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Abstract: The first entire Zagreb index (FEZI) is a graph parameter that has proven to be essential
in various real-life scenarios, such as networking businesses and traffic management on roads. In
this research paper, the FEZI was explored for a variety of fuzzy graphs, including star, firefly
graph, cycle, path, fuzzy subgraph, vertex elimination, and edge elimination. This study presented
several results, including determining the relationship between two isomorphic fuzzy graphs and
between a path and cycle (connecting both end vertices of the path). This research also deals with
the analysis of α-cut fuzzy graphs and establishes bounds for some fuzzy graphs. To apply these
findings to modern life problems, the research team utilized the results to identify areas that require
more development in internet systems. These results have practical implications for enhancing the
efficiency and effectiveness of internet systems. The conclusion drawn from this research can be
used to inform future research and aid in the development of more efficient and effective systems in
various fields.

Keywords: first entire Zagreb index; second entire Zagreb index; first entire Zagreb index of a vertex;
isomorphic graph; internet system
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1. Introduction
1.1. Research Background

In the modern day, fuzzy graph (FG) theory is one of the most applicable to regular
life. So there are many researchers who are implementing FG theory, especially topological
indices of fuzzy graphs. Rosenfeld [1], inspired by Zadeh’s [2] classical set (fuzzy set) in
1975, introduced the fuzziness for a graph, then, it is called a fuzzy graph. Additionally,
this time he introduced several connective parameters of an FG and some applications
of these parameters by Yeh et al. [3]. In [4,5], Sunitha et al. studied fuzzy block, fuzzy
bridge, FSG, CFG, PFSG, fuzzy tree, fuzzy forest, fuzzy cut vertex, etc. The degree of a
vertex

(
d(v)/deg(v)

)
in an FG is also discussed In [6]. The degree of an edge (dG(e)) is also

discussed in [7]. Further information on the FG hypothesis is provided in [8–11]. Bipolar
and m-polar fuzzy graphs are discussed in [12,13]. The first Zagreb index is discussed
in [14] and was inspired by the paper [15]. In a molecular graph of a chemical compound,
we can calculate molecular descriptors by finding topological indices of this graph. A
graph’s topology is described by these topological indices, which are numerical numbers.
The Zagreb index, established in 1972 by Gutman and Trinajstic [16], is a degree-based
topological index. The pi-electron energy of a conjugate system is determined using
topological indices. In a crisp graph, many indices are defined but several issues in real life
cannot be handled by these indices. So we can generalize these indices in fuzzy graphs. In
this piece, we have introduced the FEZI in fuzzy graphs which is a major generalization
of FEZI for crisp graphs. These indices are investigated from both a theoretical and an
application point of view.
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1.2. Research Question

These questions are covered in this paper:

1. What is the FEZI upper bound for fuzzy graphs?
2. What are the precise values or boundaries of FEZI for the firefly graph, star, path,

cycle, etc.?
3. What is the relation between the value of FEZI of a graph and its sub graph?
4. What is the relation between the value of FEZI for two isomorphic graph?
5. What is the relation for several graphs between the first Zagreb index and FEZI ?
6. What are the applications of this index?

1.3. Objective of the Work

Various types of topological indices of a graph can be used for a variety of purposes
and yield a wide range of outcomes for crisp graphs. However, in numerous applications,
a crisp graph is not enough to solve it. We need to define a fuzzy graph to answer this
question. In this paper, FEZI is defined and some results relating to sub graphs, paths,
stars, firefly graphs, cycles, isomorphic graphs, etc. are given. At the end of this paper, we
applied the first entire Zagreb index in internet network systems.

1.4. Structure of the Study

The structure of the article is as follows: in Section 2, some definitions are provided
which are necessary for this study. In Section 3, we studied the FEZI of a fuzzy graph and
provided some results on sub graphs, paths, stars, firefly graphs, cycles, etc. Also some
relation between fuzzy graphs are provided. In Section 4, an application of the first entire
Zagreb index in development in internet networking system is discussed.

2. Preliminaries

Here, we provide some fundamental definitions and theorems which are crucial to
developing the later sections.

Let U be a universal set. An FS A on U is a mapping σ : U → [0, 1]. Here, σ is the
membership function of the FS A. A FS generally indicated by A = (u, σ).

Assume that F( 6= 0) is a known finite set. Then the fuzzy graph (FG) is a triplet,
G = (U, ω, $), where U( 6= 0) ⊆ F with ω : U → [0, 1] and $ : U ×U → [0, 1] satisfying
$(x1, x2) ≤ ω(x1)∧ω(x2). The set U is the set of vertices and ε := ((x1, x2) : $(x1, x2) > 0)
is the set of edges of the FG. ω(x1) represents the membership value (MV) of the vertex x1
and $ represents the MV of the edge (x1, x2) (or x1x2).

Let G = (U, ω, $) be an FG. Then, H = (U′, ω′, $′) is called the PFSG of the FG G if
U′ ⊂ U, ω′(x1) ≤ ω(x1), $′(x1, x2) ≤ $(x1, x2) for all x1, x2 ∈ U′. If ω′(x1) = ω(x1) and
$′(x1, x2) ≤ $(x1, x2) for all x1, x2 ∈ U′ then H is called FSG of the graph of the FG G.

For x1 ∈ V, we denote Gx1 as an FSG of the FG G = (V, ω, $) with ω(x1) = 0 and for
x1x2 ∈ ε, Gx1x2 represents the FSG of the FG G with $(x1x2) = 0.

Let x0, x1, . . . , xn all be vertices of an FG G. Then, the collection of vertices P(x0, x1, . . . , xn)
is a path in G if $(xi, xi+1) 6= 0 (for all i). The path’s length is n in this case. If $(x0, xn) > 0 for
the path P(x0, x1, . . . , xn) then it is called a cycle.

Let x0, x1, . . . , xn be distinct vertices of a fuzzy graph G. Then, G = (x0, x1, . . . , xn) is
called a star if $(x0, xi) 6= 0 for i = 1, 2, . . . , n and for all vertex except x0 there is no edge
between every two vertices, where x0 is the center of the star.

In a graph G if $(xi, xj) ≥ 0 for all vertices xi and xj, then it is called a complete
graph. In a fuzzy graph G = (V, ω, $) if for every two vertex x and y satisfy the condition
$(x, y) = ω(x) ∧ω(y) then the graph is called a CFG.

Two FG G1 = (V1, ω1, $1) and G2 = (V2, ω2, $2) are called isomorphic to each other
if there exists a bijective mapping g : V1 → V2 for any x, y ∈ V1, ω1(x) = ω2(g(x)) and
$2(g(x), g(y)) = $1(x, y).
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Let G = (V, E) be a crisp graph. Then, the first and second ZI are defined by
Mε

1 = ∑
x∈V(G)UE(G)

(deg(x))2 and Mε
2 = ∑

x is either adjacent
or incident to y

deg(x)deg(y) [17].

The total degree of an FG with respect to vertices is indicated by Tv(G) and is defined
by Tv(G) = ∑

v∈V(G)
dG(v) [7]. Additionally, the total degree of an FG with respect to edge is

indicated by Te(G) and is defined by Te(G) = ∑
e∈E(G)

dG(e).

Example 1. Let G be an FG with vertex set V = {p, q, r, s} such that ω(p) = 0.8, ω(q) =
0.7, ω(r) = 0.6, ω(s) = 0.5, $(p, q) = 0.4, $(p, r) = 0.5, $(q, r) = 0.5, $(q, s) = 0.3, $(r, s) =
0.4, as shown in Figure 1. Then, d(p) = 0.9, d(q) = 1.2, d(r) = 1.4, d(s) = 0.7, d(p, q) =
1.3, d(p, r) = 1.3, d(q, r) = 1.6, d(q, s) = 1.3, d(r, s) = 1.3 and Tv(G) = 0.9+ 1.2+ 1.4+ 0.7 =
4.2 and Te(G) = 1.3 + 1.3 + 1.3 + 1.6 + 1.3 + 1.3 = 6.8.

Figure 1. A fuzzy graph.

3. First Entire Zagreb Index of Fuzzy Graphs

First entire Zagreb index (FEZI) have an important role for finding strength of vertices.
The strength of vertices is important in fuzzy graph theory. Thus, in this section the FEZI of
a fuzzy graph is initiated. Various properties and an application of FEZI for fuzzy graphs
is given.

Definition 1. Let G be an FG. Then, the FEZI of G is indicated by Mz
1 and is defined by :

Mz
1 := ∑

x∈V(G)
(ω(x)d(x))2 + ∑

e∈E(G)
($(e)d(e))2.

Example 2. Let G be an FG with vertex set V = {p, q, r, s} such that ω(p) = 0.8, ω(q) =
0.7, ω(r) = 0.6, ω(s) = 0.5, $(p, q) = 0.4, $(p, r) = 0.5, $(q, r) = 0.5, $(q, s) = 0.3 and
$(r, s) = 0.4, shown in Figure 1. Then d(p) = 0.9, d(q) = 1.2, d(r) = 1.4, d(s) = 0.7, d(p, q) =
1.3, d(p, r) = 1.3, d(q, r) = 1.6, d(q, s) = 1.3, d(r, s) = 1.3.

Now, Mz
1 = ∑

xεV(G)
(ω(x)d(x))2 + ∑

eεE(G)
($(e)d(e))2

= (0.8× 0.9)2 + (0.7× 1.2)2 + (0.6× 1.4)2 + (0.5× 0.7)2 + (0.4× 1.3)2 + (0.5× 1.3)2 +
(0.5× 1.6)2 + (0.3× 1.3)2 + (0.4× 1.3)2

= 3.7135.

Definition 2. Let (G, ω, $) be an FG. Then, the second entire Zagreb index of G is indicated by
Mε

2 and is defined by Mz
2 := ∑

u,vare adjacent to
each other

ω(u)d(u)ω(v)d(v) + ∑
v is incident

to e

ω(v)d(v)$(e)d(e),

where ω is the MV of a vertex and $ is the MV of an edge.

Example 3. Let G be an FG with vertex set V = {p, q, r, s} such that, ω(p) = 0.6, ω(q) =
0.5, ω(r) = 0.4, ω(s) = 0.8, $(p, r) = 0.4, $(q, r) = 0.4, $(r, s) = 0.3 shown in Figure 2. Then



Axioms 2023, 12, 415 4 of 16

d(p) = 0.4, d(q) = 0.4, d(r) = 1.1, d(s) = 0.3, d(p, r) = 0.7, d(q, r) = 0.7, d(r, s) = 0.8
Now, Mz

2 = ∑
u,vare adjacent

to each other

ω(u)d(u)ω(v)d(v) + ∑
v is incident

to e

ω(v)d(v)ω(e)d(e)

= (0.4× 0.5× 0.4× 1.1) + (0.4× 0.6× 0.4× 1.1) + (0.3× 0.8× 0.4× 1.1) + (0.4× 0.7×
0.4× 0.7) + (0.4× 0.3× 0.7× 0.8) + (0.4× 0.3× 0.7× 0.8) + (0.4× 0.6× 0.4× 0.7) + (0.4×
0.5× 0.4× 0.7) + (0.8× 0.3× 0.3× 0.8) + (0.4× 0.7× 0.4× 1.1) + (0.4× 0.7× 0.4× 1.1) +
(0.4× 0.3× 0.8× 1.1)
= 0.088 + 0.1056 + 0.1056 + 0.0784 + 0.0672 + 0.0672 + 0.0672 + 0.056 + 0.0576 + 0.1232 +
0.1232 + 0.1056
= 1.0448.

Figure 2. A fuzzy graph G with Mz
2 = 1.0448.

Theorem 1. Let the FG G have n vertices and m edges, then Mz
1 ≤ n2T2

v (G) + m2T2
e (G), where

T2
v (G) and T2

e (G) represent the total degree with respect to vertex and total degree with respect to
edge.

Proof. Now, the FEZI of G is given by
Mz

1 = ∑
xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2.

Since ∑(pq)2 ≤ ∑ p2 ∑ q2, we have

∑
xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2 ≤ ∑
xεV(G)

(ω(x))2 ∑
xεV(G)

(d(x))2 +

∑
eεE(G)

($(e))2 ∑
eεE(G)

(d(e))2

≤
(

∑
xεV(G)

ω(x)
)2(

∑
xεV(G)

d(x)
)2

+
(

∑
eεE(G)

$(e)
)2(

∑
eεE(G)

d(e)
)2

≤
(

∑
xεV(G)

ω(x)
)2T2

v (G) +
(

∑
eεE(G)

$(e)
)2T2

e (G).

Since 0 ≤ ω(x) ≤ 1 and 0 ≤ $(e) ≤ 1, therefore Mz
1 ≤ n2T2

v (G) + m2T2
e (G).

Definition 3. Let G = (V, ω, $) be an FG. Then FEZI at a vertex of G is indicated by Mz
1(v) and

is defined by Mz
1(v) := Mz

1(G)−Mz
1(Gv) where Gv =

(
V(G)− v, ω, $

)
.

Example 4. Let G be an FG with vertex set V = {p, q, r, s} such that ω(p) = 0.8, ω(q) =
0.7, ω(r) = 0.5, ω(s) = 0.6, $(p, q) = 0.4, $(p, r) = 0.5, $(q, r) = 0.5, $(q, s) = 0.3 and
$(r, s) = 0.4 shown in Figure 3. Then, d(p) = 0.9, d(q) = 1.2, d(r) = 1.4, d(s) = 0.7, d(p, q) =
1.3, d(p, r) = 1.3, d(q, r) = 1.6, d(q, s) = 1.3, d(r, s) = 1.3.

Now, Mz
1 = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

= (0.8× 0.9)2 + (0.7× 1.2)2 + (0.5× 1.4)2 + (0.6× 0.7)2 + (0.4× 1.3)2 + (0.5× 1.3)2 +
(0.5× 1.6)2 + (0.3× 1.3)2 + (0.4× 1.3)2

So Mz
1(G) = 3.6458.
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Now the vertex p is removed from the graph G, then the graph of Gp is shown in Figure 4.
From the figure, d(q) = 0.6, d(r) = 0.7, d(s) = 0.7, d(q, r) = 0.7, d(q, s) = 0.7, d(r, s) = 0.6.

Figure 3. A fuzzy graph G with Mz
1(G) = 3.6458.

Figure 4. The FG Gp obtained by deleting the vertex p from the above graph.

Now, Mz
1(Gp) = ∑

xεV(Gp)

(
ω(x)d(x)

)2
+ ∑

eεE(Gp)

(
$(e)d(e)

)2

= (0.7× 0.6)2 + (0.5× 0.7)2 + (0.6× 0.7)2 + (0.3× 0.7)2 + (0.6× 0.4)2 + (0.3× 0.7)2. There-
fore, Mz

1(Gp) = 0.6211.
Then, the FEZI at p is Mz

1(p) = 3.6458− 0.6211 = 3.0247.

Theorem 2. Suppose that H is an FG that is created by removing an edge from G. Then, Mz
1(H) ≤

Mz
1(G).

Proof. Since G = (V, ω, $) is an FG and H = (V′, ω′, $′) is a graph that is created by
removing an edge from G so the MV of a vertex is the same in both graphs and the MV of
edges are the same if it contains both E and E′.

Then, the relation between the membership values of G and H is ω(x) ≥ ω′(x) for all
vertices x and $(e) ≥ $′(e) for all edges.

This shows that d(x) ≥ d′(x) for all vertices x. Additionally, d(e) ≥ d′(e) for all edge
e, where d and d′ represent the degree of G and H.

Now, Mz
1(G) = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

≥ ∑
xεV(G)

(
ω′(x)d′(x)

)2
+ ∑

eεE(G)

(
$′(e)d′(e)

)2

= ∑
xεV(H)

(
ω′(x)d′(x)

)2
+ ∑

eεE(H)

(
$′(e)d′(e)

)2

= Mz
1(H).

Hence, Mz
1(G) ≥ Mz

1(H).

Theorem 3. If H is an FG that is obtained from G by deleting a vertex from G. Then, Mz
1(H) ≤

Mz
1(G).
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Proof. Since G = (V, ω, $) is an FG and H = (V′, ω′, $′) is a graph that is created by
removing a vertex from G.

So, ω(x) = ω′(x) if x ∈ V ∩V′ otherwise ω(x) > ω′(x). Additionally, $(e) = $′(e) if
e ∈ E ∩ E′ otherwise $(e) > $′(e). Then the relation between the membership values of
G = (V, ω, $) and H = (V′, ω′, $′) is ω(x) ≥ ω′(x) for all vertices x and $(e) ≥ $′(e) for
all edges e. This shows that d(x) ≥ d′(x) for all vertices x. Additionally, d(e) ≥ d′(e) for all
edges e. Here, d and d′ represent the degrees of G and H.

Now, Mz
1(G) = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

≥ ∑
xεV(G)

(
ω′(x)d′(x)

)2
+ ∑

eεE(G)

(
$′(e)d′(e)

)2

= ∑
xεV(H)

(
ω′(x)d′(x)

)2
+ ∑

eεE(H)

(
$′(e)d′(e)

)2

= Mz
1(H). So, Mz

1(G) ≥ Mz
1(H).

Example 5. Let G be an FG with vertex set V = {p, q, r, s} such that ω(p) = 0.8, ω(q) =
0.7, ω(r) = 0.5, ω(s) = 0.6, $(p, q) = 0.4, $(p, r) = 0.5, $(q, r) = 0.5, $(q, s) = 0.3, $(r, s) =
0.4 shown in Figure 3. Then d(p) = 0.9, d(q) = 1.2, d(r) = 1.4, d(s) = 0.7, d(p, q) =
1.3, d(p, r) = 1.3, d(q, r) = 1.6, d(q, s) = 1.3 and d(r, s) = 1.3.

Now, Mz
1(G) = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2.

= (0.8× 0.9)2 + (0.7× 1.2)2 + (0.5× 1.4)2 + (0.6× 0.7)2 + (0.4× 1.3)2 + (0.5× 1.3)2 +
(0.5× 1.6)2 + (0.3× 1.3)2 + (0.4× 1.3)2 = 3.6458.

The graph of H where the vertex p is deleted from G shown in Figure 4. From the figure,
d(q) = 0.6, d(r) = 0.7, d(s) = 0.7, d(q, r) = 0.7, d(q, s) = 0.7, d(r, s) = 0.6.
Now, Mz

1(H) = ∑
xεV(H)

(ω(x)d(x))2 + ∑
eεE(H)

($(e)d(e))2

= (0.7× 0.6)2 + (0.5× 0.7)2 + (0.6× 0.7)2 + (0.3× 0.7)2 + (0.6× 0.4)2 + (0.3× 0.7)2 =
0.6211. The graph of K where the edge pr is deleted from G is shown in Figure 5.

Figure 5. The FG obtained by deleting an edge from the graph in Figure 3.

From this figure, d(p) = 0.4, d(q) = 1, d(r) = 0.7, d(s) = 0.7, d(p, q) = 0.6, d(q, r) =
1.1, d(q, s) = 1.1, d(r, s) = 1
Now, Mz

1(K) = ∑
xεV(K)

(ω(x)d(x))2 + ∑
eεE(K)

($(e)d(e))2

= (0.8× 0.4)2 + (0.7× 1)2 + (0.5× 0.7)2 + (0.6× 0.7)2 + (0.6× 0.4)2 + (0.3× 1.1)2 + (0.3×
1.1)2 + (0.4× 1)2 = 1.3267.
This shows that

1. Mz
1(G) ≥ Mz

1(H)

2. Mz
1(G) ≥ Mz

1(K).

Theorem 4. Let G be an FG and H be an FSG of G, then Mz
1(G) ≥ Mz

1(H).
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Proof. Since H = (V′, ω′, $′) is an FSG of G = (V, ω, $), therefore
ω(x) ≥ ω′(x) for all vertices x and $(e) ≥ $′(e) for all edges e. This sows that

d(x) ≥ d′(x) for all vertices x.
Additionally, d(e) ≥ d′(e) for all edges e, where d and d′ represent the degrees of G

and H. Now, Mz
1(G) = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

≥ ∑
xεV(G)

(
ω′(x)d′(x)

)2
+ ∑

eεE(G)

(
$′(e)d′(e)

)2

= ∑
xεV(H)

(
ω′(x)d′(x)

)2
+ ∑

eεE(H)

(
$′(e)d′(e)

)2

= Mz
1(H)

Hence, Mz
1(G) ≥ Mz

1(H).

Theorem 5. Let G = (V, ω, $) be an FG and F = (V, ω, $′) be the corresponding MST of G then
Mz

1(G) ≥ Mz
1(F).

Proof. Since F = (V, ω, $′) is an MST of G = (V, ω, $) therefore F is an FSG of G. Then we
can say from the above Theorem, Mz

1(G) ≥ Mz
1(F).

Theorem 6. Let G be an FG and let Gα = (V′, ω′, $′) be an α cut FG of G = (V, ω, $). Then,
Mz

1(G) ≥ Mz
1(G

α) where the FG Gα is defined as V′ = vεV : ω(v) ≥ α and ω′(v) =
ω(v),$,(u, v) = $(u, v) for all u, vεV′.

Proof. Since Gα is an FSG of the FG G, then by the above Theorem, Mz
1(G) ≥ Mz

1(G
α).

Theorem 7. Let G be an FG and let 0 ≤ p1 ≤ p2 ≤ 1 Then Mz
1(G

p1) ≥ Mz
1(G

p2).

Proof. Since 0 ≤ p1 ≤ p2 ≤ 1, therefore Gp2 is a PFSG of Gp1 . Then, by the above Theorem,
Mz

1(G
p1) ≥ Mz

1(G
p2).

Corollary 1. Let G be an FG and let 0 ≤ p1 ≤ p2 ≤ p3 ≤ . . . ≤ pn ≤ 1.
Then, Mz

1(G
pn) ≤ Mz

1(G
pn−1) ≤ . . . ≤ Mz

1(G
p2) ≤ Mz

1(G
p1).

Theorem 8. Let G = P(v0, v1, v2, . . . , vn) be a path. Then,

1. Mz
1(G) = ZF1(G)+

(
$(e1)$(e2)

)2
+
(
$(en)$(en−1)

)2
+

i=n−1
∑

i=2
$2(ei)

(
$(ei−1)+ $(ei+1)

)2.
2. Mz

1(G) ≤ 8(n− 1).

Proof. Given that G = P(v0, v1, v2, . . . , vn) is a path, there are (n + 1) vertices and n edges.

1. Now,

Mz
1(G) = ∑

xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2 (1)

Here, the degree of each vertex vi, except v0 and vn, is
(
$(ei) + $(ei+1)

)
and the degree

of v0 is $(e1) and degree of vn is $(en).
Additionally, the degree of each edge ei, except e1 and en, is

(
$(ei−1) + $(ei+1)

)
and

the degree of e1 is e2, the degree of en is en−1.
Using this result, we have from (1),

Mz
1(G) = (ω0$1)

2 + (ωn$n)2 +
i=n−1

∑
i=1

ω2(vi)
(
$(ei) + $(ei+1)

)2
+

(
$(e1)$(e2)

)2
+(

$(en)$(en−1)
)2

+
i=n−1

∑
i=2

$2(ei)
(
$(ei−1) + $(ei+1)

)2

= ZF1(G) +
(
$(e1)$(e2)

)2
+

(
$(en)$(en−1)

)2
+

i=n−1

∑
i=2

$2(ei)
(
$(ei−1) + $(ei+1)

)2 (2)
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2. From Equation (2), we get

Mz
1(G) = ZF1(G) +

(
$(e1)$(e2)

)2
+

(
$(en)$(en−1)

)2
+

i=n−1
∑

i=2
$2(ei)

(
$(ei−1) + $(ei+1)

)2.

As 0 ≤ $(ei) ≤ 1 and 0 ≤ ω(vi) ≤ 1,
Mz

1(G) ≤ 2(2n− 1) + 1 + 1 + 4(n− 2) (where ZF1(G) ≤ 2(2n− 1))
= 4n− 2 + 2 + 4n− 8
= 8n− 8.
So, Mz

1(G) ≤ 8(n− 1).

Example 6. Let A = P(p, q, r, s, e) be an FG with vertex set V = p, q, r, s, e such that ω(p) =
0.8, ω(q) = 0.7, ω(r) = 0.9, ω(s) = 0.5, ω(e) = 0.6, $(p, q) = 0.6, $(q, r) = 0.6, $(r, s) =
0.4, $(s, e) = 0.5 shown in Figure 6. Then, d(p) = 0.6, d(q) = 1.2, d(r) = 1.0, d(s) =
0.9, d(e) = 0.5, d(p, q) = 0.6, d(q, r) = 1.0, d(r, s) = 1.1 and d(s, e) = 0.4.
Now, Mz

1(A) = ∑
xεV(A)

(
ω(x)d(x)

)2
+ ∑

eεE(A)

(
$(e)d(e)

)2

= (0.8× 0.6)2 + (0.7× 1.2)2 + (0.9× 1.0)2 + (0.5× 0.9)2 + (0.6× 0.5)2 + (0.6× 0.6)2 +
(0.6× 1.0)2 + (0.4× 1.1)2 + (0.5× 0.4)2

= 0.2304 + 0.7056 + 0.81 + 0.2025 + 0.09 + 0.1296 + 0.36 + 0.1936 + 0.04 = 2.7617.

Figure 6. A fuzzy path G with Mz
1(A) = 2.7617.

Theorem 9. Let G = P(v0, v1, v2, . . . , vn) be a path. If we take v0 = vn, it becomes a cycle
H = C(v0, v1, v2, . . . , vn). Then Mz

1(G) ≤ Mz
1(H).

Proof. Let d and d′ denote the degree of a vertex/edge in G and H respectively. Here,
d(v) = d′(v) for all vertices except v0 and vn. Now, d(v0) = e1 and d(vn) = en and
d′(v0) = e1 + en. Additionally, d(e) = d′(e) for all edges except e1 and en. Now, d(e1) = e2
and d(en) = en−1 and d′(e1) = e2 + en, d′(en) = e1 + en−1.

Now, Mz
1(G) = ∑

vεV(G)

(
ω(v)d(v)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

=
(
ω(v0)d(v0)

)2
+

(
ω(vn)d(vn)

)2
+ ∑

vεV(G)−v0,vn

(
ω(v)d(v)

)2
+

(
$(e1)d(e1)

)2
+

(
$(en)d(en)

)2
+

∑
eεE(G)−e1,en

(
$(e)d(e)

)2

= (ω′(v0)e1)
2 +

(
ω′(vn)en

)2
+ ∑

vεV(H)−v0

(
ω′(v)d′(v)

)2
+

(
$′(e1)e2

)2
+

(
$′(en)en−1

)2
+

∑
eεE(H)−e1,en

(
$′(e)d′(e)

)2

=
(
ω′(v0)e1

)2
+

(
ω′(v0)en

)2
+ ∑

vεV(H)−v0

(
ω′(v)d′(v)

)2
+

(
$′(e1)e2

)2
+

(
$′(en)en−1

)2
+

∑
eεE(H)−e1,en

(
$′(e)d′(e)

)2

= ω′(v0)
(
(e1)

2 + (en)2)+ ∑
vεV(H)−v0

(
ω′(v)d′(v)

)2
+

(
$′(e1)e2

)2
+

(
$′(en)en−1

)2
+

∑
eεE(H)−e1,en

(
$′(e)d′(e)

)2
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≤ ω′(v0)
(
(e1) + (en)

)2
+ ∑

vεV(H)−v0

(
ω′(v)d′(v)

)2
+

(
$′(e1)(e2 + en)

)2
+

(
$′(en)(en−1 + e1)

)2
+

∑
eεE(H)−e1,en

(
$′(e)d′(e)

)2

= Mz
1(H).

So, Mz
1(G) ≤ Mz

1(H).

Example 7. Let G be a path with vertex set V = p, q, r, s, e such that ω(p) = 0.8, ω(q) =
0.7, ω(r) = 0.9, ω(s) = 0.5, ω(e) = 0.8, $(p, q) = 0.6, $(q, r) = 0.6, $(r, s) = 0.4 and
$(s, e) = 0.5 shown in Figure 7.

Figure 7. A fuzzy path G with Mz
1(G) = 2.8317.

Then, d(p) = 0.6, d(q) = 1.2, d(r) = 1.0, d(s) = 0.9, d(e) = 0.5, d(p, q) = 0.6, d(q, r) =
1.0, d(r, s) = 1.1, d(s, e) = 0.4
Now, Mz

1(G) = ∑
xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

= (0.8× 0.6)2 + (0.7× 1.2)2 + (0.9× 1.0)2 + (0.5× 0.9)2 + (0.8× 0.5)2 + (0.6× 0.6)2 +
(0.6× 1.0)2 + (0.4× 1.1)2 + (0.5× 0.4)2

= 0.2304 + 0.7056 + 0.81 + 0.2025 + 0.16 + 0.1296 + 0.36 + 0.1936 + 0.04 = 2.8317.
Marge two vertex a and e in G, as shown in Figure 8.

Figure 8. A fuzzy graph H with Mz
1(H) = 3.7317.

Then, d(p) = 1.1, d(q) = 1.2, d(r) = 1.0, d(s) = 0.9, d(p, q) = 1.1, d(q, r) = 1.0, d(r, s) =
1.1, d(s, p) = 1.0.
Now, Mz

1(H) = ∑
xεV(H)

(
ω(x)d(x)

)2
+ ∑

eεE(H)

(
$(e)d(e)

)2

= (0.8× 1.1)2 + (0.7× 1.2)2 + (0.9× 1.0)2 + (0.5× 0.9)2 + (0.6× 1.1)2 + (0.6× 1.0)2 +
(0.4× 1.1)2 + (0.5× 1.0)2

= 0.7744 + 0.7056 + 0.81 + 0.2025 + 0.4356 + 0.36 + 0.1936 + 0.25 = 3.7317.

Theorem 10. Let G = C(v0, v1, . . . , vn) be a cycle. Then,

1. Mz
1(G) = ZF1(G) +

(
$(e1)

)2(
$(e2) + $(en)

)2
+

i=n
∑

i=2

(
$(ei)

)2(
$(ei−1) + $(ei+1)

)2
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2. Mz
1(G) ≤ 8(n + 1)− 4.

Proof. Similar proof to Theorem 8.

Theorem 11. Let G1 and G2 be two fuzzy graphs and they are isomorphic to each other. Then,
Mz

1(G1) = Mz
1(G2).

Proof. As G1 and G2 are isomorphic to each other, then there exists a bijective mapping
φ : V1 → V2 and for all u, vεV1 then ω1(v) = ω2(φ(v)) and $1(uv) = $2

(
φ(u)φ(v)

)
Then, dG1(v) = ∑

u∈V1

$1(uv) = ∑
φ(u)∈V2

$2
(
φ(u)φ(v)

)
= dG2

(
φ(v)

)
.

Now, Mz
1(G) = ∑

v∈V(G1)

(
ω(v)dG1(v)

)2
+ ∑

uv∈E(G1)

(
$(uv)dG1(uv)

)2

= ∑
v∈V(G2)

(
ω
(
φ(v)

)
dG2

(
φ(v)

))2

+ ∑
φ(u)φ(v)∈E(G2)

(
$
(
φ(u)φ(v)

)
dG2

(
φ(u)φ(v)

))2

= Mz
1(G2).

So, Mz
1(G1) = Mz

1(G2).

Theorem 12. If G = K1,p−1 (see Figure 9) is a star and satisfies the condition ω(o) ≤ ω(v),
where o is the center of the star, then the value of the FEZI is
Mz

1(G) = (ω(o))2( ∑
vεV(G)−o

ω(v)2 + ω(o)2(p− 1)(p2 − 3p + 3)).

Figure 9. Graph of K1,p−1.

Proof. Given that ω(o) ≤ ω(v), where o is the center of the star, so $(e) = ω(o) for all
edges. Now, deg(v) for all vεV − o is given by $(ov) = ω(o) and deg(o) = ∑

vεV−o
$(ov) =

(p− 1)ω(o) also deg(e) = (p− 2)ω(o).
Now, Mz

1(G) = ∑
vεV(G)

(
ω(v)deg(v)

)2
+ ∑

eεE(G)

(
$(e)deg(e)

)2

= ∑
vεV(G)−o

(
ω(v)ω(o)

)2
+

(
ω(o)(p− 1)ω(o)

)2
+ ∑

eεE(G)

(
ω(o)(p− 2)ω(o)

)2

= (ω(o))2( ∑
vεV(G)−o

ω(v)2 + ω(o)2(p− 1)(p2 − 3p + 3)).

This shows that Mz
1(G) = (ω(o))2( ∑

vεV(G)−o
ω(v)2 + ω(o)2(p− 1)(p2 − 3p + 3)

)
.
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Theorem 13. If G = S(a, b) is a double star, c1 is the center of the first star and c2 is the center
of the second star and satisfies the condition ω(c1) = ω(c2) ≤ ω(v) for all vεV(G), then
Mz

1(G) = ZF1G + ω(c1)
4(a3 + b3 + (a + b)2).

Proof. Since ω(c1) = ω(c2) ≤ ω(v) for all vεV(G),
$(c1u) = ω(c1), $(c2v) = ω(c2) = ω(c1).
Additionally, deg(u) = ω(c1), deg(v) = ω(c2) = ω(c1),
deg(c1) = (a + 1)ω(c1), deg(c2) = (b + 1)ω(c2) = (b + 1)ω(c1),
deg(uc1) = aω(c1), deg(uc2) = bω(c2) = bω(c1), deg(c1c2) = (a + b)ω(c1).
Now, Mz

1 = ∑
xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

= ZF1(G) + ∑
eεE(G1)

(
$(e)deg(e)

)2
+ ∑

eεE(G2)

(
$(e)deg(e)

)2
+ $(c1c2)deg(c1c2)

2

= ZF1(G) + ∑
eεE(G1)

(
ω(c1)aω(c1)

)2
+ ∑

eεE(G2)

(
ω(c1)bω(c1)

)2
+

(
ω(c1)(a + b)ω(c1)

)2

= ZF1(G) + ω(c1)
4(a3 + b3 + (a + b)2)

Mz
1(G) = ZF1G + ω(c1)

4(a3 + b3 + (a + b)2).

Theorem 14. For a firefly graph Fs,t,p−2s−2t−1, if the MV of each vertex as well as the edge is one,
then the value of the FEZI is Mz

1(G) = p+ 10s+ 4t− 1+(p− t− 1)2 +(p− t− 1)(p− t− 2)2.

Proof. Since the MV of each vertex and each edge is one, the number of vertices with
degree 1 is p− 2s− 2t− 1 + t = p− 2s− t− 1,
the number of vertices with degree 2 is 2s + t,
and deg(c) = 2(p + s− 1)− (p− 2s− t− 1)− 2(2s + t) = p− t− 1,
the number of edges with degree 1 is t,
the number of edges with degree 2 is s,
the remaining (p-t-1) edges have degree (p− t− 2).
Then, the FEZI is Mz

1(G) = ∑
xεV(G)

(
ω(x)d(x)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2

= (p− 2s− t− 1) + 4(2s + t) + (p− t− 1)2 + t + 4s + (p− t− 1)(p− t− 2)2 = p + 10s +
4t− 1 + (p− t− 1)2 + (p− t− 1)(p− t− 2)2.

Corollary 2. If s = t = 0, then for a firefly graph,
Mz

1(G) = (ω(c))2( ∑
vεV(G)−c

ω(v)2 + ω(c)2(n− 1)(n2 − 3n + 3)
)
.

If we put s = t = 0 in Fs,t,n−2s−2t−1, then the graph is a star similar to K1,n−1

So, Mz
1(G) = Mz

1(K1,n−1) = (ω(c))2( ∑
vεV(G)−c

ω(v)2 + ω(c)2(n− 1)(n2 − 3n + 3)
)
.

4. Application of FEZI for Fuzzy Graphs to Find out the State Which Require More
Development for Internet System
4.1. Model Construction

In the modern day, the internet is the most important part of our regular life. Here in
this paper, we analyzed the Reliance Jio infocomm Ltd internet system in India. The data
of Reliance Jio infocomm Ltd internet users are given in Table 1. These data were taken
from https://dot.gov.in/sites/default/files/2022, accessed on 15 December 2022 . Then,
we constructed a Reliance Jio infocomm Ltd internet system graph (see Figure 10). Here,
the whole graph is similar to a star where Reliance Jio infocomm Ltd (C) is the center of the
star and each state is a pendent vertex of the star.

https://dot.gov.in/sites/default/files/2022
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Figure 10. Fuzzy graph of internet network of Reliance jio.

Table 1. Data of internet users for all states.

State Internet Users (in
Million)

Total Population (in
Million)

Population Percent-
age of the State

Andhra Pradesh (A.P) 56.06 52.883 4

Assam (AS) 14.14 35.4 2.6

Bihar (BI) 48.11 125.1 9.2

Delhi (DE) 38.89 31.2 2.3

Gujrat (GU) 43.68 70.7 5.2

Haryana (HA) 16.74 29.9 2.2

Himachal Pradesh (H.P) 5.89 7.45 0.50

Jammu and Kashmir (J.K) 7.55 13.6 1.0

Karnataka (KA) 43.68 67.3 4.9

Kerala (KE) 24.92 35.4 2.6

Madhya Pradesh (M.P) 47.78 85.6 6.3

Maharashtra (MA) 61.12 125.5 9.3

Odisha (OD) 19.02 44.2 3.3

Punjab (PU) 25.1 30.6 2.2

Rajasthan (RA) 41.75 80.2 5.9

Tamil Nadu (T.N) 49.17 76.7 5.6

Uttar Pradesh (U.P) 91.35 233.4 17.2

West Bengal (W.B) 49.1 98.7 7.3

4.2. Representation of Membership Values

Now, the MV of a vertex is denoted as ω(S) according to the formula below:
∧ {1, Total internet users in the state

Total population in the state }.
Here we see that ω(S) ∈ [0, 1], since there is an edge between center C and a state S. The
MV of this edge is denoted as $(CS) and is defined by the following formula:
∧{1, Total Jio internet users in this state S

Total population in this state S + Population persentage in this state S
100 }.

Here, we see that $(CS) ∈ [0, 1].
The membership values are given in the Tables 2 and 3.
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Table 2. Some values with respect to internet users.

State Jio Internet Users
(Million)

Total internet users
Total population

Jio internet users
Total population

Jio internet users
Total population +

population percentage
100

A.P 28.9 1.06 0.54 0.58

AS 7.3 0.4 0.21 0.236

BI 24.82 0.38 0.19 0.282

DE 20.06 1.25 0.64 0.663

GU 22.53 0.62 0.32 0.372

HA 8.64 0.56 0.29 0.312

H.P 3.03 0.79 0.41 0.415

J.K 3.89 0.56 0.29 0.30

KA 22.53 0.65 0.34 0.389

KE 12.86 0.70 0.36 0.386

M.P 24.65 0.56 0.29 0.353

MA 31.54 0.49 0.25 0.343

OD 9.81 0.43 0.22 0.253

PU 12.95 0.82 0.42 0.442

RA 21.54 0.52 0.27 0.369

T.N 25.37 0.64 0.33 0.386

U.P 47.13 0.39 0.20 0.372

W.B 25.34 0.5 0.26 0.333

Then the value of the FEZI is given by

Mz
1(G) = ∑

vεV(G)

(
ω(v)d(v)

)2
+ ∑

eεE(G)

(
$(e)d(e)

)2
= 112.02.

The FEZI of states (vertex) are given in the Table 4, and they are calculated by the formula
Mz

1(State) = Mz
1(G)−Mz

1(GState).

4.3. Decision Making

From the Table 4, we have Mz
1(AS) = Mz

1(BI) = Mz
1(OD) < Mz

1(U.P) < Mz
1(HA) =

Mz
1(J.K) = Mz

1(MA) = Mz
1(W.B) < Mz

1(M.P) = Mz
1(RA) < Mz

1(GU) < Mz
1(KA) =

Mz
1(TN) < Mz

1(KE) < Mz
1(H.P) < Mz

1(PU) < Mz
1(A.P) < Mz

1(DE).
Now, the least FEZI of a vertex indicates that the vertex is most crucial for the devel-

opment of internet network systems. Here, the first entire Zagreb index of two or more
states is equal. In this situation, we will find the population percentage of these states who
cannot use the internet. Then, the state having the largest population percentage that does
not use the internet becomes the first to develop an internet network system.

Here, the percentages of the population who do not use the internet (PP) of the
states are as follows: PP(AS) = 21.26, PP(BI) = 25.18, PP(OD) = 76.99, PP(HA) = 13.16,
PP(J.K) = 6.05, PP(MA) = 64.38, PP(W.B) = 49.6, PP(M.P) = 37.82, PP(RA) = 38.45, PP(KA) = 23.62,
PP(T.N) = 27.53. Then we can order the states as follows, and needing more development:

Odisha, Bihar, Assam, Uttar Pradesh, Maharashtra, West Bengal, Haryana, Jammu and
Kashmir, Rajasthan, Madhya Pradesh, Gujrat, Tamil Nadu, Karnataka, Kerala, Himachal
Pradesh, Punjab, Andhra Pradesh, Delhi.
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Table 3. Membership values and degrees of the FG of Figure 10.

State MV of the State (Vertex) Degree of the State (Ver-
tex) = MV of the Edge

Degree of an Edge between
State and Center of the Star

A.P 1 0.58 6.060

AS 0.4 0.236 6.550

BI 0.38 0.282 6.504

DE 1 0.663 6.123

GU 0.62 0.372 6.414

HA 0.56 0.312 6.474

H.P 0.79 0.415 6.371

J.K 0.56 0.30 6.486

KA 0.65 0.389 6.397

KE 0.70 0.386 6.400

M.P 0.56 0.353 6.433

MA 0.49 0.343 6.443

OD 0.43 0.253 6.533

PU 0.82 0.442 6.344

RA 0.52 0.369 6.417

T.N 0.64 0.386 6.400

U.P 0.39 0.372 6.414

W.B 0.5 0.333 6.453

Table 4. Value of first entire Zagreb index for all states.

State Mz
1 (G − State) Mz

1 (State)

A.P 111.68 0.34

AS 112.01 0.01

BI 112.01 0.01

DE 111.58 0.44

GU 111.97 0.05

HA 111.99 0.03

H.P 111.91 0.11

J.K 111.99 0.03

KA 111.96 0.06

KE 111.95 0.07

M.P 111.98 0.04

MA 111.99 0.03

OD 112.01 0.01

PU 111.89 0.13

RA 111.98 0.04

T.N 111.96 0.06

U.P 112.00 0.02

W.B 111.99 0.03
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5. Conclusions

In this article, the FEZI (first entire Zagreb index) was introduced as a graph parameter
to quantify the structural characteristics of a graph. This study introduced several results
and established relationships between various isomorphic graphs and α-cut fuzzy graphs.
Additionally, the paper provided bounds for some fuzzy graphs and applied these results
to real-life problems in the field of internet system development. The precise values or
boundaries of FEZI with regards to graphs such as the firefly graph, star, path, cycle, and
others, were explored in this study. The relationship between the value of the FEZI of a
graph and its subgraph, two isomorphic graphs, and the first Zagreb index and FEZI were
also described here. To analyze the Reliance Jio infocomm Ltd. internet system in India,
this paper constructed an internet system graph. In this graph, the least FEZI of a vertex
indicates that the vertex is most crucial for the development of the internet network system,
and the first entire Zagreb index of two or more states is equal. According to this paper,
the state with the highest proportion of people who do not use the internet is the first to
develop an internet network system. The first entire Zagreb index is also important in
biochemistry, chemical graph theory, spectral graph theory, etc.
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