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Abstract: The main aim of this contribution is to construct a numerical scheme for solving stochastic
time-dependent partial differential equations (PDEs). This has the advantage of solving problems
with positive solutions. The scheme provides conditions for obtaining positive solutions, which
the existing Euler–Maruyama method cannot do. In addition, it is more accurate than the existing
stochastic non-standard finite difference (NSFD) method. Theoretically, the suggested scheme is more
accurate than the current NSFD method, and its stability and consistency analysis are also shown. The
scheme is applied to the linear scalar stochastic time-dependent parabolic equation and the nonlinear
auto-catalytic Brusselator model. The deficiency of the NSFD in terms of accuracy is also shown
by providing different graphs. Many observable occurrences in the physical world can be traced
back to certain chemical concentrations. Examining and understanding the inter-diffusion between
chemical concentrations is important, especially when they coincide. The Brusselator model is the
gold standard for describing the relationship between chemical concentrations and other variables in
chemical systems. A computational code for the proposed model scheme may be made available to
readers upon request for convenience.

Keywords: stochastic numerical scheme; stability; convergence; auto-catalytic Brusselator model;
non-standard finite difference method

MSC: 35R60; 60H15; 65C99

1. Introduction

Since the beginning of life, humankind has faced natural calamities such as tsunamis,
earthquakes, floods, drought, and pandemics. Diseases such as Ebola, HIV, Dengue virus,
malaria, tuberculosis, influenza, diarrhea, hepatitis C, hepatitis B, and rubella strike without
warning and have no set time or location. These diseases are not only confined to humans
but also influence animals, which sometimes become the root cause of specific diseases.
Therefore, economic recession, poor health conditions, and death toll have dramatically
risen, resulting in uncertainty for the future generation.

The autocatalytic glycolysis model, the Gray–Scott reaction–diffusion system, and
the Brusselator reaction–diffusion model are all examples of important reaction–diffusion
models used to research biological and chemical processes. Prigogine was the first to
propose the Brusselator reaction–diffusion model in 1970 [1], a model of an autocatalytic
process that can predict oscillations in a chemical reaction. This reaction model solves
several physical problems, such as the formation of the ozone layer from atomic oxygen
through triple collision and enzymatic actions. It is a nonlinear model that precisely
defines a physical system but cannot solve the problems of a physical system due to non-
linearity. Solving the problems of physical systems possessing nonlinear behavior has been
a matter of great concern for the past several decades. It is not simple to draw the solution;
sometimes, it does not even exist. Therefore, scientists use different techniques to solve
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a differential equation system [2–10]. Physical systems have consisted of factors such as
pressure, population size, chemical concentrations, and density, which are highly dependent
on time variables, and consequently require extreme attention regarding the structure
preserving scheme, boundedness, and convergence towards the stable equilibrium point.

In today’s world, stochastic partial differential equations and the numerical solutions
to these equations have attracted the attention of several authors seeking a more in-depth
understanding of these topics. Tessitoe [11] contrived the general conditions of the adapted
solution for linear and infinite dimensions stochastic differential equations. This was
a significant discovery [12], primarily because it investigated the classical form of the
stochastic equation to determine the probability of finite-time blowup of positive solutions
and the existence of non-trivial positive global solutions by implying homogenous Dirichlet
boundary conditions. This was carried out to determine whether there are non-trivial
positive global solutions [13]. The stochastic partial differential equation (SPDE) and Holder
continuous coefficient, formed from steady colored noise, were also studied. A backward
doubly stochastic differential equation (SDE) is used to gain path-wise uniqueness and
carefully manages the Laplacian. However, the answer can be found by considering the
weak limit of a sequence of the SDE system variables. This sequence can be generated by
exchanging the discrete version of the Laplacian operator found in the SPDE. Altmeyer
et al. modeled cell repolarization using a stochastic version of the Meinhardt equation.
They demonstrated the presence of moderate SPDE solutions and the effect of driving noise
processes on the pattern development of the solution [14]. Details of the solution can be
seen in references [15–18].

The SPDE’s numerical approximation is an arduous task. On the contrary, Gyorgy et al. [19]
came up with the lattice approximations of stochastic PDEs of the elliptic type. They
consider white noise on a bounded domain in Rd, for d = 1,2,3, and obtain the rate of
convergence of the approximations. Using explicit and implicit finite difference methods,
ref. [20] analyzed the approximation of solutions to Itô-type stochastic partial differential
equations and demonstrated their mean-square consistency and stability. Yasin et al. [6] of-
fered a numerical solution to the stochastic FitzHugh–Nagumo model, implying a forward
Euler scheme and revealing the mean-square consistency. Using the von Neumann method,
this research shows that the scheme is stable. Yasin et al. [7] examined the consistency and
stability of the forward Euler approach for stochastic nonlinear advection–diffusion mod-
els. White-noise-driven linear elliptic and parabolic spectral power distribution functions
are approximated numerically using finite element and difference approaches, which are
presented, examined, and tested in [21]. Difference approximations of the integral and
weak formulations of the SPDEs and finite element methods can also be found in [22–29].

Numerical solutions have a proper scheme with consistency, stability, and convergence
properties. For the solution of semilinear SPDs [30], Kruse presents the error analysis of the
Milstein–Galerkin finite element technique. For Itô-type stochastic hyperbolic differential
equations, Roth [31] compared the difference and the Wong-Zakai technique. The schemes’
consistency, stability, and convergence supported the study. Additionally, ref. [32] obtained
peculiar results on the numerical solution of the stochastic advection–diffusion equation of
Itô type with stochastic implicit difference schemes and analyses of stability, convergence,
and consistency.

Li et al. [33] solved the numerical approximation of McKean–Vlasov stochastic differen-
tial equations using the Euler–Maruyama technique (SDEs). They were experienced using
Lipchitz conditions to prove the unique existence and strong convergence. Hu et al. [34]
found the Euler–Maruyama scheme’s convergence rate for a class of SDEs, which offers
the asymptotic stability of the underlying SDEs. Furthermore, El-Metwally et al. [35]
examined the computational approximations of Nicholson’s blowfly equation using the
Euler–Maruyama technique and the Lyapunov functional technique for the stability of
the zero solution of stochastic delay differential equations by enhancing the study’s value.
Details of study based on the spread of diseases and mathematical simulation, along with
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a comprehensive description of vaccination and fractional approaches, can be seen in the
references [36–40].

Euler–Maruyama is one of the numerical methods that can be chosen to find the
solution of different stochastic models. This method is first-order accurate for differential
equations having a constant coefficient of the Weiner process term. For the stochastic
equations, the integral of the Weiner process term is approximated by the standard normal
distribution with a mean of zero. The Euler–Maruyama approach does not make it easier
to find positive solutions to epidemic disease models because the solutions of some of
these models are required to be positive. One more numerical method has been considered
in the literature for finding solutions to epidemic disease models, and a comparison is
also made with this scheme. However, the adopted method does not produce an accurate
solution for those cases in which the NSFD scheme is inconsistent. The constructed scheme
in this contribution can provide condition(s) for obtaining a positive solution. It does
not have an inaccuracy issue and it is conditionally stable. In addition, it is an explicit
scheme. One of the features of explicit schemes is that they do not require any other
iterative method to find the solution. The considered auto-catalytic Brusselator model is
solved using the constructed explicit scheme, but an extra iterative procedure is adopted
for handling Neumann boundary conditions. What follows is the key contribution.

i Take into account the stochastic auto-catalytic Brusselator model subject to time-
varying white noise.

ii The underlying model’s smoothness properties have been determined.
iii Examine the precision and reliability of such NSFD techniques for numerically

solving the reaction–diffusion Brusselator model over time. Our findings have
immediate implications for models in other fields, including ecology and finance,
where they simulate the behavior of predators and prey and the fluctuations of
financial markets, respectively.

iv Keeping the solution’s positivity in mind, provide an alternate method that ensures
first-order precision in time and second-order accuracy in space.

v Show that the proposed strategy is consistent and stable.
vi Show the efficacy of the current NSFD technique and our suggested system using

two simulated cases.

2. Smoothness Properties of the Stochastic Auto-Catalytic Brusselator Model

The existence of the fixed point operator v is established using the Schauder fix point
theorem, which is as follows.

Theorem 1 [41]. Suppose Bis a convex, bounded, and closed subset in a Banach space L2
((0, t) × Ω), and let U be a continuous function mapping the ball B into itself. In addition,
if the image of the ball under transformation U is pre-compact, then U has at least one fixed point.

Proof. In [42], some analysis has been given for the stochastic auto-catalytic Brusselator
model. Here, the analysis will be given for the following equation:

du = (d1uxx + f (u))dt + σu
.

W (1)

where W denotes the Wiener process (standard Brownian motion).
Let v be twice continuously differentiable in the sense of distributional with respect to

the L2-norm, and Equation (1) can be changed into the Volterra integral equation as follows:

v = v◦ +
t∫

0

{(d1uxx + f (u))dτ + σudW} (2)
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which can be re-written in operator form as

T = v◦(x) +
t∫

0

{(d1uxx + f (u))dτ + σudW} (3)

To prove the claim that there must exist a fixed point operator v, the following proce-
dure is applied.

For doing so, Theorem 1 will be utilized. According to Theorem 1, a function space
will be chosen that will be a closed, bounded, and convex subset in the function space. For
small random variations, dW, a fixed point operator, will be integrated. Now the space
L2[0, ζ], ζ = |t− 0| will be adopted for best perturbation. Next, a ball Br(v◦) is designed,
which is closed, bounded, and convex, and it has a center at the given initial condition as
the L2 function.

Br(v◦) = {vεL2[0, ζ], ‖v− v◦‖L2[0,ζ] ≤ r}

This implies
∥∥∥v|L2[0,ζ]

∥∥∥ ≤ r + v0

This convex closed and bounded subset lies in infinite dimensional space, so it is not
compact. For applying Theorem 1, two conditions will be adopted:

(i) T : Br(v◦)→ Br(v◦) .
(ii) T(Br(v◦)) is pre-compact.

Now ‖T − v◦‖L2[0,ζ] =
∥∥∥∫ t

0 (d1vxx + f (v)) + vσdW
∥∥∥

‖T − v◦‖L2[0,ζ] ≤
t∫

0

[
d1‖vxx‖L2[0,ζ] + f

(
‖v‖L2[0,ζ]

)]
dτ+ |σ|

∫ t

0
‖v‖L2[0,ζ]dW

‖T − v◦‖L2[0,ζ] ≤
t∫

0

[d1k1 + f (r + c1)]dτ + |σ|(r+c1)

t∫
0

dW

‖T − v◦‖L2[0,ζ] ≤ (d1k1 + f (r + c1))ζ + |σ|(r + c1)(W(t)−W(0)) (4)

Since the Winner process is the finite random number, the following is retrieved:

‖T − v◦‖L2[0,ζ] ≤ (d1k1 + f (r + c1))ζ + |σ|(r+c1)βζ

For self-mapping

(d1k1 + f (r + c1))ζ + |σ|(r + c1)βζ ≤ r

This implies that ζ ≤ r
d1k1+ f (r+c1)+|σ|(r+c1)β

If the solution to the considered problem exists, then it is continuous in the interval[
0,

r
d1k1 + f (rtc1) + |σ|(rtc1)β

]
To prove that T is the pre-compact, further procedure will be adopted.

∥∥∥Ti(t)− Ti

(
t*
)∥∥∥

L2[0,ζ]
≤

t*∫
t

(
d1‖vxx‖L2[0,ζ] + f

(
‖v‖L2[0,ζ]

))
dτ + |σ|‖vi‖L2[0,ζ]

t*∫
t

dW

∥∥∥Ti(t)− Ti

(
t*
)∥∥∥

L2[0,ζ]
≤
[
d1‖vxx‖L2[0,ζ] + f

(
‖v‖L2[0,ζ]

)](
t* − t

)
+ |σ|‖vi‖L2[0,ζ]

(
W
(

t*
)
−W(t)

)
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∥∥∥Ti(t)− Ti

(
t*
)∥∥∥

L2[0,ζ]
≤
[
d1‖vxx‖L2[0,ζ] + f

(
‖v‖L2[0,ζ]

)](
t* − t

)
+ |σ|‖vi‖L2[0,ζ]β(t

* − t) (5)

If t→ t* , then Ti(t)→ Ti(t*) . Therefore, Ti has a uniformly convergent subsequence

Tin of Ti. So, T(Br(v◦)) is pre-compact. Thus, there must exist a fixed point function
∼
Ti of

Ti, which is also the solution of Equation (1). �

3. Stochastic Numerical Scheme

For proposing an explicit numerical scheme for solving the stochastic parabolic equa-
tion, consider the following linear stochastic equation:

du = ∂xxudt + σ1dW (6)

where W denotes the Wiener process (standard Brownian motion).
Since the scheme proposes finding the solution to the epidemic model with the condi-

tion of obtaining the positive solution, the scheme can solve any time-dependent stochastic
partial differential equation. It provides a positive solution under some constraints. For
proposing a scheme, Equation (6) is semi-discretized as follows:

un+1
i = un

i + a
[

∂xxu|ni dt + σ1

(
Wn+1 −Wn

)]
(7)

where “a” is a parameter determined later.
The second-order spatial derivative in Equation (7) is discretized by employing second-

order central difference approximation as follows:

un+1
i = un

i + a


(

un
i+1 − 2un+1

i + un
i−1

)
(∆x)2 dt + σ1∆W

 (8)

where ∆x is a spatial step size. For finding “a”, we consider the Taylor series for un+1
i as

un+1
i = un

i + du|ni + O
(
(dt)2

)
(9)

Substituting Equation (9) into Equation (8) yields

un
i + dun

i = un
i + a

[(
un

i+1 + un
i−1
)

(∆x)2 dt− 2
dt

(∆x)2 (u
n
i + dun

i ) + σ1∆W

]
(10)

In view of Equation (6), Equation (10) can be re-written as

un
i + dun

i = un
i + a

[
dun

i − 2
dt

(∆x)2 dun
i

]
(11)

By comparing coefficients of un
i and dun

i on both sides of Equation (11), we obtain

1 = a

(
1− 2

dt

(∆x)2

)
(12)

This implies

a =
1

1− 2 dt
(∆x)2

(13)
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Therefore, a stochastic numerical scheme for Equation (6) is proposed as shown:

un+1
i = un

i +
1

1− 2 dt
(∆x)2


(

un
i+1 − 2un+1

i + un
i−1

)
(∆x)2 dt + σ1∆W

 (14)

4. Existing Stochastic NSFD

In the literature, a numerical method used for solving stochastic epidemic models
exists. This scheme is named a non-standard finite difference method (NSFD). This scheme
was unconditionally stable and preserved positivity. However, it has some shortcomings
in finding the solution to stochastic epidemic models. At this stage of research work, its
deficiency is theoretically proved when applied to Equation (6).

Therefore, employing stochastic NSFD to Equation (6) yields the following:

un+1
i = un

i + a


(

un
i+1 − 2un+1

i + un
i−1

)
(∆x)2 dt + σ∆W

 (15)

Equation (15) provides a positive solution but lacks order of accuracy. So, to check
its accuracy, substituting first-order Taylor series expansion (9) into Equation (15) and
comparing coefficients dun

i on both sides of the resulting equations yields

1 = 1− 2
dt

(∆x)2 (16)

Equation (16) shows that the coefficients of dun
i for Equation (15) does not balance on

both sides, so stochastic NSFD is not the first order for Equation (6).

5. Stability Analysis of the Proposed Scheme

The stability conditions are found for the parabolic equation of the type

du = ∂xxudt + σudW (17)

The proposed scheme for discretizing Equation (17) is expressed as follows:

un+1
i = un

i +
1

1− 2 dt
(∆x)2


(

un
i+1 − 2un+1

i + un
i−1

)
(∆x)2 dt + σun

i

(
Wn+1 −Wn

) (18)

By employing von Neumann stability analysis to difference Equation (18), the follow-
ing transformations are considered

un+1
i = En+1eiIθ , un

i±1 = Ene(i±1)Iθ , un
i = EneiIθ (19)

where I =
√
−1.

Substituting transformations (19) into Equation (18) yields

En+1eiIθ = EneiIθ +
1

1− 2 dt
(∆x)2


(

Ene(i+1)Iθ − 2En+1eiIθ + Ene(i−1)Iθ
)

(∆x)2 dt + σEneiIθ
(

Wn+1 −Wn
) (20)

Dividing both sides of Equation (20) by eiIθ yields

En+1 = En +
1

1− 2 dt
(∆x)2

[(
EneIθ − 2En+1 + Ene−Iθ

)
(∆x)2 dt + σEn

(
Wn+1 −Wn

)]
(21)



Axioms 2023, 12, 460 7 of 19

In view of the trigonometric formula for eIθ , we re-write Equation (21) as follows:

En+1 = En +
1

1− 2 dt
(∆x)2

[(
2cosθEn − 2En+1)

(∆x)2 dt + σEn
(

Wn+1 −Wn
)]

(22)

Re-write Equation (22) as

En+1 = En
(

1− 2
−
d
)
+

dt(2cosθEn)

(∆x)2 + σ
(

Wn+1 −Wn
)

En (23)

where
−
d = dt

(∆x)2 .

By using the independent state of the Weiner process, the amplification factor is
expressed as

E
∣∣∣G2
∣∣∣ ≤ ∣∣∣∣1− 2

−
d + 2

−
dcosθ

∣∣∣∣2 + σ2dt (24)

Let cosθ = −1, so the inequality (24) can be given as

E
∣∣∣G2
∣∣∣ ≤ ∣∣∣∣1− 4

−
d
∣∣∣∣2 + σ2dt (25)

Inequality (25) can be used to check the stability condition of the proposed scheme for
Equation (17).

5.1. Consistency of the Proposed Stochastic Scheme

The consistency of the proposed scheme is checked by employing the Taylor series
analysis to difference Equation (9). The Taylor series expansion for un+1

i has been given
earlier in this research work. The Taylor series expansion for un

i+1 + un
i−1 is given as

un
i+1 + un

i−1 = 2un
i + (∆x)2∂xxun

i + O
(
(∆x)4

)
(26)

Now, substituting Taylor series expansion for un+1
i and un

i+1 + un
i−1 from Equations (9) and (26)

into Equation (18) yields

un
i + dun

i = un
i +

1

1− 2
−
d

[(
∂xxun

i dt− 2
−
ddun

i

)
+ σdW

]
(27)

where
−
d = dt

(∆x)2 .

Re-write Equation (27) as

dun
i = ∂xxun

i dt + σdW + O
(

∆t, (∆x)2
)

(28)

where dun
i = ∆t ∂u

∂t

∣∣∣n
i
.

Employing ∆t→ 0 and ∆x→ 0 to Equation (28) leads to the original Equation (6)
when evaluated at grid point “i” and time level “n”. Therefore, the proposed scheme is con-
sistent without any restriction on step size. Similarly, the consistency of the proposed scheme
can be checked with any linear time-dependent stochastic partial differential equations.

5.2. Consistency of Stochastic NSFD

It has been shown earlier in this research work that stochastic NSFD is not even a first-
order accurate for those time-dependent stochastic equations with a constant coefficient of
Brownian motion term. This section provides proof for the inconsistency of the existing
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stochastic NSFD scheme for partial differential equations. This inconsistency can be tackled
with some assumptions or conditions. To check the consistency of the proposed scheme,
consider Equation (20), and substitute Equations (14) and (31) into Equation (20) to yield

un
i + dun

i = un
i + ∂xxun

i dt− 2
−
ddun

i + σdW + O
(

∆t, (∆x)2
)

(29)

Re-write Equation (25) as

dun
i =

1

1 + 2
−
d

[
∂xxun

i dt + σdW + O
(

∆t, (∆x)2
)]

(30)

If ∆t→ 0, ∆x → 0 are applied to Equation (30), then the original Equation (6) will not

be retained because
−
d will approach zero if some restriction is imposed. Therefore, existing

NSFD is not consistent, or it is conditionally consistent.

5.3. Convergence of Stochastic Proposed Scheme

We also find the condition of convergence when the proposed scheme is applied to the
stochastic linear parabolic equations system. For doing so, consider the system of stochastic
parabolic equations as follows:

dv = A∂xxvdt + BdW (31)

where v and B are vectors and A is a matrix. For constructing a proposed scheme for
vector–matrix Equation (31), consider a difference equation of the form

vn+1
i = vn

i + b

A
(

vn
i+1 − 2vn+1

i + vn
i−1

)
(∆x)2 dt + B∆W

 (32)

where b is an unknown parameter. Applying a Taylor series for Equation (32) results in

vn
i + dvn

i = vn
i + b

[
A

(
vn

i+1 + vn
i−1
)

(∆x)2 dt− 2
vn

i

(∆x)2 A− 2dt

(∆x)2 Advn
i + B∆W

]
(33)

Re-write Equation (33) as

dvn
i = b

[
Advn

i −
2dt

(∆x)2 Advn
i

]
(34)

By comparing coefficients of dvn
i on both sides of Equation (34), we obtained

I.D = b
(

I.D− 2A
−
d
)

(35)

This implies b =

(
I.D− 2A

−
d
)−1

The difference equation for the discretization of Equation (31) is expressed as

vn+1
i = vn

i +

(
I.D− 2A

−
d
)−1

A

(
vn

i+1 − 2vn+1
i + vn

i−1

)
(∆x)2 dt + B∆W

 (36)

Theorem 2. The scheme (36) for the discretization of Equation (31) is conditionally convergent.
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Proof: Let the exact discretization for Equation (31) be

Vn+1
i = Vn

i +

(
I.D− 2A

−
d
)−1

A

(
Vn

i+1 − 2Vn+1
i + Vn

i−1

)
(∆x)2 dt + B∆W

 (37)

Subtracting Equation (37) from Equation (36) and letting en
i = vn

i − Vn
i results in

en+1
i = en

i +

(
I.D− 2A

−
d
)−1

A

(
en

i+1 − 2en+1
i + en

i−1

)
(∆x)2 dt

 (38)

Re-write Equation (38) as

en+1
i =

(
I.D + 2A

−
d
(

I.D− 2A
−
d
)−1

)−1[
en

i +

(
I.D− 2A

−
d
)−1

{
A

(
en

i+1 + en
i−1
)

(∆x)2 dt

}]
(39)

Applying ‖◦‖2 on both sides of Equation (39) and using triangle inequality of norm yields

en+1 ≤

∥∥∥∥∥∥
(

I.D + 2A
−
d
(

I.D− 2A
−
d
)−1

)−1
∥∥∥∥∥∥
[

en +

∥∥∥∥∥
(

I.D− 2
−
d A
)−1

∥∥∥∥∥‖A‖2en
−
d

]
(40)

Re-write inequality (40) as

en+1 ≤ µen + C
(

O
(

∆t, (∆x)2
))

(41)

where µ =

∥∥∥∥∥∥
(

I.D + 2A
−
d
(

I.D− 2A
−
d
)−1

)−1
∥∥∥∥∥∥
[∥∥∥∥∥
(

I.D− 2
−
d A
)−1

∥∥∥∥∥‖A‖2
−
d

]
. In addition,

inequality (41) contains the term that can be considered the remainder. So, it also depends
on the order of accuracy of the scheme.

Let n = 0 in (41) to yield

e1 ≤ µe0 + C
(

O
(

∆t, (∆x)2
))

(42)

Since the initial condition is exact, e0 = 0, and therefore inequality (42) is simplified to

e1 ≤ C
(

O
(

∆t, (∆x)2
))

(43)

Substituting n = 1 in inequality (41) yields

e2 ≤ µe1 + C
(

O
(

∆t, (∆x)2
))
≤ (1 + µ)C

(
O
(

∆t, (∆x)2
))

(44)

If this is continued, then for finite “m”, the following inequality can be obtained:

em ≤
(

1 + µ + . . . + µm−1
)

C
(

O
(

∆t, (∆x)2
))

=

(
1− µm

1− µ

)
C
(

O
(

∆t, (∆x)2
))

(45)

For large “m”, the series 1 + µ + ... + µm−1 + . . . becomes infinite geometric series that
converges if |µ| < 1. �
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6. Numerical Experiment

For testing the proposed scheme, two examples are considered: One is a scalar linear
stochastic differential equation, and the second problem is a nonlinear system of stochastic
partial differential equations.

Example 1. Consider the following stochastic parabolic equation:

du = ∂xxudt + sin(x)dt + σ
.

W (46)

subject to the following initial condition

u(0, x) = cos(x) (47)

and boundary conditions are given as

u(t, 0) = e−tand u(t, L) = −et (48)

Equations (46)–(48) are solved using the three different finite difference schemes. The
whole domain is divided into small portions for finite difference schemes, and time is
divided into a finite number of time levels. The step sizes in space and time depend on the
number of grid points and time levels. For this example, an additional iterative scheme
is not considered. The solution is found explicitly. For the next problem, an additional
iterative scheme will be adopted due to handling considered types of boundary conditions.
The scheme will require some convergence criteria to stop the iterative solution. One is the
Euler–Maruyama, the second is proposed, and the third is the non-standard finite differ-
ence method (NSFD). The NSFD has a disadvantage in accuracy but gives unconditional
stability. At the same time, the proposed scheme provides the first-order accuracy for
stochastic parabolic equations having a constant coefficient of Brownian motion term. The
NSFD may produce an accurate solution, but it consumes more time than the proposed one.
Figures 1 and 2 are drawn from the solution obtained by Equations (46)–(48) using three
schemes. The change in the Wiener process is approximated by the standard normal
distribution with a mean of 0 and a standard deviation of

√
∆t, where ∆t is the tem-

poral step size. The absolute error is calculated by finding the absolute difference be-
tween the proposed/NSFD and Euler–Maruyama (E.M) schemes. Contours plots and
surface plots are drawn. The difference between the proposed scheme and the Euler–
Maruyama scheme is less than the difference obtained by NSFD. The error between the
NSFD scheme and the Euler–Maruyama method will grow by choosing a small coefficient
of the Wiener process term. Figure 3 shows the deterministic and stochastic solutions of
Equations (46)–(48) obtained by three numerical schemes. From Figure 3, it can be observed
that the solution obtained by the proposed scheme is closer to the existing Euler–Maruyama
scheme, while the solution obtained by NSFD is a bit away from the solution obtained
by the Euler–Maruyama method. The comparison of the stochastic proposed scheme and
existing stochastic non-standard finite difference method is made by finding L2 error. The
second-order stochastic Runge–Kutta scheme is employed, and the norm for the differ-
ence between solutions obtained by the stochastic proposed/NSFD scheme and stochastic
second-order Runge–Kutta method is obtained. Table 1 shows the comparison of errors
from both schemes. The error obtained by the stochastic proposed scheme is less than that
obtained by the existing stochastic NSFD scheme.
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Figure 1. Surface plots for comparison of the proposed scheme with NSFD using Nx = 50,
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Figure 3. Comparison of three schemes using Nx = 50, Nt = 7000, σ = 0.7.

Table 1. List of L2 error using σ = 0.1, L (length o f domain) = 4, and t f ( f inal time) = 0.1.

Nx Nt
L2 Error

Stochastic Proposed Stochastic NSFD

25
150 0.0024 3.4370

300 0.0012 3.4520

50
150 0.0078 5.0020

300 0.0197 4.9376

Example 2 [42]. Consider the following reaction–diffusion Brusselator model:

du =
(

d1∂xxu + λ2 − (λ1 + 1)u + u2v
)

dt + σudW(t) (49)

dv =
(

d2∂xxv + λ1u− u2v
)

dt + σvdW(t) (50)

subject to the initial condition

u(0, x) = 0.5, v(0, x) = 1 + 5x (51)

and boundary conditions are given as

du(t, 0) = 0 = du(t, 1), dv(t, 0) = 0 = dv(t, 1) (52)
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where u and v represent the concentration of the first and second reactant species, re-
spectively; λ1 and λ2 denote constant concentration during the chemical process; σ is the
controlling parameter; and d1 and d2 are diffusion constants.

Equations (49)–(52) are solved by the proposed scheme, and the difference equations
are given as

un+1
i = un

i + a

[(
d1

un
i+1 − 2un+1

i + un
i−1

(∆x)2 + λ2 − (λ1 + 1)un+1
i + (un

i )
2vn

i

)
dt + σun

i ∆W

]
(53)

vn+1
i = vn

i + b

[(
d2

vn
i+1 − 2vn+1

i + vn
i−1

(∆x)2 + λ1un
i − (un

i )
2vn+1

i

)
dt + σvn

i ∆W

]
(54)

where a = dt
1−d1

dt
(∆x)2

−dt(λ1+1)
and b = dt

1−2d2
dt

(∆x)2
+dt(un

i )
2
vn

i

.

The convergence of the proposed scheme depends on the choice of numerical values of
parameters and step sizes in space and time. Since the constructed scheme is conditionally
stable, it requires suitable step sizes to converge to an accurate solution. However, it con-
verges faster than existing NSFD because it has an order of accuracy more than the existing
NSFD method. Since boundary conditions are Neumann-type, an iterative procedure is
also adopted. The iterative method requires an initial guess to find the solution at the next
iteration. The computational code finds the solution at each time level and each grid point.
Furthermore, the same value of the Weiner process is considered for all three schemes
for each value of solutions. So, in this manner, a fair comparison is made. The stability
region of the proposed and Euler–Maruyama scheme is the same. Still, the proposed
scheme has the advantage of providing a positive solution subject to the satisfaction of
some inequality. Therefore, the proposed scheme can be more preferred for finding positive
solutions to differential equations than the existing Euler–Maruyama scheme. One more
advantage of explicit schemes is that they do not require linearization. Therefore, better
accuracy might have been achieved when compared with implicit schemes. The positivity
of the obtained solution depends on the choice of unknown parameters found using Taylor
series expansions.

Figures 4–6 show the comparison of proposed and NSFD schemes in finding solutions
of Equations (46)–(52). From Figures 4–6, it can be seen that the proposed scheme produces a
smaller absolute error than one obtained by the existing NSFD scheme. Hence, the proposed
scheme performs better than the existing NSFD scheme in finding an accurate solution
using smaller grid points and time levels. The absolute error is calculated by finding
the absolute difference between the proposed/NSFD and the Euler–Maruyama method.
Figures 7–9 show the contour plots for solutions of Equations (46)–(52) with two values
of the controlling parameter, and Figure 10 shows the two-dimensional plot for solutions
of Equations (46)–(52). Algorithm 1 is also provided for solving stochastic differential
equations using MATLAB. This algorithm also shows how to tackle the stochastic term
or Brownian motion term in stochastic differential equations. This strategy is the same as
given for the existing Euler–Maruyama method to tackle the Brownian motion term.



Axioms 2023, 12, 460 14 of 19

Axioms 2023, 12, x FOR PEER REVIEW 13 of 19 
 

existing NSFD method. Since boundary conditions are Neumann-type, an iterative proce-
dure is also adopted. The iterative method requires an initial guess to find the solution at 
the next iteration. The computational code finds the solution at each time level and each 
grid point. Furthermore, the same value of the Weiner process is considered for all three 
schemes for each value of solutions. So, in this manner, a fair comparison is made. The 
stability region of the proposed and Euler–Maruyama scheme is the same. Still, the pro-
posed scheme has the advantage of providing a positive solution subject to the satisfaction 
of some inequality. Therefore, the proposed scheme can be more preferred for finding 
positive solutions to differential equations than the existing Euler–Maruyama scheme. 
One more advantage of explicit schemes is that they do not require linearization. There-
fore, better accuracy might have been achieved when compared with implicit schemes. 
The positivity of the obtained solution depends on the choice of unknown parameters 
found using Taylor series expansions. 

Figures 4–6 show the comparison of proposed and NSFD schemes in finding solu-
tions of Equations (46)–(52). From Figures 4–6, it can be seen that the proposed scheme 
produces a smaller absolute error than one obtained by the existing NSFD scheme. Hence, 
the proposed scheme performs better than the existing NSFD scheme in finding an accu-
rate solution using smaller grid points and time levels. The absolute error is calculated by 
finding the absolute difference between the proposed/NSFD and the Euler–Maruyama 
method. Figures 7–9 show the contour plots for solutions of Equations (46)–(52) with two 
values of the controlling parameter, and Figure 10 shows the two-dimensional plot for 
solutions of Equations (46)–(52). Algorithm 1 is also provided for solving stochastic dif-
ferential equations using MATLAB. This algorithm also shows how to tackle the stochastic 
term or Brownian motion term in stochastic differential equations. This strategy is the 
same as given for the existing Euler–Maruyama method to tackle the Brownian motion 
term. 

 

Figure 4. Surface plots of 𝑢 for comparison of the proposed scheme with NSFD using 𝑁௫ = 50, 𝑁௧ =70, 𝜎 = 0.1, 𝜆ଵ = 1, 𝜆ଶ = 3.4, 𝑑ଵ = 0.004, 𝑑ଶ = 0.002. 

0

0 . 5

1

0

0 . 5

1
0

1

2

3

tx

|u
E
M
 -

 u
N
S
F
D
|

0

0 . 5

1

0

0 . 5

1
0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

tx

|u
E
M
 -

 u
P
r
o
p
o
s
e
d
|

Figure 4. Surface plots of u for comparison of the proposed scheme with NSFD using Nx = 50,
Nt = 70, σ = 0.1, λ1 = 1, λ2 = 3.4, d1 = 0.004, d2 = 0.002.
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Figure 5. Surface plots for v comparison of the proposed scheme with NSFD using Nx = 50,
Nt = 70, σ = 0.1, λ1 = 1, λ2 = 3.4, d1 = 0.004, d2 = 0.002.
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Figure 6. Surface plots of u for comparison of the proposed scheme with NSFD using Nx = 50,
Nt = 70, σ = 0.25, λ1 = 1, λ2 = 3.4, d1 = 0.004, d2 = 0.002.
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Figure 7. Surface plots of v for comparison of the proposed scheme with NSFD using Nx = 50,
Nt = 70, σ = 0.25, λ1 = 1, λ2 = 3.4, d1 = 0.004, d2 = 0.002.
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Figure 8. Contour plots for solutions u and v using Nx = 50, Nt = 70, σ = 0.1, λ1 = 1, λ2 = 3.4,
d1 = 0.004, d2 = 0.002.
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Figure 9. Contour plots for solutions u and v using Nx = 50, Nt = 70, σ = 0.25, λ1 = 1, λ2 = 3.4,
d1 = 0.004, d2 = 0.002.
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Figure 10. Deterministic and stochastic plots for solutions u and v using Nx = 50, Nt = 70,
σ = 0.1, λ1 = 1, λ2 = 3.4, d1 = 0.004, d2 = 0.002.

Algorithm 1 Pseudo code for the nonlinear problem.

• Input the parameters and independent variables x and t.
• Start the constructing procedure of normal distribution using the command of “makedist,”
with a mean of 0 and a variance of ∆t.
• Start the “for” loop for the iterative method and input the initial conditions.
• Start the “for” loops for time and space.
• Input boundary conditions at both ends.
• Use the random of the normal distribution to choose a random value to find the solution of
stochastic equations at each grid point and time level using the proposed scheme.
• End the “for” loops for space and time.
• Provide the stopping criteria to stop the iterative method.
• End the iterative “for” loop.

7. Conclusions

A numerical scheme has been constructed to find solutions for stochastic time-dependent
PDEs, specially designed for differential equations that provide positive solutions. The
scheme has the advantage of providing conditions for positive solutions for those PDEs
whose solution must be positive. Both the stability and convergence of the suggested
method have been demonstrated. Using Taylor series expansions, the deficiency of the
NSFD method has been pointed out and later proved using simulations and the construction
of Table 1. Therefore, two strategies have been used to demonstrate that the proposed
scheme is more accurate than the NSFD method. Additionally, the scheme has been applied
to the scalar and system of stochastic PDEs. The scalar example shows that the proposed
scheme produced smaller randomness than Euler–Maruyama and NSFD schemes. After
completing this project, we can suggest other applications for the current strategy [43–48].
The proposed method not only has a low barrier to entry in terms of its implementation,
but it also solves a wider variety of partial differential equations.
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