)Ky UKy —px—1), where Fi1(k + 1, x) is the graph defined above.

A Hamilton path is viewed as a spanning tree with exactly two leaves. This perspective
allows for the generalization of sufficient conditions for a graph to be traceable to those
for a spanning tree with at most k leaves. A tree is called a k-ended tree if it has at most k
leaves. Our focus now shifts to spanning k-ended trees. Clearly, if s < t, then a spanning
s-ended tree is also a spanning t-ended tree. Theorem 1 demonstrates that each graph G
such that a(G) < «(G) + 1 is traceable. In [16], Win proved the following theorem, which
generalizes Theorem 1.

Theorem 5. (Win, [16]) Let G be a connected graph and let k > 2 be an integer. If a(G) < x(G) +k —1,
then G contains a spanning k-ended tree.

In [17], Lei et al. extend Theorem 5 in cases when x(G) = 1 to the following direction.



Axioms 2023, 12,411

30f25

Theorem 6. (Lei et al., [17]) Let k > 3 and G be a connect graph with |V(G)| > 2k + 2,
a(G) <1+kand m(G) < n— 2k — 2. Then G contains a spanning k-ended tree.

In [15], Chen et al. generalize Theorem 1 by bound m(G). The authors demonstrated
that expanding the independence number (i.e., #(G) < x(G) + 2) slightly and bounding
m(G) does not alter the traceability of G.

In this paper, our focus will be on the existence of spanning k-ended tree. We will
work on extending Theorem 5 to a more general case. A natural question is whether
expanding the independence number can alter the existence of the spanning k-ended tree.
In the following section, we introduce the k-ended system, which is an important tool for
studying the k-ended tree.

k-Ended System

If there exists a set of paths and cycles where the elements are pairwise vertex-disjoint,

we refer to it as a system. This system is often viewed as a subgraph. Let S be a system in a

graph. For S € S, we put f(S) = 2if S is a path of order at least 3 and f(S) = 1 otherwise

(i-e., S is a vertex, an edge or a cycle). We write V(S) = U V(S) and f(S) = ¥ f(S). If
Ses Ses

f(S) <k, Sis called a k-ended system. Moreover, we call S a spanning k-ended system of G, if
V(S) =V(G). Let

Sp=1{SeS:f(S)=2}, Sc={SeS:f(S)=1}

Then,
S=85pUS, V(S) = U V(S)
ses
Additionally, V(Sp) and V(S¢) can be defined in a similar manner. We use |S|, |Sp|
and |Sc¢| to represent the number of elements in S, Sp and S, respectively. For each S € S,
we assign an orientation denoted by the symbol <, where x < y if x precedes y in the

orientation. Let S be the orientation of S € Sandlet S be the reverse orientation of Kt
for S € S. By assigning an orientation to each S € S, we identify S as a system with an
orientation, where each element is ordered relative to the others.

Let S be a system with a defined orientation. For any P € Sp, we define v (P) and
vRr(P) as the two end-vertices of P such that vy (P) < vg(P). Additionally, for each C € S¢,
we select an arbitrary vertex vc within C. These definitions will be used in subsequent
analyses. Then define

End(Sp) = |J {vL(P),vr(P)}, End(Sc) = |J {vc}, End(S) = End(Sp)U End(Sc).
PeSp CeSc

For S € S and x € V(S), we write the first, second and ith predecessor (successor,
respectively) of x as x~, x~~ and x'~ (x*, xTT and x'*, respectively). For convenience, we
write x = xT = x forK; = xandy = x7 = x~ for K = xy.

For P € Sp, if x = vg(P) (x = vr(P), respectively), we have only the predecessor
of vgr(P) (successor of vy (P), respectively). For {x,y} C V(P), we denote by the section
P(x,y) a path xTx?>Tx3t_.x*" (= y~) of consecutive vertices of P and denote by the section
P[x,y] a path xx*x>*..x°* (= y) of consecutive vertices of P. Moreover, if x = y, then the
section Plx, y] is trivial.

The following lemma illustrates the importance of k-ended systems for spanning
k-ended trees.

Lemma 1. (Win, [16]) Let k > 2 be an integer and let G be a connected simple graph. If G
contains a spanning k-ended system, then G also contains a spanning k-ended tree.
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A k-ended system S in G is considered a maximal k-ended system if there is no other
k-ended system S in G satisfying V(S) C V(8S). The following lemma presents some
useful properties of k-ended systems. It is important to note that two distinct elements
of S are connected by a path in G — V(S) if there exists a path in G whose end-vertices
are in elements of S and whose inner vertices are not all contained in V(S). It is worth
mentioning that a path may not have any inner vertex.

Lemma 2. (Akiyama and Kano, [18]) Let k > 2 be an integer and G be a connected simple
graph. Assume that G does not contain a spanning k-ended system and let S be a maximal
k-ended system of G satisfying the cardinality of the maximum value of Sp subject to the
maximum value of V(S). Then the following characterizations are true.

(i) There is no path connecting two distinct elements of S¢c whose inner vertices are in
V(G)\V(S).

(ii) There is no path connecting an element of Sc and one end-vertex of an element of
Sp whose inner vertices are in V(G) \ V(S).

(iii) There is no path connecting an end-vertex of an element of Sp and an end-vertex
of another element of Sp whose inner vertices are in V(G) \ V(S).

(iv) There are no two internally disjoint paths Q; and Q, connecting two distinct
elements of S¢ whose inner vertices are in V(G) \ V(S) with |[V(Q1) NV (Qz)| = 1.

2. Methods

In this paper, our focus will be on the existence of spanning k-ended tree. We will
work on extending Theorem 5 to a more general case. We tried to prove that it does not
change the existence of spanning k-ended tree if we expand the independent numbers a
little bit and bound n1(G). The proof will follow an approach similar to Theorem 6, but with
additional considerations for the increased connectivity of the graph. Our proof follows
a method of contradiction. We primarily utilize the crucial tool of the maximal k-ended
system, as mentioned above, to derive contradictions. The subsequent section is the crucial
property of the maximal k-ended system which we obtained. This property plays a pivotal
role in our proof.

Important Properties of Maximal k-Ended System

In this section, for convenience, we assume the following: Let k > 2 and G be a
graph with |V(G)| > 2x(G) +k, k(G) =x > 2, a(G) =x+kand m(G) <n —2x —k+ 1.
Suppose that there is no spanning k-ended system in G and let S be a k-ended system of G
satisfying the following:

(I) The cardinality of the set V(S) is maximized.
(I) The cardinality of Sp is maximized subject to condition (I).

Then S is a set of subgraphs of G satisfying the hypothesis of Lemma 2. Let H = G — V/(S).
Then |V(H)| > 1. Letw € (V(G) — V(S). The following lemma is easily obtained from
the selection of S and we omit the proof.

Lemma 3. The following characterizations are true.

(1) Forany P € Sp, vy (P) and vg(P) are not in N(H).
(2) Forany C € Sc such that C = Ky, N(H)NV(C) = Q.

By the Fan Lemma, there exists a (w, V(S))-fan £ with width k. For S € S with
V(S)NV(L) # D,1et V(S)NV(L) = {us, - ,usys } (Where ug, - -+, ug g are the ver-
tices of S along the direction of S) and Lg; be the path of £ between w and ug;. Then
U= Uses{V(S)NV(L)} and Lg = {Lg,1,- -+, Ls, } is the set of paths between w and S.
Denote UT = {ut:u e U}and U~ = {u~ :u € U}. By Lemma 3(1),(2), U" and U~ are
well defined and hence Ut | = |U~| = [U].

The proof of the following lemmas can be easily obtained from the choice of S and we
will omit it.
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Lemma 4. A graph G cannot have a k'-ended system T that includes all vertices in a k-ended
system S, where k' < k.

Lemma 5. The following characterizations are true:

(1)  Both U and End(S) are independent sets of G.

(2) N(w)nU* = Q.

3) [{CeSc:V(CO)NU #0} <1

(4) Letx € UTNV(P), where P € Sp. Then N(x) N (End(Sp) \ {vr(P)}) = @. Furthermore,
if x # up, , then N(x) N End(Sp) = @.

Lemma 6. Let v1 € End(S) and S; € S with vy € V(S1). Then the following statements
are true:

(1) [(N(o1) NV(S))” U(N(v1)NV(S)T]NN(v) = @ forany v € V(S¢ — {S,51}) U
End(S —{S,S1})and S € S — {51 }.

(2) Ifvy = vp(P) (vy = vr(P), respectively), then (N(v1) NV (S1))” NN(v) =D (N(vy) N
(N(v)NV(S1))” = D, respectively) for any v € V(Sc) UV (H) U (End(S) \ {v1}).

Let Y be an independent set of G with size k + . Then the following lemma holds.

Lemma 7. Let S’ belong to V(G) which satisfies S' N'Y having precisely one vertex, denoted as z,
ie, S'NY ={z}. f N(x) NY = {z} foreach x € "\ {z}, then G[S'| forms a clique.

Proof of Lemma 7. We begin by assuming the opposite and using a proof by contradiction.
Suppose that x1x, ¢ E(G) for some pair of vertices x; and x; in S/, where x; # x5. Then,
(Y\ {z}) U{x1, xp} forms an independent set of G with a size of k + x + 1. This contradicts
the fact that «(G) = k + x. Hence, G[S'] is a clique. [

For convenience, suppose that x is an element of V(P). For each P € Sp, we define
a(x, P) as follows:

vr(P), if x=uog(P),
or(P), if x*=og(P),
P)x, if xvgr(P) € E(G) (x # vr(P),xt # vgr(P)).

Similarly, we define 5 (x, P) as follows:

- x=uvr(P), if x=vuv.(P),
Q(x,P) = { x7<J_L(P)/ if x= =wo,(P),

xPoup(P)x, if xvp(P)e€ E(G) (x #vp(P),x~ #v(P)).
Therefore, f(a(x, P)) = 1and f(E(x,P)) = 1. We say that C(Gp) is a spanning

subgraph of Gy satisfying f(C(Gp)) = 1if Gy C G.
Some properties of S are described in the following lemmas, as proved in Appendix B.

Lemma8. U C V(Sp)and | Sp |= 1.

By Lemma 8, Sp = {P} (say). Then U = V(P) N\ V(L) = {up1,--- ,ups,} and tp = x.
For convenience, denote that U = {uy,up,- -+ ,u,} and

P End(S)uUt U{w}, if End(S)NUT #Q,
N { (End(S)uUt u{w}) \{uf}, if End(S)nU" =.

Lemma 9. The following statements hold.
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(1) N(ut) N End(Sc) # @or f(B (uf, P)) = 1and N(uy ) N End(Sc) # @ or £(Q (ug,
P))=1.

(2) Iff(a(uf{,P)) # 1 and f(z(ul_,P)) # 1, then there exist at least two elements C,
C' € Sc such that ufver € E(G), uj ve € E(G).

(3) X forms an independent set of G with size k + «.

(4) IfN(uf)NEnd(Sc) # @ and u* # vg(P), then u2*vg(P) € E(G).

(5) Lety € V(P) satisfy |V(P[y™,vr(P)])| > 1, yor(P) € E(G) and V(P[y,vr(P)]) NU =
@. Then G[V(P[y™,vr(P)])] forms a clique. Additionally, if the intersection of N(y) and X
is {vr(P)}, then the graph G[V (P[y,vr(P)])] forms a clique.

(6) G[V(C)] forms a clique for any C € Sc. Furthermore, N(x) N X = {vc} for any
x € V(C)\ {oc}.

3. Results and Discussion

In [17], the authors provide a novel extension by imposing a limit on the maximum
number of independent sets, although the limit is not sharp. Note that G has no spanning
ki1 + 1 — kp-ended tree for each G € {Fy(kq,kz), Foo(k1,k2), F2(k1,kp)}. In this paper, we
extend Theorem 5 to the case where x(G) > 2 and the bound on the number of maximum
independent sets is already sharp.

Theorem 7. Let k > 2 and G be a graph with |V (G)| > 2x(G) +k, x(G) =k > 2, a(G) <
k +kand m(G) < n—2x —k+1. Then G contains a spanning k-ended tree, unless either
Folk+x—1,k) C G C B(k+x—1,x) forn >3k +k—1, or Fpo(k +x—1,x) C G C
Fy(k+x—1,x) for2k +k <n <3x+k—1.

Note that a spanning tree having exactly two leaves is called a Hamilton path. Then,
we can immediately obtain the following result.

Corollary 1. Let G be a graph with |V (G)| > 2x(G) + 2, x(G) =k > 2, a(G) < x + 2 and
m(G) < n—2x — 1. Then G is traceable, unless either Fy(k +1,x) C G C F(x +1,x) for
n>3k+1,0rFoo(k+1,x) CGC F(k+1,x)for2xk+2 <n < 3k + 1.

In the case of 2-connected, the bounds of |V (G)| can do better. Clearly, Corollary 1 im-
proves the result of Theorem 4. It demonstrated that expanding the independence number
slightly and bounding m(G) also does not alter the traceability in highly connected graphs.

If [k+x—1,x) CG C FK(k+x—1,x)forn >3x+k—1,0or Fp(k+x—1,x) C
GC h(k+x—1,x)for2k +k <n <3x+k—1,then m(G) = n —2x — k+ 1. Hence, we
can obtain the following result immediately.

Corollary 2. Let k > 2 and G be a graph of order n > 2x(G) + k such that k(G) = x > 2,
a(G) < k+kand m(G) < n — 2k — k. Then G contains a spanning k-ended tree.

4. Proof of Theorem 7

In this section, we employ the same terminology and notation in Section 2.

Proof of Theorem 7. Let k > 2 and G be a graph with |V(G)| > 2x(G) + k, k(G) =« > 2,
a(G) < k+kand m(G) < n — 2k — k+ 1. We begin by assuming the opposite and using
a proof by contradiction. Suppose that G does not have a spanning k-ended tree. This
assumption, along with Theorem 5, implies the following equation:

a(G) = «(G) +k. 1)

Thus, by Lemma 1, G cannot have a spanning k-ended system. We select a maximal k-
ended system S of G that satisfies conditions (I) and (II) outlined in Section 2. Define
H=G—V(S). Clearly [V(H)| > 1. Letw € (V(G) — V(5)).
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We will show that Fy(k+x —1,x) C G C F(k+x—1,x) forn > 3k +k—1, or
Folk+x—1,x) CGC FR(k+x—1,x)for2k+k<n <3x+k—1.

Factl. m(G)>n—2x—k+ 1.

Proof of Fact 1. We consider a (w, V(S))-fan £ in Section 2. By Lemma 8, we choose
U = {uy,up, - ,uc} and Sp = {P} in Section 2.

We considera (w, V(S))-fan £ in Section 2. By Lemma 8, we choose U = {uq,up, - - -, iy }
and Sp = {P} in Section 2.

Claim 1. N(u,) NV (Sc) = @and N(u; ) NV (Sc) =

Proof of Claim 1. Using symmetry, we can focus on proving that N(u,l) NV (S¢) = @. By
contradiction, suppose that N(u{) NV (Sc) # @;say v € N(u ) NV (Sc) and v € V(C').
By Lemma 2(ii), u;i # vg(P).

Denote

e { V(P[3",or(P))), i uo(P) ¢ E(G),
V(P[u2*,0r(P))), if u}vg(P) € E(G).

If u*vR( ) E(G), then, by Lemma 9(4), u2*vg(P) € E(G). Therefore, by Lemma 9(5),
G[V(P[u3*,vgr(P)])] forms a clique. If u} vr(P) € E(G), then, according to Lemma 9(5),
G[V(P[u%*, vgr(P)])] forms a clique. Hence,

G[A] forms a clique. ()

As G is a connected graph, N(A) N V(G — A) # @. Fory € N(A)NV(G — A), there
exists a vertex x € A with xy € E(G). We will show that

y € {uf,uzt}. 3)

By contradiction, suppose that y ¢ {u;,u2*}. By Lemma 6(2) and (2), y ¢ V(Sc) U V(H).

We will examine the following two scenarios to reach a contradiction:

e Suppose that y € V(P[vp(P), _]) By Lemma 9(1), f(<_(ul_,P)) =1lor N(u; )N

V(Sc) # @. We will show that u3~ v (P) € E(G ) Iff(<_(u1 ,P)) =1, then, by sym-

metry and Lemma 9(5), u7~ v (P) € E(G). Iff( (uy,P)) # 1, then, by Lemma 9(1),
N(u;) NV (Sc) # @. By symmetry and Lemma 9(4), u7 v (P) € E(G). Then,
by symmetry and Lemma 9(5) and (2) either the set of vertices of the subgraph
Clu} P vr(P) P xy?uKLKw agd Q (y _)P) is equal to V(P U C’) U {w}, which con-
tradicts (I); or C'u;! Px vR(P) P xvr(P) P uy in G is equal to V(P U C’), which con-
tradicts Lemma 4.

e Assume thaty € V(P[uj, uy|). Then, by Lemma 9(1)(2) and (2), the set of vertices of
the subgraph

C/M:_?X_UR P) ny?uKLKleulﬁy , if y € V(P(ug,ux)),
Q1= C’u,ﬁ?x‘vR(P) P xulkuKLKw if y=uy,
C’uK*?x’UR(P) P xu, PuiLjw, if y=uy,

and

o { Cugr Quu(Q), it f(Q (g, Q) #1
Q(”é,l’ Q)r lff( Q( Upar Q))

isequalto V(PUCUC") U{w} or V(PUC’) U {w}, which contradicts (I).
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This contradiction shows that (3) holds.

If y = u and u[og(P) ¢ E(G), then, uZTvg(P) € E(G). By (2), G[V(P[u,,vr(P)])]
has a cycle C, = vg(P) P xu; P x~vg(P). By (2), we structure a new path P’ such that
P = vy (P) Put x?UR(P)x’ P u2* by rearranging the order of the vertices in P. Then
or(P") = u*. Itis easy to verify that G[V(P[u},vr(P)])] = G[V(P'[uf,vr(P")])]. Note
that u;fog(P') € E(G). By Lemma 9(5), the subgraph G[V (P'[x,vg(P’)])] forms a clique.
Let A” = V(P'[uf,vr(P)]) \ {u} = V(P'[x,or(P’)])]. Since G is connected, N(A") N
V(G-A") #@.Fory € N(A')NV(G — A’), there exists a vertex x’ € A withx'y’ € E(G).
By the proof of (3), ¥’ = u;. That means [N(A’") N V(G — A’)| = 1, contradicting |N( N
V(G — A’)| > x > 2. Therefore, by (3), we have either y = u2" and u;} vg(P) ¢ E(G
ory = u; and u; vg(P) € E(G). Then, [IN(A) N V(G — A)| = 1, contradicting [N(A)
V(G — A)| > x > 2. This contradiction indicates that Claim 1 is true. O

)
n

According to Claim 1 and Lemma 9(1), f(a(u;f,P)) = 1and f(z(u;,P)) = 1.
Denote

Y- End(S)uUut u{w}, if End(S)NU" # @,
N { (End(S)uUt U{w}) \ {uf}, otherwise(ie.,if End(S)NnUt = Q).

By Lemma 9(3), & is an independent set of G with size « + k. Thus,
N@)NX #Q@ for any ve V(G)\ X. (4)
Claim 2. G[V(P[u;},vr(P)])] and G[V (P[vr(P),u; ])] form cliques.

Proof of Claim 2. By virtue of symmetry, we may restrict our consideration to prove that

G[V(P[uf ( )])] forms a clique. As G[V(P[u,5,vr(P)])] is connected, we can assume
that |V (P [ (P)})\ > 3. According to Lemma 5(1) (4) and Claim 1, N(u;7) N (X \
{or(P)}) = @. By (4), N(1f) 1 X = {or(P)}. By Lemma 9(5), G[V (P}, og (P)))] forms
a clique. D

Claim 3. N(V(H))NV(Sc) =

Proof of Claim 3. By contradiction, suppose that N(V(H)) N V(Sc) # @; say
x € N(V(H))NV(C) for some C € Sc. This implies that there is a vertex v € V(H)
with e = vx. By Lemma 8, v # w.
We will show that

v V(L). ()
Suppose, by way of contradiction, that v € V(L;,) for some iy € {1,---,x}. Suppose
that v € V(L1) U V(Lx). By symmetry, we may only think of v € V(L;). Then, by
Claim 2, vg(P) P u1L1vC and Z(uf, P) cover V(P) U V(C) U {v}, contradicting (I). There-
fore, v € V(L;,) for some ip € {2,--- ,x — 1} Then, by Claim 2, the set of vertices of the
subgraph vy (P )?MKLKZUL vC and 5 )in Gis equal to V(P) UV(C) U{w,v}, which
again contradicts (I). Thus, we have shown that (5) holds.

Next, we will prove that
vw € E(G). (6)
By contradiction, suppose that vw ¢ E(G). Note that x € V(C). We consider the neigh—
bourhood of the vertex x. According to Lemma 2(i) (i), N(x™) N (End(S) \ {vc}) =
If x* and ul e V(P ) forsomei € {1,---,x — 1} are adjacent in G, then, by Claim 2 and (5)
vL(P) 7 u;LywLyuy P M+CU and 3 u,J{,P ) in G covers V(P) uv(C)U{w,v}, contradicting
(I) Hence, N(xT) N (U*\{u*}) .Ifvand u € V(P) for somei € {1,---,k—1}

are adjacent in G, then, by Claim 2 and (5), vy (P )?u LywLuy P u; ToC and a( ,P) in
G covers V(P) U V(C) U {w, v}, contradicting (I). Hence, N(v) N (UJr \{uf}) = @ Note
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that vw ¢ E(G). Therefore, by Lemma 2(i)(ii), {vp(P), vr(P),x",w,0} U (U* \ {uf}) U
(End(Sc) \ {vc}) forms an independent set of size x + k + 1. This contradicts the fact that
®(G) = k + k and thus establishes that (6) holds.

Then, by Claim 2, (5) and (6), the set of vertices of the subgraph UL(P)?uKLvaC
and a(u,f ,P) is equal to V(PUC) U {w,v}. This contradicts (I) and establishes that
N(V(H))NnV(C)=0. O

Claim 4. N(V(C))N(V(G)\ V(C)) = U for each element C € Sc.

Proof of Claim 4. Since G is connected, N(V(C)) N (V(G) \ V(C)) # @ for any C € Sc.
Forz € N(V(C)) N (V(G) \ V(C)), there exists a vertex x € V(C) with xz € E(G). Accord-
ing to Lemma 2 (i), (ii), z ¢ V(Sc \ {C}). By Claim 3, z ¢ V(H). This implies that

z € V(P). 7)

Next, we will show that z € U. By contradiction, suppose that z ¢ U. By Lemma 6(2)

and Claim 2, z does not belong to V(P(u,f,vg(P)]) U V(P[vL(P),u; )). To arrive at a

contradiction, we will examine the following three scenarios using (7):

*  Suppose that z € {u,u;}. Then N(uf) NV(Sc) # @ or N(uy ) NV(Sc) # @,
contradicting Claim 1.

*  Suppose thatz € UT\ {u} or U™ \ {u; }. By symmetry, we consider thatz € U™ \

(_
{ul} sayz = u;" forsomei € {1,---,x —1}. Then, by Claim 2, Cu;”?uKLKwLiui P
v (P) and a(u,(*,P) cover V(P UC) U {w}, contradicting (I).

*  Suppose that z € V(P[u%J“,uf;l]) for some i € {1,---,k —1}. We consider the
neighbourhood of the vertex z*. We claim that N(z") N X = {vc}. Suppose oth-
erwise that there exists a vertex y € N(z) N X such that y # vc. By Lemma 6(1),
y ¢ End(Sc) \ {vc}. According to the definition of X', we will examine the following
two scenarios to reach a contradiction.

- Assumethaty € utrni; say y = u;r forsomej e {1,---,k—1}.If j > i, then,
by Claim 2, the set of vertices of the subgraph vR(P)<Fu;“z+?uijwL1u1 Pz
and E(ul_, P) is equal to V(P UC) U {w}, which contradicts (I). If j < i, then,
by Claim 2, the set of vertices of the subgraph zJL(P)?Lthjz(JiiK(ﬁz*Ltj+ PzC U
a(uf{, P)isequal to V(P UC) U {w}, which again contradicts (I).

- Assume that y € End(Sp). By Lemma 6(2), y = vg(P). Then, by Claim 2, the set
of vertices of the subgraph u, <FZJFUR(P)<§14,<LKZUL1L11 Pzcu E(ul_, P) is equal
to V(P U C) U {w}, which contradicts (I).

This contradiction establishes that N(z") N X C {vc}. By (4), N(zt) N X = {vc}. If

x #vcand |V(C)| > 1or |[V(C)| =1, then, by Lemma 9(6), the set of vertices of the

subgraph vy (P) P zCz™ ?ZJR(P) is equal to V(P U C), which contradicts Lemma 4. If

x =vcand |[V(C)| > 1, then, according to Lemma 9(6), N(v/ ) N X = {vc}. Note that

N(z")NX = {vc}. If ztol ¢ E(G), then, by Lemma 9(6), (X \ {oc}) U {z",v}}

would be an independent set of cardinality « + k + 1, contradicting (1). Therefore,

ztol € E(G). Then the set of vertices of the subgraph v (P) PzCzt ?UR(P) is equal

to V(P U C), which contradicts Lemma 4.

This contradiction establishes that z € U. Since |[N(V(C)) N (V(G) \ V(C))| > « and
[U| =%, N(V(C))N(V(G)\ V(C)) = U for any element C € Sc. O

Claim 5. Let C € Sc with |[V(C)| > 1. For any two disjoint vertices u;, u; € U, there exist two
disjoint vertices v, v' € V(C) such that u;v, ujv" € E(G).
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Proof of Claim 5. We establish Claim 5 by contradiction. Suppose that either N(u;,) N
V(C) = N(u;,) N V(C) = @or N(u;,) NV(C) = N(uj,) N V(C) = {v} and v € V(C) for
some ujy, uj, € U.

If N(u;)) NV(C) = N(uj,) NV(C) = @, then N(V(C)) N (V(G) \ V(C)) # U, con-
tradicting Claim 4. Now suppose that N(u;) N V(C) = N(uj) N V(C) = {v}. Let
U= u\ {uiy, ujy}) U{o} and C = C —v. Since |V(C)| > 1, C # @. Then, by hypothesis
and Claim 4, N(V(C)) N (V(G) \ V(C)) € U. However, |U| = x — 1, contradicting the
hypothesis that G is x-connected. These contradictions establish that Claim 5 is true. O

Claim 6. G[V(H)] forms a clique.

Proof of Claim 6. We will only focus on the case where |V(H)| > 2. For every vertex
ve V(H)\ {w}, N(v) N X # @. We assume that there is at least one vertex x € N(v) N X
with x # w. By Claim 3, x is not an element of End(S¢). By Lemma 3(1), x ¢ End(Sp).
Then, x € X NU"; say x = ui+ for somei € {1,---,x —1}. Then, by Claims 2, 4 and 5,
there exist a path Q and a(u;r , P) cover V(P) UV(C) U {v}, see Figure 2, contradicting ().
This contradiction shows that N(v) N X C {w}. By (4), N(v) N X = {w} for every vertex
ve V(H)\{w}. LetS’ = V(H). Then, according to Lemma 7, G[V(H)| forms a clique. [

Figure 2. vu;" € E(G) (i # «).

Denote Ay = V(P[vr(P),uy]) and Ay = V(P[u, vr(P)]).

Claim 7. The following two statements are true.
(1) N(A)N(G—A;) =Uforie{1,2};
(2) N(V(H))NV(S)=U.

Proof of Claim 7. We will prove the first statement. By symmetry, we have only proved
that N(A4;) N (G — Ap) = U. Let C* = G[Ay]. By Claim 2(1), f(C*) = 1. We pick an
element C € Sc, by Claim 4, a new path Q = v (P) P u,C would be obtained. We structure
a new system S§* such that S* = SEUS}, Sp = {Q} and S = (Sc\ {C}H U{C*}. It
is easy to verify that V(S*) = V(S), |[S¢| = |Sc| and |Sf| = |Sp|. Hence, S* is also a
k-ended system satisfying (I), (II). Then, by Claim 4, N(A;) N (G — A) = U.

Next, we need to prove the second statement. The proof here is similar to Claim 4.
(For details, see Appendix A.) O

Claim 8. Suppose that |V (H)| > 1. For any two disjoint vertices u;, u; € U, there exist two
disjoint vertices v, v' € V(H) such that u;v, ujv’ € E(G).

Proof of Claim 8. The proof here is similar to Claim 5. (For details, see Appendix A.) O
Claim 9. u_ u;” € E(G) foreachi € {1,--- ,x —1}.

Proof of Claim 9. Since G[V (P[u;", u;, ])] is connected, we only need to focus on the case

where |V (P[u;",u4])] > 3. By contradiction, suppose that ”z‘;+1”z‘t ¢ E(G) for some
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iy € {1 .k —1}. By (4), there exists at least one vertex y € N(u; ,;) N X" satisfying

Y # u . By Claim 4, y ¢ End(Sc). We will examine the following two scenarios to reach a
contrad1ct10n based on the definition of X":

e Assumethaty € XN (U*\{u});sayy = u forsomej € {1,--- ,x —1}\ {ip}. If

j > g, then, by Claim 4, the set of vertices of the subgraph vy (P ?u io+14; ?uKLK

Liy+1tig+1 ?u Ccu 5 (u;, P)isequalto V(P UC) U {w}, which contradicts (I). If] < i,
then, by Clalms 4 and 5, the set of vertices of the subgraph vy (P) ?u]L WLy P uj,+1C

?ul 1l ?u Uz (u;7, P) is equal to V(PUC)U{w} which agamcontradlcts @.

. Assume thaty € End(Sp). If y = v (P), then vg(P) P Ujy4+1Lig+1wLi uj, P vL(P)uiOJrl
P u covers V( ) U{w}, which contradicts (I). Therefore, y = vg(P). Then vy (P)

s +1vR(P) P U +1 Liy41w covers V(P) U {w}, which again contradicts ().
This contradiction demonstrates that N (u, ;) N X € {u;"}. By (4), N(u; ) N X = {uf}. O

By Claim 9, it holds that u; ju uf € E(G) for every i € {1,---,k—1}. Let

Ci = GIE(P[u;",u;, ] U{uj u;, })] foreveryi e {1,--- ,x —1}.

Claim 10. For each section P[u;" the following two statements are true.

1+1]
*  G[V(P[u;",u,4])] forms a clique;

* NP, u ) N (VIG)\ V(P uz4]) = U

Proof of Claim 10. We pick an element C € S¢; by Claims 4 and 5, a new path
Q; = UdP)?u,CuiH ?};R(P) would be obtained. We structure a new system S; such
that S; = SicUSip, Sip = {Q;} and Sic = (Sc \ {C}) U{C;}. Itis easy to verify
that V(S;) = V(S), |Sic| = |Sc| and |S;p| = |Sp|. Hence, S; is also a k-ended sys-
tem satisfying (I), (II). According to Lemma 9(6), G[V(C;)] forms a clique; by Claim 4,
N(V(C))N(V(G)\ V(C;)) = U. Claim 10 is proved. O

By Claims 2-10 and Lemma 9(6), w(G — U) = k + x and every component of G — U
forms a clique. Then,

m(G) = |V(H)| - [V(PloL(P),uy])] - \V(P[MK*,UR(P)])l \V( " 1 q])) AL
C
V)| >1-1----- 1-1-n—2xk—k+1 =n—-2k—k+1. Thls completes the proof of
K+k
Factl. O

Fact2. |[V(H)|=1and m(G) =n —2x —k+1.

Proof of Fact 2. By Fact 1 and the condition of Theorem 5, m(G) = n — 2k — k + 1. Then,
we will show that |V (H)| = 1.

By contradiction, suppose that |[V(H)| > 2. Then |V(P[u],u;4])| = 1 for any
i€ {l,---,x—1}. Otherwise, m(G) > n —2x — k + 1, contradicting m(G) = n —
2k —k+1. Letx = V(P[u;g,ui;+1]) for some iy € {1,---,x — 1}. By Claims 7(2) and 8,

P)?u,'oHui0+1?0R(P) in G cover (V(P) \ {x}) UV(H), which contradicts (I). This
contradiction shows that |V(H)| =1. O

Denote
GIV(Plu;,uiq])l, if reut\{uf}, sayr=uf,
I(r) = G[V(Plv (P),uy])], if r=wor(P),
G[V(P[ug,or(P)])], if r=og(P),
G[V(Q)]. if r=uoc.
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Finally, we need to prove that G is isomorphic to one of those graphs F with
Fo(k+k—1,x) CFC FR(k+k—1,x) or Fpp(k +k—1,x) C F C FK(x+k—1,x). De-
note R = End(S)U (UT \ {u}). By Fact 2, |V(S)| = n —1 and there exists at most
one vertex rg € R such that |J(r9)| > 2. Then |J(rg)| = n —2x —k+1 = m(G). Let
Wi(G) = {w} U (R\ {ro}). It follows that W;(G) is an independent set of G with a car-
dinality of k + x — 1. Additionally, W;(G) U {x} is a maximum independent set of G for
any vertex x € J(rg). By Claims 4,7 and 10,y € R\ {ro} is not adjacent to any vertex in
J(ro) U {w}; it should be adjacent to u; foralli € {1,--- ,x}. Now let H; = G[W;(G)] and
H, = G[U]. This implies that Fy(k +k—1,x) C G C K(k+k—1,x)andn > 3k +k—1
or Fpp(k +k—1,x) € G C K(k+k—1,x) and 2k +k < n < 3x+k — 1 (note that
J(r0) = Ky, _2x_k+1), which completes the proof of Theorem 7. [J

5. Conclusions

We demonstrats that it does not change the existence of spanning k-ended tree if we
expand the independent numbers a little bit and bound m(G). Therefore, we generalize
Theorem 5 and the bound on the number of maximum independent sets is already sharp.
Note that a Hamilton path is viewed as a spanning tree with exactly two leaves; in other
words, a Hamilton path is a spanning 2-ended tree. Hence, our results extend Theorem 4,
which has significant implications for traceability and the existence of spanning trees.
Moreover, we extend Theorem 5 to the case where x(G) > 2. This extension has important
implications for the study of independent sets in highly connected graphs.

The proof of the results is currently too complex and difficult. We hope to find a more
clever and concise proof technique for Theorem 7 in the future.
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Appendix A. Some Proofs of Claims of Theorem 7

Proof of Claim 7(2). Since G is connected, N(V(H)) N V(S) # @. Forz € N(V(H)) N

(V(G)\ V(H)), there exists a vertex v € V(H) with vz € E(G). By Claim 3, z ¢ V(S¢).

This implies that z € V(P). We will prove that z € U. Suppose, by way of contradiction,

that z ¢ U. We will examine the following three scenarios to reach a contradiction.

e  Assume thatz € V(P(u;,vg(P)]) or V(P[vL(P), u;)). By symmetry, it would there-
fore suffice to consider that z € <K(P (1,7, or(P)]). (By) Claim 2(1), the set of vertices of
the subgraph UL(P)?Z’UR(P) P zv is equal to V(P) U {v}, which contradicts (I).

e Assume thatz € U or U™. By symmetry, it would therefore suffice to think about
z € Ut;sayz = u forsomei € {1,---,«}. If v = w, then vL(P)?u,-Liwu;r?vR(P)
covers V(P) U {w}, contradicting (I). If v # w, then, by Claim 6, the set of vertices of
the subgraph vy (P) ?uiHui+ ?UR(P> is equal to V(P U H), which contradicts (I).
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e Assume z belongs to V(P[uf*,ulﬂ]) for some i € {1,---,x —1}. We consider

the neighbourhood of the vertex z*. By (4), N(z")NX 75 @; sayy € N(zT)NnX.
By Claim 4, y ¢ End(Sc). We will consider the following two cases to obtain
a contradiction.
- Assumethaty € XY NU;sayy = u+ for somej € {1,---,x — 1}. Suppose, first,
that j > i. If v # w, then, by Clalm 6, the set of vertices of the subgraph
?zHu] ztu +?0R is equal to V(P U H), which contradicts (I). If

v = w, then the set of vertices of the subgraph v (P ?zwL iU <_zJr +?UR (P)is
equal to V(P) U {w}, which also contradicts (I). Suppose, now, that j < < i.Ifv #w,
then, by Clalm 6, UL(P)? HzP uj z+?vR(P) covers V(P) U V(H), which con-
tradicts (I). If v = w, then vy (P ?u]wz P u; z+?vR covers V(P) U {w},

which also contradicts (I).
-  Assumethaty € End(Sp). Letus take y = vg(P) without loss of generality. If v # w,

then, by Claim 6, the set of vertices of the subgraph vy (P) PzH uK<§z+0R(P)<ﬁ
1/£ is equalio V(P U H), which contradicts (I). If v = w, then vy (P) P zwLyu
P ztog(P) P u;f covers V(P) U {w}, which also contradicts (1).
This contradiction shows that N(z*) N X = @, contradicting (4).
This contradiction shows z € U. Since [N(V(H)) N (V(G)\ V(H))| > x and |U| = «
N(V(H))N(V(G)\V(H)) =U. O

Proof of Claim 8. By contradiction, suppose that either N (;

iy) NV (H) = N(uj,) "\V(H) =@
or N(u;,) NV (H) = N(uj,) N\ V(H) = {v} and v € V(H) f

or some u;y, uj; € U.

Suppose first that N (u;,) N V(H) = N(u;,) " V(H) = @. Then N(V(H )) (V(G)\
V(H)) # U, contradicting Claim 7(2). Suppose now that N(u;) N V(H) = N(uj) N
V(H) = {v}. Let U = (U\ {u;,uj,}) U{v} and H = H — 0. Since |V( ) > 1

A # @. Then, by hypothesis and Claim 7(2), N(V(H)) N (V(G)\ V(H)) € U. How-
ever, |U| = x — 1, contradicting the hypothesis that G is x-connected. These contradictions
show that Claim 8 holds. [J

Appendix B. Proof of Lemmas 8 and 9

In this section, we employ the same terminology and notation in Section 2.

In order to prove Lemmas 8 and 9, we first do some preparatory work.

Denote X = End(S)UUt U{w}and X~ = End(S)UU~ U{w}. HUNV(Sc) # D
then, by Lemma 5(3), [{C: C € Scand UNV(C) # @}| = 1;say Cy € Sc.

Lemma A1l. (Akiyama and Kano, [18]) The following statements are true.

(1) IfUNV(Sc) # @, then X+ \ {v¢, } forms an independent set of G with a size of k + «.
(2) IfU C V(Sp)and End(S)NU™T # @, then End(S) NUT = {vg(P)} for some P € Sp
and X forms an independent set of G with a size of k + k.
(3) IfU C V(Sp)and End(S) NUT = @, then:
(i) The set X does not include four distinct vertices x1, xp, X3, X4 with {x1x2, x3x4} C E(G);
(ii) G[X™] is triangle-free;
(iii) U is an independent set of G.

Lemma A2. Suppose that U C V(Sp). The following statements are true.

(1) IfEnd(S)NUT = @, then G| X has exactly one nontrivial component denoted by S(X™)
such that S(XT) is a star with S(X 1) = (V(S(XT))NnUT) vV (V(S(XT)) NEnd(S));

(2) IfEnd(S)NU- = @, then G[X ] has exactly one nontrivial component denoted by S(X~
such that S(X ™) is a star with S(X~) = (V(S(X™))NU) V (V(S(X™)) NEnd(S)).
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Proof of Lemma A2. By symmetry, it would therefore suffice to show that (1) is true. By
Lemmas 3 and 5(1), End(S) U {w} is an independent set of G. By Lemma 5(1)(2), U" U {w}
is an independent set of G. Since | X ™| = k + x + 1, there must exist some edges between
UT and End(S). By Lemma A1(3)(i)(ii), G[X"] has exactly one nontrivial component
S(X*)and S(X*)isastar. O

Remark Al. S(X") and S(X ™) always denote the stars in Lemma A2 in the following. From
Lemma A3 to Lemma A6, for convenience, we assume U C V(Sp) and End(S)NUT = @.

Lemma A3. Let C € Sc and P € Sp. Then for each vertex v € V(C) with vu;i € E(G) for
somei € {1,--- ,tp}, it holds that N(v™) N (UT\ {ufgl}) =Q@.

Proof of Lemma A3. By contradiction, suppose that N(v™) N (U™ \ {”;1}) # @. Then
there exists a vertex x € N(v™) N (U™ \ {uf;});say x = ufg,,]. forsomej € {1, ,tp }. Sup-
pose first that P’ = P. If i < j, then the set of vertices of the subgraph vy (P) ?u p,iLp,wLp,;
up,]-$u1f’iCu;§/j?vR(P) is equal to V(P U C) U {w}, which contradicts Lemma 4. If i > j,
then v (P) Mp,]'Lp,j’(/ULp,iMp,l‘?M?;,]-CM;J?UR(P) covers V(P UC) U {w}, contradicting
Lemma 4. Now suppose that P’ # P. Then vL(P)?up,inliwLp/,juP/,ijL(P’) and

— —
vr(P) P u}“iCu;,].P’vR(P’) cover V(PUP' UC) U {w}, contradicting Lemma 4. These
contradictions show that Lemma A3 holds. O

Lemma A4. The cardinality of the set V(S(X1)) N U™ is equal to one and |V(S(XT)) N
End(S)| > 1.

Proof of Lemma A4. By Lemma A2(1), |[V(S(X1))NU"| > 1and |[V(S(X1)) N End(S)| > 1.
In other words, we need to prove that |V (S(XT))nU™| = 1.

By contradiction, suppose that |V(S(X"))NnU"| # 1. Then, by Lemma A2(1),
there exists a vertex x € End(S) such that xulf’i, xu;,’]. € E(G) and ulf’i # ”;',j for
some i€ {1,---,tp} and some j € {1,---,tp}. By Lemma 5(4), x ¢ End(Sp). Then,
x € End(Sc); say x = vc. By Lemma A2(1), X \ {vc} is an independent set of G with
size k + x. By Lemma A3, |V(C)| > 2. We consider the neighbourhood of the vertex
v By Lemma A3, N(vof) N (UT\ {uf;}) = @and N(of) N (UT\ {ult,,]. ) = @. Then,
N(vl)NUT = @. According to Lemma 2 (i)(ii), N(vl) N (End(S) \ {vc}) = @. Hence,
(X*\ {oc}) U {vl} forms an independent set with a cardinality of x + k + 1, which con-
tradicts a(G) = x + k. This contradiction show that Lemma A4 holds. [

Remark A2. If U C V(Sp) and End(S) NU" = @, then, by Lemma A4, |V(S(X1)) N
Ut| = 1;say V(S(XT))nUt = {uy,} for some P € Sp and some i € {1,---,tp}. Denote
X=X\ {u;l} Then, by Lemmas A1(3), A2(1) and A4, X;" is an independent set of G with
sizek +x. If End(Sp) N V(S(X™T)) # @, then, by Lemmas 5(4) and A4,

+

up; = up,, and up, vr(P) € E(G). (A1)

Pitp

Lemma A5. Let C € Sc. Then, for some P € Sp, the following statements are true.
(1) Ifvcup,, € E(G) for somei € {1,---,tp}, then N(x) N (U™ \ {u}.}) = @ for each

x € V(C) \ {oc};
(2) IfS(XT) =up,vcforsomeie{1,---,tp}, then u}, is adjacent to all vertices in C.

Proof of Lemma AS5. First, we will show that (1) holds. Let |[V(C)| > 2and C = vcol - - vl

---v(‘v(c)lfl)Jer. We prove Lemma A5(1) by induction on ¢. Note that U C V(Sp),
End(S)NUT = @and vcuy; € E(G). According to Lemma A3, N(v&) N (U™ \ {u},}) = @.
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This implies that Lemma A5(1) holds for t = 1. Next, we assume that Lemma A5(1) holds
for all positive integers t < tp. Then N(v t°+) (Ut \ {uf;}) = @ We need to prove that
it holds for t = ty + 1. By Lemma 2(i)(ii), N(véﬁ') N (End(S) \ {vc}) = @. Note that
vctiy; € E(G). By Lemma A4 V(S(X+)) NU* = {up;}. Then X" is an independent set
of G with size k 4 k. Hence, v *ve € E(G). Otherwise, XU {v Jr} is an independent set
of G withsizex +k+1, contradlctmg a(G) =x+k

We claim that G[{vc, v¢, ..., UtCOJr}] forms a clique. Since G[{vc,v{, . .. tﬁ}] is con-
nected, we only need to focus on the case when |V (G[{vc, v{, .. t°+}]) | > 3. By contra-
diction, suppose that vg +vtCZ+ ¢ E(G) for some pair of vertices véﬁ, vtCZ+ € {vc,vt,...0 CO+ }
with vt1+ + vt2+ then (X; \ {vc)}) U {Utcﬁ,véﬁ} is an independent set of G with size
k + x + 1, contradicting a(G) = k + x. Hence, G[{vc,v{, . .. t°+}] is a clique.

By our claim, G[{Ué, .. tﬁ}] contains a subgraph C( [{UC, .. t°+}]) such that
f(C(GH{2, -, %+}D)::1and‘/( Gl{of,....0¢ ) = v(C U3Hv§/~ 02" H))-

Next, we will show that Lemma A5(1) holds for t = ty + 1. By contradiction, suppose
that N (v, (fo+1)+ )N (lﬁ' \ {u},}) # . Then there exists a vertex x € N(v (fo+1)+ )N ut\
{ulf,l}), say x = up,,] for some j € {1,---,tp'}. Suppose first that P’ = P Then, by our
claim, the set of vertices of the subgraph

%
P) Pup;Lp;wLp jup, Puplv CU(CO+1>+M+ Pog(P), ifj>1i,

0 L(P ?Mp,]Lp]ZULlepl Pup (t°+l +8v up; ?ZJR p), ifj<i,
2 =
v ( b

and C(G[{v{, ..., v?+}]) is equal to V(P UC) U {w}, which contradicts (I). Now suppose
that P’ # P. Then, by our claim, the set of vertices of the subgraph vy, (P) P up ;Lp ;wL prjup i
oy (P), o (P) Py oc Col ™V uf, Plog (P') and C(GI{o,..., o[2" }]) is equal to V(P
U P’ U C) U {w}, which contradicts (I). These contradictions show that Lemma A5(1) holds
for t =ty + 1. Thus, Lemma A5(1) is proved.

Now, we start to prove Lemma A5(2). If S(X™) = u}; vc, then X* \ {u};} and X* \
{vc} are two independent sets of G. For any x € V(C) \ {vc}, N(x) N (UT\ {uf;}) =
by Lemma A5(1). According to Lemma 2(i)(ii), N(x) N (End(S) \ {vc}) = @. Hence,
xulf’i € E(G). Otherwise, (X™ \ {vc}) U {x} is an independent set of G with size k + k + 1,
contradicting #(G) = x + k. Lemma A5(2) is proved. [

Remark A3. Suppose U C V(Sp) and End(S)NUT = @. For some P € Sp and some
i€ {1, tp}, if S(XT) = upvc for C € Sc, then, by Lemma A5(2), G[V(C) U {up;}]
contains a spanning subgraph C(G[V (C) U {uy ;}]) with f(C(G[V(C) U {u};}])) = 1.

Forsome P € Spandi € {1,2,...,tp}, we consider the following configuration.

() S(XT) = u;’ivc, for some C € Sc.

(i) G[{uf; vc,vc}] C S(XT), for some {C,C'} C Sc.

(iii) For given P’ € Sp \ {P} and C € S, S(XT) = uy vc and {uf vc, xoc} C E(G)
for some x € V(P').

(iv) For some P’ € Sp\ {P} and {C,C'} C Sc, {u}vc,xvcr} € E(G) for some
x e V(P).

Then we denote

g_{cmwwwg@m,ﬁ@mmm

Cuf.C, if (ii) occurs,
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0, = or(P) P ”; CXP/UL(P/) if (iii) occurs,
C”P,i?vR( P) and C/XP'UL(P') if (iv) occurs,

Lemma A6. Suppose that U+ NV (S(X™)) = {uy,} and End(Sc) NV(S(X™)) # @ for some
PeSpandiec {1, --- ,tp}. Ifu%t ¢ {vr(P),upj1}, then u%ﬁvR( ) € E(G).

Proof of Lemma A6. By contradiction, suppose that 12 ) "vRr(P) ¢ E(G). Note that X" is an
independent set of G with size k + x. Then there exists at least one vertex x € N (u P )N XJr
with x # vg(P). Recall that End(Sc) NV (S(X™)) # @, we assume that vc € End(S¢) N
V(S(X™)). In other words, vcuf; € E(G). By Lemma 6(1)(2), x ¢ End(Sp) \ {or(P)}.
According to the definition of X;", we will consider the following three cases in order to
arrive at a contradiction.

e Assume that x € End(S¢). According to Lemma 6(1), N(ufgﬂ-) NEnd(Sc) = (u%t) N
End(Sc) = {ovc}, then S(X¥) = ovcuy,;. By (Al) and Lemma 6(2), End(Sp) N
V(S(X")) = @. Note that End(Sc) N V(S(XT)) # @. By Lemma A5(2), the set

of vertices of the subgraph v (P) ?up lCuH ?Z)R(P) in G is equal to V(P U C), which
contradicts Lemma 4.

e Assume that x € (X" NUT)NV(P); say x = u;,j for some j € {1,---,tp} \ {i}.
If End(Sp) NV(S(X1)) # @, then, by (A1), the set of vertices of the subgraph
up, 0r(P) Pl ub; Pups,Lpwlp jup,; P or(P)in Gisequalto V(P) U {w}, which
contradicts Lemma 4. Therefore, End(Sp) N V(S(X")) = @. Note that End(Sc) N
V(S(X™')) # @. Then (i) or (ii) occurs. By Lemma A5(2),

o vr(P) Pu2+uP] PuplezwLp]up] PUL(P), if j < i,
3= — L
UR (P)PuP]upl pup]Lp]ZULpluplva(P), ifj>i,

Q. cover V(PUC)U{w} or V(PUCUC) U{w}, which contradicts (I).

* Supposethatx € UTNV(P') for P’ € Sp\ {P}; say x = u}, ;forsomej € {1,--- ,tp}.
If End(Sp) N V(S( ) # @, then, by (Al), the set of Vertlces of the subgraph
Cu;thR(P) P ulz,t uP,’].P’vR(P/) Uor (P ?Mp LD tpWLpr jilp | P v (P') is equal to V
(PUP'UC)U{w}, which contradicts Lemma 4. Therefore, End(Sp) NV (S(X1)) = @.
Note that End(Sc) N V(S(XT)) ;é @. Then (i) or (ii) occurs. By Lemma A5(2), the set
of vertices of the subgraph vg (P) P u%,f lﬁ, P'or(P")U UL(P)?Mpll’Lp’l‘ZULp/,jup/’j};
v (P')U Q4 isequal to V(PUP UC) U {w} or V(PUP' UCUC") U{w}, which con-
tradicts (I).

The contradiction indicates that N (up )N X" C {vr(P)}. Note that N (uP NX" £ .

Therefore, N(upl) NX;" = {og(P)}. Lemma A6 holds. [

Lemma A7. If U C V(Sp), then there exists exactly one path Q € Sp such that N(uatQ) N
End(Sc) # ®orf(5(u5’tQ,Q)) =1

Proof of Lemma A?7. First, we claim that there isa path Q € Sp with N(th YN End(Sc) # @
or f (a (uf Oto’ Q)) = 1. To prove this claim, we will consider the following two cases.

e Suppose that U C V(Sp) and End(S) NUT # @. Then, by Lemma A1(2), there is a

path Q € Sp with uJQr,tQ = ovr(Q), i.e.,f(a(uJertQ,Q)) =1.

e Assume that U C V(Sp) and End(S) NUT = @. According to Lemma A4, End(S) N
V(S(X")) # @. Suppose first that End(Sp) N V(S(XT)) # @. By Lemmas 5(4)
and A4, there is a path Q € Sp satisfying End(Sp) N V(S(X1)) = {vr(Q)} and
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UL
Qs = { _

urnv(s(xh)) = {th }, ie. f(a(uatQ,Q)) = 1. Now, suppose that End(Sp) N
V(S(X")) = @, ie, End(Sc) NV(S(XT)) # @; say vc € End(Sc) NV (S(X™)). By
Lemma A4, [V(S(XT))NnUT| = 1;say V(S(XT))nU" = {uJQr,i} for some Q € Sp
andi € {1,---,to}. It should be noted that X\ {uai} forms an independent set
of G with a cardinality of k+ x. By Lemmas A2 and A4, N(vc) NUT = {”51}
We will show that u/,; = uatQ. Suppose otherwise that u/; # uatQ. By (A1),
End(Sp) N V(S(X™)) = @. Note that uQ vc € E(G). Then (i) or (ii) occurs. By
Lemmas A5(2) and A6, the set of vertices of the subgraph

%
(Q)_Q “Q,iLQ,iwig,iJrluQ,HlaUR(Q)/% if [V(Q[uf QZ/ ugiml =1,
o Qor(Q)uy; QugioLot®Lloitgi Qui(Q), if [V(Quf, ug )| >1

UQ«in Gisequal to V(QUC) U {w} or V(QUC'UC) U {w}, which contradicts (I).
The contradiction indicates that u/,; = uatQ. Then N (uJQr,tQ) NEnd(Sc) # @.

Hence, our claim is proved.
Now, we will prove Lemma A7. We begin by assuming the opposite and using a
proof by contradiction. Suppose that there exists another path P € Sp with N (u;,tp) N

End(Sc) # @or f (3 (up - P)) = 1. Toarrive at a contradiction, we consider the following
two cases:

*  Assume that End(S)NU* # @. If uy, = vr(P) and u} o = vr(Q), then X
does not form an independent set of G with a cardinality of k + x, contradicting
Lemma A1(2). Therefore, u;,r,tp # vr(P) or ua o # vr(Q). Without loss of generality,

suppose that u, # vr(P), then uy, vr(P) € E(G) or N(up, ) N End(Sc) # @.
Hence, there exist two adjacent vertices in X, contradicting Lemma A1(2).
e Assume that End(S) N U" = @. Then ”a,tg # vr(Q) and up, # vr(P). Then,

G[X™] has at least two stars, contradicting Lemma A2(1).
This statement indicates that Lemma A7 is true. O

Let
Xt \{oc,}, if UNV(Sc) # O,
X=4 X"\ {uatQ}, if UC V(Sp) and UT NEnd(S) =@,
X, if UCV(Sp) and UT NEnd(S) # @

Then, by Lemmas A1, A4 and A7, X forms an independent set of G satisfying size k + x and
N(@w)NX # Q@ for any ve V(G)\ X. (A2)

Otherwise, there is a vertex vy € V(G) \ X satisfying X U {vy} being an independent set of
G with size k + k + 1, which contradicts «(G) = « + k.

Lemma A8. Suppose that U C V(Sp). The following two statements are true.

(1)  Sp contains exactly one path Q such that N(uf, Ut )NEnd(Sc) # @or f(a(uatQ
and N(ug,) N End(Sc) # @ o(r_f( (g1, Q) =1

(2) Iff(z( Jét , )) # Land f(Q(uq,,Q)) # 1, then there exist at least two elements C,

C' € Sc with ul ver € E(G), ué/lvc € E(G).

Q) =1

Qto

Proof of Lemma A8. By symmetry %Ed Lemma A7, Sp has exactly one path P (say) such
that N(up,) NEnd(Sc) # @ or f(Q(up,,P)) = 1. First, we will show Q = P. By
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contradiction, suppose that Q # P. Denote Qs = UL(Q)auQ,tQLQ,thLplwp,l ?Z)R(P). To
arrive at a contradiction, we consider the following three cases using Lemma A7:

e  Assume thatf(a( ot ,Q)) =1and f(<_(u1§1,P)) = 1. Then the set of vertices of

the subgraph Qs U 3 Qo Q)u Q (up,,P)in Gisequal to V(QU P) U {w}, which
contradicts (I).

*  Assume that eitherf(a(uat ,Q)) # 1and f( (upy, P)) =1or f(a(uljrl,P)) #£1
and f(a(u+t ,Q)) = 1. By symmetry, suppose that f(a(uatQ,Q)) # 1 and
f(Z(u;{l,P)) = 1. According to Lemma A7, N(th ) NEnd(Sc) # @; say ver €

N(”atg) N End(Sc). Then the set of vertices of the subgraph Qs U UR(Q)auatQ Cc'u
Z(u;/l, P)in Gisequal to V(QUPUC’)U{w}, which contradicts (I).

*  Suppose that f(a(uat ,Q)) #1and f(z(uljrl,P)) # 1. Applying symmetry and
using Lemma A7, N(u ot ) NEnd(Sc) # @ and N(up,) N End(Sc) # @. Then

(iii) or (iv) occurs. By Lemma A5(2), Qs and Q. in G cover V(QUPUC) U {w} or
V(QUPUC'UC) U{w}, contradicting Lemma 4 or (I).

This contradiction shows that Lemma A8(1) holds.
Next, we will demonstrate Lemma A8(2). By Lemma A8(1), N (u(, Uk, YN End(Sc) # @

and N(up,) N End(Sc) # ©. We begin by assuming the opposite and using a proof by
contradiction. Suppose that there is precisely one element C € Sc with u} QtovC € E(G)

and ugvc € E(G). Note thatf(a( UQ oy Q)) #1and f( (ug UG, Q)) # 1. By Lemma A4,
S(Xt) = uathc and S(X7) = ug,0c. Then, by Lemmas A5(2) and A6, the set of

— —
vertices of the subgraph v (Q) Q ué,l(:uatQ Qug Lo w U 3(;@(}, Q) in G is equal to
V(QUC) U{w}, which contradicts (I). This contradiction demonstrates that Lemma A8(2)
is true. [

Remark Ad. If f( O (u}, ug s, ,Q)) # 1, then, by Lemma A7, N(ufs, ) N End(Sc) # @ say ver €
N(“Et ) N End(Sc). Iff( (5,1, Q)) # 1, then, by Lemma AS(1), N(ug,) N End(Sc) # @;

say vc € N(u Ql) N End(Sc). Iff(a(uJé,tQ,Q)) # 1 and f(a(ué,l,Q)) # 1, then, by
Lemma A8(2), V(C) N V(C") = @. For convenience, we denote

o | i Qor(@ iy @) #1,
Sup,, Q)  Ff(D,,Q) =1

S —
[ CugiQui(Q), #f(Q(ug1, Q) #1,
v {5%,1/@), if F(Q(ug,,Q) =1
Let

S — S\{Cy}, if UNV(Sc) # @,
= { S\{Ql, if UNV(Sc)=0,

and S(/: =8NS, S;; =8"NSp.

Lemma A9. Let C € Sfand x € V(C) \ {vc}. It follows that N(x) N X = {vc}.
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Proof of Lemma A9. First, we assert that for each vertex x € V(C) \ {vc}, N(x) N (XN
U') = @. To prove this, we will use a proof by contradiction. Assume that N(x) N
(XNU") # @. According to Lemma 2(i), N(x) N (V(Sc) NU') = @. Then, there
is at least one vertex ulﬁli € N(x)N(XNV(Sp)NUT) for some P € Sp and some
ie{l,--,tp}. Assuming UNV(Sc) # @. Then, the set of vertices of the subgraph
01(P) Pup;Lp;wG[V (L) U V(Cu)] U Cuf, Pog(P) in G is equal to V(P U Cy UC) U
{w}, which contradicts (I). Therefore, U C V(Sp). Suppose first that P = Q. If N (uJQ“’tQ) N

End(Sc) # @, (say ver € N(uatQ) N End(Sc)) and C = C/, then the set of vertices of the

= . .

subgraph UL(Q)auQriLQ,iwLQthqutQ QuaiCuatQ avR(Q) in G is equal to V(QUC) U
{w} or V(QUC) U {w}; see Lemma 4. Otherwise, by Lemma A7, vL(Q)BuQ,iLQ,i

(—
WLt UQ g ng,i Cand Qg in G cover V(QUCUC) U {w} or V(QUC) U {w}, contra-
dicting (I). Suppose now that P # Q,ie., P € Sj. Let Q' = UL(P)?up/in,,»

%
wLoiotqr, Qur(Q). If N(uJQ’,tQ) N End(Sc) # @, (say vcr (G_ N(uatg) N End(Sc)) and
C = C/, then the set of vertices of the subgraph Q' Uoug(Q) Q uEItQCu;i?UR(P) in G is
equal to V(P U QU C) U {w}, which contradicts Lemma 4. Otherwise, by Lemma A7,
Q', Qs and Cuj, Pog(P) in G cover V(PUQUCUC') U {w} or V(PUQUC) U {w},
contradicting (I). These contradictions show that our claim holds.

According to Lemma 2(7) (ii), N(x) N (End(S) \ {vc}) = @. Combining this with our

claim, we arrive at N(x) N (X \ {vc}) = @. By (A2), N(x) N X = {vc}. O

Lemma A10. Forany C € S/, G[V(C)] forms a clique.

Proof of Lemma A10. As G[V(C)] is connected, we only need to focus on the case when
|V(C)| > 3.1tisworthnoting that V(C) N X = {v¢ }. According to Lemma A9, N(x) N X = {vc}
for every vertex x € V(C) \ {vc}. Let S’ = V(C). Then, according to Lemma 7, G[V(C)]
forms a clique. O

Lemma A11. Suppose that V(Sp) N U = @. The following two statements are true.

(1) Let P € Spandy € V(P) such that yor(P) € E(G), |V(Plyt,vr(P)])] > 1 and
V(P[y,vr(P)]) NU = @. Then G[V(Ply",vr(P)])] forms a cligue. Moreover, if N(y) N
X = {vr(P)}, then G[V(P[y,vr(P)])] also forms a clique;

(2) Let P € Spand x € V(P) such that xvr(P) € E(G), |V(P[op(P),x"])| > 1 and
V(Plvr(P),x]) NU = @. Then G[V(P[vr(P),x~])] forms a cliqgue. Moreover, if N(x) N
X = {vL(P)}, then G[V(P[vL(P), x])] also forms a clique.

Proof of Lemma A11. By virtue of symmetry, we may restrict our consideration to demon-
strate the truth of (1). As G[V(P[y™*,vr(P)])] is connected, it is sufficient to focus on the
case where |V(P[y",vg(P)])| > 3. Suppose that there is at least one vertex v € N(y™) N X
with v # vg(P). According to Lemma 6(1)(2), v € U N X N V(Sp). Note that V(S},) N
U= @. Then U C V(Sp). We assume that v = uaj for some j € {1,---,tg —1}.

If P # Q, then the set of vertices of the subgraph UL(P)?va(P)$y+uaj60R(Q) U
vL(Q)auQJ-LQJw in G is equal to V(Q U P) U {w}, which contradicts (I). If P = Q, then

vL(Q)auQ,jLQ,ijQ,tQuQrtQEua].y*avR(Q) ybuatQ in G covers V(Q) U {w}, contra-
dicting (I). Therefore, we have N(y™) N X = {vg(P)}, which is a contradiction. According
to (A2),
N(y")nX = {vr(P)}. (A3)
Note that V(P[y",vr(P)]) N X = {vg(P)}. Let ' = V(P[y*,vgr(P)]). According to
Lemma 7, it would therefore suffice to show that the following characterization holds,

N(y") N X = {vr(P)} for every vertex y' € V(P[y™,vr(P))). (A4)
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We apply (A3) repeatedly to obtain (A4).

Next, we will demonstrate that if N(y) N X = {vr(P)} and V(P[y,vr(P)]) NU =@,
then G[V(Ply, vr(P)])] forms a clique. Since G[V(P[y, vg(P)])] is connected, we can as-
sume that |V (P[y,vg(P)])| > 3. It is important to note that N(y) N X = {vg(P)}, which
combined with (A4) implies that N(x) N X = {vg(P)} for every vertex x € V(P[y,vr(P))).
Let S’ = V(P[y, vr(P)]). According to Lemma 7, we can conclude that G[V (P[y, vr(P)])]
forms a clique. O

Denote

T,(P) :={x € V(P) : P € 81’,, f(Plor(P),x]) =1, V(P[o(P),xT])NnU = @, x* #
ur(P)};
¢ T,(P) :={x € V(P) : P € Sl’j, N(x) ﬂEnd(Sé) # @, V(PloL(P),xt))nU = @,
x" # vr(P)}.

Remark A5. If x € T,(P), then, according to the definition of Ty(P), there is at least one vertex
vc € N(x) NEnd(S(.). Let

—
_} QxP), ifxeTy(P),
Qs = { Cx?vL(P), if x € To(P) (say vc € N(x) N End(S()).

Lemma A12. Let P € Sy, x € V(P) and P' € S}, \ {P}. Then the following three characteriza-
tions are true:

(1) Ifx € Ti(P)UTy(P), then N(xT)n (Ut NV(P)) = ;

(2) Ifx € Ty(P), then N(x™) N (X \ (End(S}) U{vL(P), vr(P )})) =Q;

(3) Ifx € To(P), then N(xT) N (X \ (End(S-) U{vr(P)})) =

Proof of Lemma A12. First, we will prove Lemma A12(1). We begin by assuming the
opposite, i.e., N(x™) N (UT NV (P")) 7& @; say uP, e N(x")n (Ut NV(P)) for some

ie{l,--,tp}. Denote Q9 = vg(P’) Pu o x*?UR . To arrive at a contradiction, we
will con51der the following two 51tuat10ns

e Suppose that UNV(Sc) # @. Then Qo, oy (P')P utp;Lpr wG[V(Ley1) U V(Cy)]
and Qg in G cover V(P' UP)UCy) U {w} or V(PP UPUCUCy) U {w}, which
contradicts (I).

e Assumethat U C V(Sp). Then, by Lemma A7, there exists exactly one path Q € Sp such

that N(ug, ) N End(SC) £ @ (say ver € N(u g ) N End(Sc)) orf(a(uatQ,Q)) —1
Denote Q19 = v (P’ )P upriLpriwLq ot tg QZ)L(Q). To arrive at a contradiction, we
differentiate between the followmg two cases:

- Assume that x € T1(P). Then, by Lemma A7, the set of vertices of the subgraph
Qo UQlOUZ(x,P) UQgisequalto V(QUP ' UPUC ) U{w} or V(QUP'UP)U
{w}, which contradicts (I).

- Assume that x € To(P). Thenf(a( eyt

of the subgraph Q¢ U Q19 U Cx P v (P)U a( Et ,Q)isequalto V(QUP'UPU

C) U {w}, which contradicts (I). Then, by Lemma A7, N (u Qo )N End(Sc) # @.

Then (iii) or (iv) occurs. By Lemma A5(2), the set of vertices of the subgraph
Qo UQ1pUQxinGisequalto V(QUP ' UPUC)U{w}or V(QUP' UPUC' U
C) U {w}, which contradicts Lemma 4 or (I).

Q)) # 1. Otherwise the set of vertices

This statement indicates that Lemma A12(1) is true.

Next, we assert that if x € Ty (P) UT,(P), then N(x*) N (X \ (End(S;) U{vr(P),vr(P)
H) =@

Assuming a contradiction, let us suppose that N(x™) N (X \ (End(S[.) U{vr(P),vr(P)
}) # @ say z € N(x7) N (X \ (End(S;) U {vL(P),vr(P)})). By Lemma 6(1), z ¢
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End(Sp) \ {vr(P),vr(P)}. To derive a contradiction, we differentiate between the fol-
lowing two cases based on the definition of X:

e Assuming z € UT NV(Sc); say z = uérui for some i € {1,---,tc,}. Then the
= —
set of vertices of the subgraph Qg U vg(P) P x+”éu,icuucu,iLCu,iw in G is equal to
V(P)UV(C)UV(Cy)U{w} or V(P)U V(Cy) U {w}, which contradicts (I).
e Assumingz € (XNU')NV(Sp). To arrive at a contradiction by Lemma A12(1), we
differentiate between the following two cases:
- Assume that UNV(S¢) # @; say z = ulf]. forsomej € {1,---,tp}. Then the set

of vertices of the subgraph UR(P)?u;;’]»XJF?Mp/]'Lp’]'ZUG[V(LCU/l) UV (Cy)] and
Qg isequal to V(PUCUCy)U{w} or V(P U Cy) U {w}, which contradicts (I).
- Assumethat U C V(Sp). Let

UR(P)$u1J§,].x+?up,ijlijQ,tQuQ,tQEDL(Q), ifz= ulf,]. for some
]‘ c {1,. .. ,tp}’
zm(P)?x*u+ 'au Lot wLq iu 'Ev (Q), ifz=uf  for some
Qj = "Qte QT HQ MR = VLK) Qj
iefl g -1}

Assume that x € &(P) Then, by Lemma A7, the set of vertices of the sub-
graph Q11 U Qs U Q(x, P) isequal to V(QUPUC) U{w} or V(QU P) U {w},

which contradicts (I). Now suppose that x € T,(P). Then f( (uatQ, Q)) # 1L
Otherwise, the set of vertices of the subgraph Q7 U a(uatQ, Q)u Cx?vL(P)
is equal to V(QU P U C) U {w}, which contradicts (I). Then, by Lemma A7,

N(”atQ) N End(Sc) # @. Then (iii) or (iv) occurs. By Lemma A5(2), Q17 and

Q, in G cover V(QUPUC)U{w} or V(QUPUCUC’) U{w}, contradicting
Lemma 4 or (I).

Qn =

This contradiction demonstrates the validity of our claim. Therefore, Lemma A12(2) is true.

Final, we will prove Lemma A12(3). By our claim, if x € T(P), then N(x*) N (X'\
(End(S;) U {vr(P),vr(P)})) = @. Hence, we only prove that x*o;(P) ¢ E(G). By
contradiction, suppose that x*ov;(P) € E(G). Then Cx P UL(P)x+?UR(P) in G covers
V(P UC), which contradicts Lemma 4. This contradiction demonstrates that Lemma A12(3)
is true. O

Lemma A13. Let P € S, and x € V(P) with V(P(x",vr(P)])NU # @. Ifx € Ty(P) U
To(P), then x"vg(P) ¢ E(G).

Proof of Lemma A13. By contradiction, suppose that x*vg(P) € E(G). To arrive at a

contradiction, we differentiate between the following two cases:

e  Assume that UNV(Sc) # @. Then the set of vertices of the subgraph G[V(L¢,,1) U
V(Cu)]ZULp,lup,]?X—i_vR(P)?M?}_’l and Qg in G cover V(PUCUCy) U{w} or V(P U
Cu) U {w}, which contradicts (I).

e Suppose that U C V(Sp). Let Qpp = u5’1$x+vR(P)?umLplleQ,tQuQ,tQEUL(Q).
Suppose firs(t_ that x € Ty (P). Then, by Lemma A7, the set of vertices of the subgraph
Q12UQeU Q(x,P)isequal to V(QUPUC")U{w} or V(QU P) U {w}, which con-
tradicts (I). Now suppose that x € T,(P). Then f( (uatg, Q)) # 1. Otherwise, the

set of vertices of the subgraph Q, U a(uatQ, Q)u Cx?vL(P) isequal to V(QU P U

C) U {w}, which contradicts (I). Then, by Lemma A7, N (uJQr,tQ) N End(Sc) # @. Then

(iii) or (iv) occurs. By Lemma A5(2), the set of vertices of the subgraph Q1, U Q, is
equal to V(QUPUC)U{w} or V(QUPUCUC’)U{w}, which contradicts Lemma 4
or (D).
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This contradiction shows that xtog(P) ¢ E(G). O
Lemma A14. Let P € S, x € To(P). If xTog(P) ¢ E(G), then N(x™) N End(S) = .

Proof of Lemma A14. Assuming a contradiction, let us suppose that N(x™) N End(S(.) # @.
By Lemma 2(ii), x* ¢ {v(P),vr(P)}. Note that N(x) N End(S[) # @. We assume that
vc € N(x) N End(S;). By Lemma 6(1), N(x™) N End(S.) = {vc}. If xTof € E(G),
then the set of vertices of the subgraph vL(P)?xCx+?UR(P) in Gisequal to V(PUC),
which contradicts Lemma 4. Therefore, |V(C)| > 2 and x*v! ¢ E(G). By Lemma A9,
N(vf) N X = {vc}. By Lemma A12(3), N(x*) N X = {vc}. Then (X \ {vc}) U{x™,0vf}
forms an independent set of size k + k + 1; this would contradict the fact that a(G) = « + k.
This contradiction demonstrates that Lemma A14 is true. O

Lemma Al15. Let P € Sp with V(P)NUT # @. Then up, # vr(P) and N(up,) N
(End(S-) U{vr(P)}) = @.

Proof of Lemma A15. Denote

X" \{vc,}, i UNV(Sc) # O,
X' =< X" \{ug,}, if UCV(Sp) and U™ NEnd(S) =0,
X, if UCV(Sp) and U™ NEnd(S) # .

By symmetry and Lemmas A1, A4 and A8, X’ is an independent set of G with size k + «.
Then, up, # v L(P); otherwise, X’ is an independent set of G with size k + x — 1, contradict-

ing «(G) = x + k. Moreover, N(up,) N (End(S¢) U {vL(P)}) = @. Otherwise, X" is not an
independent setof G. O

Lemma Al6. Sj, = Q.
Proof of Lemma A16. By contradiction, suppose that Sj, # @.
Claim Al. V(P)NU = @ forany P € S}.

Proof of Claim A1l. By contradiction, suppose that V(P) N U # @ for some P € S,. Now,
we consider the section P[vr(P), up ;]. By Lemma A15, |V(P[or(P), up,])| = 3.

Suppose that vL(P)u%J,_l € E(G). Then, by Lemmas A12(2), A13 and A15, we have
N <”1;,1> N X = @, contradicting (A2). This contradiction shows that

or(P)ug; € E(G). (A5)

Hence, |V (P[vL(P),up,])| > 4. Then there exists a vertex or(P)+ € V(P[UL(P),M%H))
such that v, (P)oL (P)'* € E(G) fori > 1. By Lemmas A12(2) and A13, N(vy (P)(+1)+) 0
(X \ (End(SL) U {oL(P)})) = @. By (A2), N(vr(P)#VF)N X # @. Then there ex-
ists at least one vertex v € N(v.(P)+1)+)n (End(S;) U {vr(P)}). Suppose that v €
End(Sl-). We know N(v(P)*2+)N X = @ by Lemmas A12(3), A13 and Al4, contra-
dicting (A2). This contradiction shows that v ¢ End(S/-). Combining this with (A2) and
Lemmas A12(2), A13, we obtain that N (. (P)+1)+) N X = {0, (P)}. Thus, v, (P)u%; €
E(G), contradicting (A5). Claim A1 is proved. O ’

According to Lemma 4, for any path P € Sp, vy (P)vr(P) ¢ E(G). We can select the
vertex xp from V(P) such that V(P[v; (P),x,]) € N(vr(P)) and xp & N(vy(P)). Denote

o xp, if xp # vg(P) and xpvg(P) ¢ E(G);
P xp, if xp = vg(P) or xpog(P) € E(G).
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If xp # vr(P) and xpvR(P) ¢ E(G), then, by the definition of xp and Lemma A12(2), (A2),
N(xp) NEnd(S}) # @.

Claim A2. Forany path P € S, the following two characterizations are true.

(1) f(G[V(P[or(P), xp])]) = Land f(G[V(P[xp,vor(P)])]) = 1,
(2)  Either x,, or xp is a cut vertex of G.

Proof of Claim A2. First, we will prove Claim A2(1). If xp = vr(P) or xpvr(P) € E(G),
then Claim A2(1) holds. Therefore, xp # vr(P) and xpvr(P) ¢ E(G). Note that N(xp) N
End(S() # ©. Suppose first that x}; = vg(P). Claim A2(1) holds. Suppose now that x}; #
vr(P). Then we consider the neighbourhood of the vertex x}5. If x;vg (P) ¢ E(G), then, by
Lemmas A12(3) and A14, N(x}) N X = @, contradicting (A2). Therefore, x}vg(P) € E(G).
Claim A2(1) holds.

Next, we will prove Claim A2(2). Since G is connected, N(V (P[vr(P),x))) N (V(G) \
V(Plvr(P), xp))) # @. Forz € N(V(P[v(P),xp))) N (V(G) \ V(P[vL(P),xp))), there ex-
ists a vertex ¥’ € V(P[vr(P),xp )) with x'z € E(G). By the definition of xp and Claim A2(1),
vr(P)xp € E(G). According to Claim Al and Lemma A11(2),

G[V(P[vL(P),xp))] is a clique. (A6)

We will demonstrate that z belongs to V(P). To begin, we assume the opposite, z is not an
element of V(P). By Lemma 6(2) and (A6), z ¢ V(S¢) U V(H). To arrive at a contradiction,
we differentiate between the following two cases:

e Assume thatz € V(P') with P’ € S, \ {P}. By Lemma 6(2), z ¢ {v(P’),vr(P’)}.
Therefore, z € V(P') \ {vL(P’),vr(P’)}. By the definition of xp and Claim A2(1),
vr(P")xp € E(G) and f(G[V(P'[Xp,vr(P')])]) = 1. Then, by Claim Al and Lem-
mas A11(1)(2), G[V(P'[v, (P'),xp))] and G[V(P'(Xpr, vr(P')])] are cliques. Hence,

%
there exists a Q' € {vp(P)P'z vy (P'),z" P' vg(P')z"} with f(Q') = 1. By
Lemma A11(2), the set of vertices of the subgraph G[E(P"\ Q")]x'G[V(P[vr(P),xp) \
{(x'Plxp
vr(P) and Q' in G is equal to V(P U P’), which contradicts Lemma 4.

*  Suppose that z € V(Q). To arrive at a contradiction, we differentiate between the

following two cases:

- Assumethatz € V(Qlug, ”Q,tQ] ). Then, by Lemmas A8(1)(2), A11(1)(2) and (A6),
the set of vertices of the subgraph

UR(P)$xI§G[V(P[UL(P),xlj))]z@uQ/tQLQ,thLQllqul62’, ifz e
V(Q(@,l,ug,tg))/ R

O3 = or(P) P xp G[V(P[uL(P),xp))|z Qug iy Lotow, ifz =
"o —
vR(P) Pxp G[V(P[vr(P),xp))]zQugiLow, ifz =
UQ by

Qe and Q7 are equal to V(PUQUCUC') U{w} or V(PUQUC) U {w} or
V(PUQUC)U{w} or V(PUQ) U {w}, which contradicts ().

- Suppose that z € V(P[vr(Q), ug,]) or V(P[uJQr/tQ, vr(Q)]). By virtue of symme-
try, we may restrict our consideration to z € V(P[v.(Q), u5,]). By Lemma A8(1),
N(ug,) N End(Sc) # @ or f(Z(uéll, Q)) = 1. Combining this with Lemma A6,
we obtain that u3; ;0. (Q) € E(G). By Claim A(l_and Lemma A11(2), G[V(Ii[)vL(Q),
ué‘l))] is a clique. Then, by (A6), either vr (P) P x, G[ V(P[vL(P), xp )]z Qur(Q)
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and <é(z", Q) in G cover V(P)UV(Q), or ?JR(P)?.’X];G[V(P[ vr(P),xp))]vr(Q)
BZ)R(Q) in G covers V(P U Q), which contradicts Lemma 4.
This contradiction demonstrates that

z e V(P). (A7)

To prove Claim A2(2), we differentiate between the following two cases:

*  Suppose that Xp = xp. We will show that there is no pair of edges xpx; and x, x, with
x1 € V(P[vr(P),xp))and xo € V(P(xp,vr(P)]). Suppose otherwise that xpx; € E(G)
and x, x, € E(G). Note that G[V(P(xp,vg(P)])] and G[V (P[vr(P), xp ))] form cliques.
Then the set of vertices of the subgraph x, G[V (P (xp, vr(P)])]xpG[V (P[vL(P),x} ))]xp
in G is equal to V(P), which contradicts Lemma 4. If either x,x, € E(G) and
xpx1 & E(G) or xpx; ¢ E(G) and x,x, ¢ E(G), then, by Lemma 6(2) and (A7),
N(x") € V(P[or(P),xp]). Therefore, x, is a cut vertex of G. If xpx; € E(G) and
xpx2 ¢ E(G), then, by Lemma 6(2) and (A7), N(x') C V(P[v(P), xp)]). Therefore, xp
is a cut vertex of G.

*  Suppose that ¥p = x};. Then xpvg(P) ¢ E(G) and N(xp) N End(St) # ©; say vc €
N(xp) N End(S}). Suppose, first, that N(xp) N V(P[v(P),xp)) = @. Then xfx’ ¢
E(G); otherwise, the set of vertices of the subgraph CxpG[V (P[vL(P), x| )]x;?vR(P)
in Gis equal to V(P UC), which contradicts Lemma 4. Combining this with Lemma 6(2)
and (A7), we obtain that N(x") C V(P[v(P),xp]). Then, x, is a cut vertex of G. Sup-
pose, now, that N(xp) N V(P[vr(P),xp)) # @; say xo € N(xp) NV (P[vr(P),xp)). By
(A6), G[P[v,(P), xp]] has a cycle Cy, = xo P oy (P)xi P xpxo with V(P[0 (P), xp]) =
V(Cy,). By (A6), we structure a new path P’ such that P’ = x()(?vL(P)xar?xp?vR(P)
by rearranging the order of the vertices in P. Then vy (P') = xp. It is easy to verify that
G[V(P)] = G[V(P’)]. We will prove that there is no pair of edges x} x}, xpx} such that
xi € V(P'[op(P"),xp)) and x5 € V(P'(x},vg(P")]). Suppose otherwise that x} x] €
E(G) and xpx} € E(G). Then x} G[V (P’ (x},vr(P)])]xpG[V (P'[vL.(P), xp])]xp in G
cover V(P'), contradicting Lemma 4. Let x” € V(P[v;(P),xp]). By (A7), N(x") C
V(P). If xpxs € E(G), then x5x] ¢ E(G). By Lemma 6(2) and (A7), N(x") C
V(P[vp(P),xp]). Therefore, xp is a cut vertex of G. If x;x] € E(G), then, xpx} ¢ E(G).
By Lemma 6(2) and (A7), N(x"") € V(P[vL(P),x3]). Therefore, x}; is a cut vertex
of G. If x}x] ¢ E(G) and xpxy ¢ E(G), then, according to Lemma 6(2) and (A7),
N(x") C V(P[vL(P), xp]). Therefore, xp is a cut vertex of G.

Claim A2(2) is proved. O
Claim A2(2) contradicts x > 2. Hence, Lemma A16 is proved. O
Now, let us prove Lemmas 8 and 9 which are mentioned in Section 2.

Proof of Lemma 8. By contradiction, suppose that U N V(S¢) # @. According to
Lemma A16, |Sp| = 0. As G is connected and k > 2, there are at least two elements of S¢
connected by a path whose inner vertices are in V(G) \ V(S§), contradicting Lemma 2(i).
Therefore, U C V(Sp). By Lemma A16, |Sp| =1. O

Proof of Lemma 9. By Lemma A8(1)(2), Lemma 9(1)(2) holds. Suppose first that End(S) N
U™ is not empty. Then, by Lemma A1(2), X forms an independent set of G with size
k + k. Suppose now that End(S) N U" = @. By Lemma 9(1), N(u;7) N End(Sc) # @ or
f (?(u,f ,P)) = 1. By Lemmas A1(3), A2(1) and A4, X forms an independent set of G with
size k + k. Therefore, Lemma 9(3) holds. Furthermore, by Lemma A6, Lemma 9(4) holds.
By Lemma A11(1), Lemma 9(5) holds. By Lemmas A9 and A10, Lemma 9(6) holds. [J
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