A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods
Abstract
:1. Introduction
- The solutions of the RTS, which carry trucks with goods on roads, are presented successfully by using different values of c and d.
- The design of the MW neural network is presented along with the swarming and interior-point methods for solving the RTS.
- The exactness of the stochastic MW neural network procedure is observed through the comparison of the results.
- The reducible absolute error (AE) performance validates the exactness of the stochastic procedure.
- The reliability of the MW neural network, along with the swarming and interior-point methods, is validated by using different statistical performances.
2. Methodology
2.1. Modeling: MW Neural Networks
2.2. Optimization: Swarming and Interior Point Schemes
2.3. Performance Procedures
3. Results Performance
4. Concluding Remarks
- 1.
- When the values of d are taken as greater than zero, a half-saturated concentration is performed.
- 2.
- When the values of c are taken as less than zero, which shows the distinctive reaction, the reactive rate is applied as an alternate to the reaction product.
- 3.
- The solutions of the nonlinear model based on the TRS have been presented successfully by using the proposed stochastic scheme.
- 4.
- An objective function has been constructed through the differential form of the RTS and its boundary conditions.
- 5.
- The optimization of the merit function has been performed by using the hybridization of global swarming and local search interior-point algorithms.
- 6.
- The correctness of the scheme has been observed by performing a comparison of the results and reducible AE for three cases of the RTS.
- 7.
- For the stability of the scheme, the statistical performances based on different operators have been provided using 30 trials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shivanian, E. On the multiplicity of solutions of the nonlinear reactive transport model. Ain Shams Eng. J. 2014, 5, 637–645. [Google Scholar] [CrossRef]
- Steefel, C.I.; DePaolo, D.J.; Lichtner, P.C. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet Sci. Lett. 2005, 240, 539–558. [Google Scholar] [CrossRef]
- Pabst, T.; Molson, J.; Aubertin, M.; Bussière, B. Reactive transport modelling of the hydro-geochemical behaviour of partially oxidized acid-generating mine tailings with a monolayer cover. Appl. Geochem. 2017, 78, 219–233. [Google Scholar] [CrossRef]
- Vilcáez, J.; Li, L.; Wu, D.; Hubbard, S.S. Reactive transport modeling of induced selective plugging by Leuconostocmesenteroides in carbonate formations. Geomicrobiol. J. 2013, 30, 813–828. [Google Scholar] [CrossRef]
- Regnier, P.; Jourabchi, P.; Slomp, C.P. Reactive-transport modeling as a technique for understanding coupled biogeochemical processes in surface and subsurface environments. Neth. J. Geosci. 2003, 82, 5–18. [Google Scholar] [CrossRef]
- Ellery, A.J.; Simpson, M.J. An analytical method to solve a general class of nonlinear reactive transport models. Chem. Eng. J. 2011, 169, 313–318. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, W. Multiscale modeling of fluid and solute transport in soft tissues and microvessels. J. Multiscale Model. 2010, 2, 127–145. [Google Scholar] [CrossRef]
- Donea, J. A Taylor–Galerkin method for convective transport problems. Int. J. Numer. Methods Eng. 1984, 20, 101–119. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.J.; Van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Filed Tracer Experiments (Volume 2); US Salinity Laboratory: Riverside, CA, USA, 1995. [Google Scholar]
- De Smedt, F. Analytical solutions of the one-dimensional convective-dispersive solute transport equation: M. Th. van Genuchten and WJ Alves. Technical Bulletin no. 1661, US Department of Agriculture Washington, DC, 1982; 151 pp. Agric. Water Manag. 1984, 9, 79–80. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Rach, R.; Bougoffa, L. Dual solutions for nonlinear boundary value problems by the Adomian decomposition method. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 2393–2409. [Google Scholar] [CrossRef]
- Kuzmin, D. A Guide to Numerical Methods for Transport Equations; University of Erlangen: Nuremberg, Germany, 2010. [Google Scholar]
- Rach, R.; Duan, J.S.; Wazwaz, A.M. On the solution of non-isothermal reaction-diffusion model equations in a spherical catalyst by the modified Adomian method. Chem. Eng. Commun. 2015, 202, 1081–1088. [Google Scholar] [CrossRef]
- Miah, M.M.; Ali, H.S.; Akbar, M.A.; Wazwaz, A.M. Some applications of the (G′/G, 1/G)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 2017, 132, 252. [Google Scholar] [CrossRef]
- Weera, W.; Botmart, T.; La-inchua, T.; Sabir, Z.; Núñez, R.A.S.; Abukhaled, M.; Guirao, J.L.G. A stochastic computational scheme for the computer epidemic virus with delay effects. AIMS Math. 2023, 8, 148–163. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Khalique, C.M.; Unlu, C. Neuro-evolution computing for nonlinear multi-singular system of third order Emden-Fowler equation. Math. Comput. Simul. 2021, 185, 799–812. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.; Shoaib, M. Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden–Fowler equation. Comput. Appl. Math. 2020, 39, 307. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.; Shoaib, M. A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alex. Eng. J. 2021, 60, 2641–2659. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Aguilar, J.G. FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system. Comput. Appl. Math. 2020, 39, 303. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Wahab, H.A.; Shoaib, M.; Aguilar, J.G. Integrated neuro-evolution heuristic with sequential quadratic programming for second-order prediction differential models. In Numerical Methods for Partial Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Sabir, Z. Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion. Eur. Phys. J. Plus 2022, 137, 638. [Google Scholar] [CrossRef]
- Sabir, Z. Stochastic numerical investigations for nonlinear three-species food chain system. Int. J. Biomath. 2022, 15, 2250005. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Abd Elaziz, M. Review on applications of particle swarm optimization in solar energy systems. Int. J. Environ. Sci. Technol. 2019, 16, 1159–1170. [Google Scholar] [CrossRef]
- Phommixay, S.; Doumbia, M.L.; Lupien St-Pierre, D. Review on the cost optimization of microgrids via particle swarm optimization. Int. J. Energy Environ. Eng. 2020, 11, 73–89. [Google Scholar] [CrossRef]
- Darwish, A.; Ezzat, D.; Hassanien, A.E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol. Comput. 2020, 52, 100616. [Google Scholar] [CrossRef]
- Yousri, D.; Thanikanti, S.B.; Allam, D.; Ramachandaramurthy, V.K.; Eteiba, M.B. Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters. Energy 2020, 195, 116979. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, B.; Zhang, M. Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans. Knowl. Discov. Data (TKDD) 2019, 13, 50. [Google Scholar] [CrossRef]
- Fu, H.; Li, Z.; Liu, Z.; Wang, Z. Research on big data digging of hot topics about recycled water use on micro-blog based on particle swarm optimization. Sustainability 2018, 10, 2488. [Google Scholar] [CrossRef]
- Dahmani, S.; Yebdri, D. Hybrid algorithm of particle swarm optimization and grey wolf optimizer for reservoir operation management. Water Resour. Manag. 2020, 34, 4545–4560. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Umar, M.; Shoaib, M. Neuro-swarm intelligent computing to solve the second-order singular functional differential model. Eur. Phys. J. Plus 2020, 135, 474. [Google Scholar] [CrossRef]
- Chen, H.; Fan, D.L.; Fang, L.; Huang, W.; Huang, J.; Cao, C.; Yang, L.; He, Y.; Zeng, L. Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2058012. [Google Scholar] [CrossRef]
- Hu, H.; Im, J.; Lin, J.; Lütkenhaus, N.; Wolkowicz, H. Robust interior point method for quantum key distribution rate computation. Quantum 2022, 6, 792. [Google Scholar] [CrossRef]
- Ohmori, S.; Yoshimoto, K. A primal-dual interior-point method for facility layout problem with relative-positioning constraints. Algorithms 2021, 14, 60. [Google Scholar] [CrossRef]
- Dahl, J.; Andersen, E.D. A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization. Math. Program. 2022, 194, 341–370. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Kamal, A.; Guirao, J.L.; Le, D.N.; Saeed, T.; Salama, M. Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system. Math. Biosci. Eng. 2021, 18, 5285–5308. [Google Scholar] [CrossRef] [PubMed]
- Sadat, S.A.; Kim, K. September. Numerical performance of different formulations for alternating current optimal power flow. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Online, 26–30 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Gençoğlu, M.T.; Agarwal, P. Use of quantum differential equations in sonic processes. Appl. Math. Nonlinear Sci. 2021, 6, 21–28. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H.; Sulaiman, T.A. New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 2019, 4, 129–138. [Google Scholar] [CrossRef]
- Rahaman, H.; Hasan, M.K.; Ali, A.; Alam, M.S. Implicit methods for numerical solution of singular initial value problems. Appl. Math. Nonlinear Sci. 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Xie, T.; Liu, R.; Wei, Z. Improvement of the Fast Clustering Algorithm Improved by-Means in the Big Data. Appl. Math. Nonlinear Sci. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Aghili, A. Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Appl. Math. Nonlinear Sci. 2021, 6, 9–20. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Deniz, E.; Yüksel, E. On some integral inequalities via conformable fractional integrals. Appl. Math. Nonlinear Sci. 2021, 6, 489–498. [Google Scholar] [CrossRef]
- Durur, H.; Yokuş, A. Exact solutions of (2 + 1)-Ablowitz-Kaup-Newell-Segur equation. Appl. Math. Nonlinear Sci. 2021, 6, 381–386. [Google Scholar] [CrossRef]
- Ren, L.; Huang, W.; Kodakkadan, Y.; Lakys, Y. Recognition of Electrical Control System of Flexible Manipulator Based on Transfer Function Estimation Method. Appl. Math. Nonlinear Sci. 2021; ahead of print. [Google Scholar] [CrossRef]
- Chen, Q.; Baskonus, H.M.; Gao, W. Ilhan Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy. Alex. Eng. J. 2022, 61, 7843–7851. [Google Scholar] [CrossRef]
- Nisar, K.S.; Logeswari, K.; Vijayaraj, V.; Baskonus, H.M. Ravichandran Fractional order Modeling the Gemini virus in Capsicum annuum with optimal control. Fractal Fract. 2022, 6, 61. [Google Scholar] [CrossRef]
- Pokle, S.; Deshpande, R.; Paraskar, S.; Sinha, S.; Lalwani, Y.; Thakre, P.N. Performance analysis of NOMA in Rayleigh and Nakagami Fading channel. 3c TIC Cuad. De Desarro. Apl. A Las TIC 2022, 11, 183–193. [Google Scholar]
- Dharmik, R.C.; Chavhan, S.; Sathe, S.R. Deep Learning based missing object Detection and Person Identification: An application for Smart CCTV. 3c Tecnol. Glosas De Innovación Apl. A La Pyme 2022, 11, 51–57. [Google Scholar] [CrossRef]
- Barapatre, P.; Ingolikar, Y.; Desai, P.; Jajoo, P.; Thakre, P. A secured architecture for iot-based healthcare system. 3c Empresa Investig. Y Pensam. Crítico 2022, 11, 222–230. [Google Scholar] [CrossRef]
- Roshni, K.S.; Musthafa, M.M.A. Problems of online mathematics teaching and learning during the pandemic: A reverberation in to the perception of prospective teachers. 3c Empresa Investig. Y Pensam. Crítico 2022, 11, 153–162. [Google Scholar]
Minimum | M × 10 an | M × 10 Dian | Maximum | SD | S.I.R | |
---|---|---|---|---|---|---|
0 | 1.4527 × 10−8 | 1.1993 × 10−3 | 1.9190 × 10−6 | 3.5750 × 10−2 | 6.5257 × 10−3 | 1.2439 × 10−6 |
0.05 | 2.0419 × 10−8 | 1.1502 × 10−3 | 1.9322 × 10−6 | 3.4274 × 10−2 | 6.2561 × 10−3 | 1.2728 × 10−6 |
0.1 | 3.8890 × 10−9 | 1.1002 × 10−3 | 1.9125 × 10−6 | 3.2774 × 10−2 | 5.9823 × 10−3 | 1.3728 × 10−6 |
0.15 | 2.8178 × 10−8 | 1.0487 × 10−3 | 1.8718 × 10−6 | 3.1235 × 10−2 | 5.7013 × 10−3 | 1.4261 × 10−6 |
0.2 | 1.9187 × 10−8 | 9.9533 × 10−4 | 1.6947 × 10−6 | 2.9648 × 10−2 | 5.4116 × 10−3 | 1.5783 × 10−6 |
0.25 | 1.2690 × 10−9 | 9.4028 × 10−4 | 1.4543 × 10−6 | 2.8014 × 10−2 | 5.1134 × 10−3 | 1.6929 × 10−6 |
0.3 | 2.6290 × 10−8 | 8.8380 × 10−4 | 1.2071 × 10−6 | 2.6340 × 10−2 | 4.8079 × 10−3 | 1.4238 × 10−6 |
0.35 | 5.6202 × 10−8 | 8.2619 × 10−4 | 9.0459 × 10−7 | 2.4632 × 10−2 | 4.4963 × 10−3 | 1.2307 × 10−6 |
0.4 | 3.9326 × 10−8 | 7.6774 × 10−4 | 6.3965 × 10−7 | 2.2898 × 10−2 | 4.1798 × 10−3 | 1.0408 × 10−6 |
0.45 | 6.7536 × 10−8 | 7.0861 × 10−4 | 5.3210 × 10−7 | 2.1140 × 10−2 | 3.8588 × 10−3 | 8.1470 × 10−7 |
0.5 | 8.6172 × 10−8 | 6.4879 × 10−4 | 4.1044 × 10−7 | 1.9358 × 10−2 | 3.5335 × 10−3 | 8.0040 × 10−7 |
0.55 | 1.2342 × 10−7 | 5.8831 × 10−4 | 5.0963 × 10−7 | 1.7549 × 10−2 | 3.2034 × 10−3 | 5.3053 × 10−7 |
0.6 | 7.3231 × 10−8 | 5.2692 × 10−4 | 5.6119 × 10−7 | 1.5710 × 10−2 | 2.8676 × 10−3 | 5.8202 × 10−7 |
0.65 | 1.1715 × 10−7 | 4.6448 × 10−4 | 7.2612 × 10−7 | 1.3833 × 10−2 | 2.5250 × 10−3 | 6.6468 × 10−7 |
0.7 | 1.0742 × 10−7 | 4.0064 × 10−4 | 8.3261 × 10−7 | 1.1913 × 10−2 | 2.1744 × 10−3 | 8.7671 × 10−7 |
0.75 | 9.8509 × 10−8 | 3.3513 × 10−4 | 8.2785 × 10−7 | 9.9417 × 10−3 | 1.8144 × 10−3 | 8.2716 × 10−7 |
0.8 | 8.0672 × 10−8 | 2.6764 × 10−4 | 8.6879 × 10−7 | 7.9116 × 10−3 | 1.4438 × 10−3 | 8.2038 × 10−7 |
0.85 | 3.7794 × 10−8 | 1.9791 × 10−4 | 7.6176 × 10−7 | 5.8157 × 10−3 | 1.0611 × 10−3 | 8.2012 × 10−7 |
0.9 | 4.8047 × 10−8 | 1.2575 × 10−4 | 5.1176 × 10−7 | 3.6475 × 10−3 | 6.6533 × 10−4 | 6.6801 × 10−7 |
0.95 | 1.1990 × 10−8 | 5.0879 × 10−5 | 2.2844 × 10−7 | 1.4007 × 10−3 | 2.5545 × 10−4 | 9.9951 × 10−7 |
1 | 8.1075 × 10−8 | 3.5194 × 10−5 | 1.7002 × 10−7 | 9.3014 × 10−4 | 1.6981 × 10−4 | 1.0300 × 10−6 |
Minimum | M × 10 an | M × 10 Dian | Maximum | SD | S.I.R | |
---|---|---|---|---|---|---|
0 | 1.9638 × 10−8 | 1.4758 × 10−5 | 2.2665 × 10−6 | 2.7830 × 10−4 | 5.0733 × 10−5 | 2.2574 × 10−6 |
0.05 | 2.3255 × 10−8 | 1.4359 × 10−5 | 2.3012 × 10−6 | 2.6391 × 10−4 | 4.8142 × 10−5 | 2.2600 × 10−6 |
0.1 | 3.3426 × 10−8 | 1.3988 × 10−5 | 2.4301 × 10−6 | 2.4823 × 10−4 | 4.5328 × 10−5 | 2.3297 × 10−6 |
0.15 | 3.1179 × 10−8 | 1.3481 × 10−5 | 2.3980 × 10−6 | 2.3151 × 10−4 | 4.2342 × 10−5 | 2.3230 × 10−6 |
0.2 | 5.6182 × 10−9 | 1.2801 × 10−5 | 2.2211 × 10−6 | 2.1455 × 10−4 | 3.9319 × 10−5 | 2.3689 × 10−6 |
0.25 | 2.3805 × 10−8 | 1.1973 × 10−5 | 1.9095 × 10−6 | 1.9810 × 10−4 | 3.6381 × 10−5 | 2.0592 × 10−6 |
0.3 | 1.4197 × 10−8 | 1.1043 × 10−5 | 1.5541 × 10−6 | 1.8266 × 10−4 | 3.3609 × 10−5 | 2.1100 × 10−6 |
0.35 | 2.3342 × 10−9 | 1.0096 × 10−5 | 1.3575 × 10−6 | 1.6841 × 10−4 | 3.1025 × 10−5 | 2.0331 × 10−6 |
0.4 | 1.9974 × 10−8 | 9.1717 × 10−6 | 1.0868 × 10−6 | 1.5526 × 10−4 | 2.8626 × 10−5 | 1.8203 × 10−6 |
0.45 | 8.9137 × 10−9 | 8.2857 × 10−6 | 1.1243 × 10−6 | 1.4296 × 10−4 | 2.6388 × 10−5 | 1.5645 × 10−6 |
0.5 | 5.4568 × 10−9 | 7.4630 × 10−6 | 8.7409 × 10−7 | 1.3112 × 10−4 | 2.4253 × 10−5 | 1.3701 × 10−6 |
0.55 | 1.8057 × 10−8 | 6.7222 × 10−6 | 6.9428 × 10−7 | 1.1931 × 10−4 | 2.2156 × 10−5 | 1.2701 × 10−6 |
0.6 | 4.9173 × 10−8 | 6.2622 × 10−6 | 6.2897 × 10−7 | 1.0713 × 10−4 | 1.9971 × 10−5 | 1.3442 × 10−6 |
0.65 | 4.0434 × 10−8 | 5.7940 × 10−6 | 6.0506 × 10−7 | 9.4260 × 10−5 | 1.7726 × 10−5 | 1.4266 × 10−6 |
0.7 | 2.3268 × 10−8 | 5.2882 × 10−6 | 5.0749 × 10−7 | 8.0491 × 10−5 | 1.5387 × 10−5 | 7.6547 × 10−7 |
0.75 | 3.1087 × 10−9 | 4.9108 × 10−6 | 7.8657 × 10−7 | 6.5769 × 10−5 | 1.2875 × 10−5 | 1.2075 × 10−6 |
0.8 | 3.5008 × 10−9 | 4.3955 × 10−6 | 7.2060 × 10−7 | 5.0222 × 10−5 | 1.0321 × 10−5 | 1.5987 × 10−6 |
0.85 | 1.0835 × 10−8 | 3.7330 × 10−6 | 6.4426 × 10−7 | 3.4182 × 10−5 | 7.8691 × 10−6 | 1.4233 × 10−6 |
0.9 | 1.6673 × 10−8 | 2.9877 × 10−6 | 5.0698 × 10−7 | 2.4524 × 10−5 | 5.8277 × 10−6 | 1.0828 × 10−6 |
0.95 | 1.2772 × 10−8 | 2.2740 × 10−6 | 4.2338 × 10−7 | 2.2550 × 10−5 | 4.7879 × 10−6 | 1.0993 × 10−6 |
1 | 1.8408 × 10−9 | 2.4009 × 10−6 | 4.5024 × 10−7 | 2.0584 × 10−5 | 4.8422 × 10−6 | 8.9874 × 10−7 |
Minimum | M × 10 an | M × 10 Dian | Maximum | SD | S.I.R | |
---|---|---|---|---|---|---|
0 | 1.2692 × 10−7 | 1.0850 × 10−5 | 3.5253 × 10−6 | 1.3120 × 10−4 | 2.4262 × 10−5 | 4.5906 × 10−6 |
0.05 | 8.0136 × 10−9 | 1.0724 × 10−5 | 3.6738 × 10−6 | 1.2795 × 10−4 | 2.3635 × 10−5 | 4.6424 × 10−6 |
0.1 | 8.3734 × 10−8 | 1.0465 × 10−5 | 3.7088 × 10−6 | 1.2305 × 10−4 | 2.2713 × 10−5 | 4.7483 × 10−6 |
0.15 | 5.5947 × 10−8 | 9.7839 × 10−6 | 3.3621 × 10−6 | 1.1363 × 10−4 | 2.1035 × 10−5 | 4.1961 × 10−6 |
0.2 | 1.7855 × 10−8 | 8.6888 × 10−6 | 2.8874 × 10−6 | 9.9654 × 10−5 | 1.8657 × 10−5 | 3.0460 × 10−6 |
0.25 | 2.7752 × 10−8 | 7.6144 × 10−6 | 2.7272 × 10−6 | 8.2601 × 10−5 | 1.5766 × 10−5 | 2.6415 × 10−6 |
0.3 | 6.6981 × 10−8 | 6.5909 × 10−6 | 2.1657 × 10−6 | 6.4539 × 10−5 | 1.2858 × 10−5 | 3.1148 × 10−6 |
0.35 | 8.3396 × 10−8 | 5.7635 × 10−6 | 2.1566 × 10−6 | 4.7516 × 10−5 | 1.0340 × 10−5 | 2.7891 × 10−6 |
0.4 | 1.2963 × 10−7 | 5.0440 × 10−6 | 1.6800 × 10−6 | 3.3704 × 10−5 | 8.5866 × 10−6 | 2.0396 × 10−6 |
0.45 | 5.2079 × 10−8 | 4.4612 × 10−6 | 1.4913 × 10−6 | 3.3523 × 10−5 | 7.6228 × 10−6 | 1.4828 × 10−6 |
0.5 | 9.3220 × 10−8 | 4.1111 × 10−6 | 1.5086 × 10−6 | 3.3048 × 10−5 | 7.1512 × 10−6 | 1.0982 × 10−6 |
0.55 | 1.7663 × 10−7 | 4.0022 × 10−6 | 1.4248 × 10−6 | 3.2201 × 10−5 | 6.8970 × 10−6 | 9.8590 × 10−7 |
0.6 | 9.3265 × 10−8 | 4.0334 × 10−6 | 1.4263 × 10−6 | 3.0951 × 10−5 | 6.7883 × 10−6 | 9.4095 × 10−7 |
0.65 | 2.9198 × 10−8 | 4.1475 × 10−6 | 1.5320 × 10−6 | 2.9326 × 10−5 | 6.8164 × 10−6 | 1.0183 × 10−6 |
0.7 | 1.2750 × 10−8 | 4.3450 × 10−6 | 1.2376 × 10−6 | 2.7398 × 10−5 | 6.8970 × 10−6 | 1.2565 × 10−6 |
0.75 | 2.6347 × 10−8 | 4.5013 × 10−6 | 1.4200 × 10−6 | 2.5276 × 10−5 | 6.9542 × 10−6 | 1.6041 × 10−6 |
0.8 | 2.0621 × 10−8 | 4.5455 × 10−6 | 1.3296 × 10−6 | 2.5618 × 10−5 | 6.9195 × 10−6 | 2.0174 × 10−6 |
0.85 | 1.7131 × 10−8 | 4.4486 × 10−6 | 1.3861 × 10−6 | 2.8828 × 10−5 | 6.9066 × 10−6 | 2.4376 × 10−6 |
0.9 | 6.6650 × 10−10 | 4.3191 × 10−6 | 1.3299 × 10−6 | 3.2659 × 10−5 | 7.2203 × 10−6 | 1.8780 × 10−6 |
0.95 | 2.8647 × 10−9 | 4.7253 × 10−6 | 1.2215 × 10−6 | 3.7108 × 10−5 | 7.8977 × 10−6 | 3.7568 × 10−6 |
1 | 7.1753 × 10−10 | 5.1313 × 10−6 | 7.7154 × 10−7 | 4.1628 × 10−5 | 9.0769 × 10−6 | 3.8721 × 10−6 |
Case | Iterations | Implemented Time | Fun. Counts | |||
---|---|---|---|---|---|---|
Minimum | SD | Minimum | SD | Minimum | SD | |
1 | 15.45159273 | 2.390238385 | 395.0666667 | 54.40710738 | 24,763.46667 | 3326.960576 |
2 | 15.77388434 | 0.944774262 | 405 | 0 | 25,409.63333 | 94.49593435 |
3 | 15.54187202 | 0.691946317 | 405 | 0 | 25,400.93333 | 74.26742607 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, Z.; Saeed, T.; Guirao, J.L.G.; Sánchez, J.M.; Valverde, A. A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods. Axioms 2023, 12, 456. https://doi.org/10.3390/axioms12050456
Sabir Z, Saeed T, Guirao JLG, Sánchez JM, Valverde A. A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods. Axioms. 2023; 12(5):456. https://doi.org/10.3390/axioms12050456
Chicago/Turabian StyleSabir, Zulqurnain, Tareq Saeed, Juan L. G. Guirao, Juan M. Sánchez, and Adrián Valverde. 2023. "A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods" Axioms 12, no. 5: 456. https://doi.org/10.3390/axioms12050456
APA StyleSabir, Z., Saeed, T., Guirao, J. L. G., Sánchez, J. M., & Valverde, A. (2023). A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods. Axioms, 12(5), 456. https://doi.org/10.3390/axioms12050456