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Abstract: We study three-dimensional potentials of the form V = U (xp + yp + zp), where U is an
arbitrary function of C2-class, and p ∈ Z, which produces a preassigned two-parametric family of
spatial regular orbits given in the solved form f (x, y, z) = c1, g(x, y, z) = c2 (c1, c2 = const). These
potentials have to satisfy two linear PDEs, which are the basic equations of the 3D inverse problem
of Newtonian dynamics. The functions f and g can be represented uniquely by the ”slope functions”
α(x, y, z) and β(x, y, z). The orbital functions α(x, y, z) and β(x, y, z) have to satisfy three differential
conditions according to the theory of the inverse problem. If these conditions are satisfied, then we
can find such a potential analytically. We offer pertinent examples of potentials that are mainly used
in physical problems. The values obtained for p lead to cases of well-known potentials, such as the
Newtonian, cored, logarithmic, polynomial and quadratic ones. New families of orbits produced
by the 3D harmonic oscillator are found. Pertinent examples are given and cover all cases. Two-
dimensional potentials belong to a special category of potentials and are studied separately. The
families of straight lines in 3D space are also examined.

Keywords: classical mechanics; inverse problem of Newtonian dynamics; two-parametric families of
orbits; potentials; dynamical systems; ODEs; PDEs; 3D harmonic oscillator
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1. Introduction

The three-dimensional inverse problem of dynamics seeks all potentials V = V(x, y, z)
that can produce, for adequate initial conditions, a two-parameter family of orbits traced
by a material point of unit mass [1]. In the past, several authors studied three-dimensional
versions of the inverse problem for a two-parametric family of orbits [2–6]. In [7], the
researchers considered the case of two-parametric families of straight lines (FSL) created by
three-dimensional potentials. The two energy-free PDEs of the three-dimensional inverse
problem of dynamics were derived by [8,9] at the same time. Applications of the 3D inverse
problem to homogeneous potentials and to axisymmetric ones were given by [9,10]. Other
solvable cases of this problem were examined in [11] and in [12] for generalized Szebehely’s
inverse problem of dynamics in three dimensions, which provided several examples of
families of orbits. A three-dimensional inverse problem of geometrical optics was studied
in [13]. Three-dimensional homogeneous potentials generating two-parametric families of
orbits on the outside of a material concentration were studied in [14].

Central potentials are very useful in Celestial Mechanics problems. For instance,
Ref. [15] studied the case of a satellite in a Manev gravitational potential under the influence
of an atmospheric drag force that varies with the square of the velocity. Central potentials
were also applied in Quantum Mechanics [16] and in high-energy physics [17]. On the
other hand, polynomial potentials are used mainly in the study of the integrability of
Hamiltonian systems with two or three degrees of freedom. In particular, Ref. [18] studied
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a family of two-dimensional dynamical systems and found integrals of motion quadratic in
velocities. The same authors extended their work to third- and fourth-degree polynomial
potentials [19]. In both cases, the weak-Pianlevé property was used as a criterion for
integrability. Polynomial integrals of motion of degrees greater than 2 for planar systems
were found in the review paper of [20]. Ref. [21] linearized integrable Hamiltonians with
quartic potentials as well as the remaining integrable cubic potentials. In addition, Ref. [22]
investigated 3D Hamiltonian systems with quartic potentials that are even in x, y, z and
found integrable cases. Furthermore, Ref. [23] gave a complete list of all integrable two-
dimensional homogeneous polynomial potentials with a polynomial integral of order at
most four in the momenta. We note here that polynomial potentials also have applications
in astrophysics [24,25]. Polynomial potentials as solutions to the Schrödinger equation
were also studied in [26] and for the confluent Heun equation in [27].

The harmonic oscillator is an essential tool that is widely used in many areas of
physics in order to understand more realistic systems, from classical to quantum and
relativistic regions. It was also used for the study of 3D perturbed Hamiltonian dynamical
systems [28,29] and for the study of relativistic chaos [30].

In the present paper, we combine the theory of the inverse problem of dynamics with
three-dimensional central and polynomial potentials. Our aim is to find new families
of orbits compatible with these types of potentials and apply them to the case of the 3D
harmonic oscillator. To our knowledge, there are not many papers in the literature related
to this topic. More precisely, two-parametric families of orbits produced by cubic potentials
were studied in [8]. Two-dimensional potentials that generate spatial families of orbits
were found in [31]. This finding gave us the motivation to write the present article.

The structure of this paper is as follows: In Section 2, we give the basic facts of the
inverse problem of Newtonian dynamics. In Section 3, we present our methodology in
order to find solutions to this problem. Thus, we shall study potentials of the special
form V = U (xp + yp + zp), where U is an arbitrary function of C2-class, and p ∈ Z. In
Sections 4–6, we show our new results. By using this methodology, we can find homo-
geneous, polynomial and central potentials, which have many applications in physical
problems (Sections 4.1–4.3). Polynomial potentials as solutions to Laplace’s equation are
also found (Section 4.4). We can also obtain more general results (Section 5). Facing the
direct problem of Newtonian dynamics, i.e., if the potential is given in advance, then find all the
families of orbits that are generated by it, we can find new families of orbits produced by the 3D
harmonic oscillator (Section 6). Two-dimensional potentials constitute a special category
and are studied in Section 7. All the results are completely new and original. Families
of straight lines are studied in Section 8. Finally, we make some concluding remarks in
Section 9.

2. The Basic Equations

We consider the two-parametric family of regular orbits given in the solved form

f (x, y, z) = c1, g(x, y, z) = c2, (1)

where c1, c2 = const., and the total energy is conserved. In a three-dimensional frame,
we deal with two-parametric families of orbits written in the form of (1). As indicated
by [8,9,31], the family of orbits (1) can be represented by two “slope functions”:

α = α(x, y, z) and β = β(x, y, z) (2)

defined by

α =
δ2

δ1
, β =

δ3

δ1
, (3)
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where

δ1 = fygz − fzgy, δ2 = fzgx − fxgz, δ3 = fxgy − fygx, (4)

are the components of the vector ~δ = ∇ f ×∇g. Furthermore, the indices “x, y, z” denote
partial derivatives. There is a “one-to-one” correspondence between the slope functions (2)
and the family of orbits (1). This means that if the pair of orbits α, β is given in advance,
then we can find the two-parametric family of orbits in the form of (1) by analytically
solving the ODE system:

dy
dx

= α(x, y, z, ),
dz
dx

= β(x, y, z) (5)

The potential V = V(x, y, z) has to satisfy two linear PDEs; the first one is of the first order,
and the second one is of the second order. There exist two basic equations of the three-
dimensional inverse problem of Newtonian dynamics, as was shown by [8–10]. Taking into
account that α0 6= 0, these equations are

l1Vx + l2Vy + l3Vz = 0, (6)

where
l1 = αβ0 − βα0, l2 = −β0, l3 = α0. (7)

and

m11Vxx + m12Vxy + m13Vxz + m22Vyy + m23Vyz + m01Vx + m02Vy + m03Vz = 0, (8)

where
m11 = αΘα0, m12 = (α2 − 1)Θα0, m13 = αβΘα0,
m22 = −αΘα0, m23 = −βΘα0,
m01 = (Θ + 2)α2

0 + αM, m02 = 2αα2
0 −M, m03 = 2βα2

0,
M = 2(αα0 + ββ0)α0 −Θ(α0x + αα0y + βα0z).

(9)

We can use the notation as follows:

α0 = αx + ααy + βαz, β0 = βx + αβy + ββz

Θ = 1 + α2 + β2. (10)

The subscripts denote partial derivatives with respect to the variables x, y, z. We note here
that if α0 = 0, β0 6= 0, then we can use the second-order PDE, i.e., Equation (24), in [10].
This PDE reads

q11Vxx + q12Vxy + q13Vxz + q23Vyz + q33Vzz + q01Vx + q02Vy + q03Vz = 0, (11)

where

q11 = ñβ, q12 = ñαβ, q13 = ñ(β2 − 1),

q23 = −ñα, q33 = −ñβ,

q01 = 2 + βñ0 + ñβ0, q02 = 2α, q03 = 2β− ñ0 (12)

and
ñ =

Θ
β0

, ñ0 = ñx + αñy + βñz (13)

The energy of the family of orbits (1) is found to be [9]:

E =
Θ

2α0
(αVx −Vy) + V. (14)
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From (14), we obtain E −V ≥ 0. As was shown by [8] (p. 548), this requirement leads to
the following:

A =
αVx −Vy

α0
≥ 0. (15)

Inequality (15) defines the allowed region of the motion of a test particle in the family of
orbits (1) in 3D space, which are traced by a particle of unit mass in the presence of a 3D
potential V = V(x, y, z). We note here that if both α0 = β0 = 0, the family of orbits consists
of straight lines [7], and this case will be studied in Section 9.

3. The Methodology

In this section, we shall find solutions of the form

V = U (w), w = xp + yp + zp, p 6= 0 (16)

for the above two Equations (6) and (8), where U is an arbitrary function of C2-class.

Differential Conditions on the Slope Functions (α, β)

We suppose that V = U (w), and we find the derivatives of the first order of the
potential function V with respect to x, y, z, i.e., Vx = U ′wx, Vy = U ′wy, Vz = U ′wz,
respectively, where U ′ = dU

dw . We insert them into (6) and obtain

U ′(w)(l1wx + l2wy + l3wz) = 0 (17)

Setting U ′(w) 6= 0, the first necessary differential condition on the orbital functions (α, β) is

l1wx + l2wy + l3wz = 0 (18)

Now, we will focus our interest on the second-order PDE (8). Firstly, we estimate the
second-order derivatives of the potential function V with respect to x, y, z:

Vxx = U ′′w2
x + U ′wxx, Vxy = U ′′wxwy + U ′wxy, Vxz = U ′′wxwz + U ′wxz,

Vyy = U ′′w2
y + U ′wyy, Vyz = U ′′wywz + U ′wyz, (19)

and we insert them into Equation (8). Thus, we obtain the next relation,

r2U ′′(w) + r1U ′(w) = 0, (20)

where

r2 = m11w2
x + m12wxwy + m13wxwz + m22w2

y + m23wywz, (21)

r1 = m11wxx + m12wxy + m13wxz + m22wyy + m23wyz +

+ m01wx + m02wy + m03wz (22)

Putting r2 6= 0, from (20), we obtain

U ′′
U ′ = −

r1

r2
= R, (23)

Now, we observe that U
′′
U ′ is dependent only on the argument w. Consequently, the function

Rmust depend on the same argument. Thus, we have

R = R(w) (24)

or, equivalently,
Rx

wx
=
Ry

wy
=
Rz

wz
. (25)
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This is true if and only if the following relations are verified for the given slope functions
(α, β):

(i)Rxwy −Rywx = 0, (ii)Rywz −Rzwy = 0. (26)

On the other hand, we consider that conditions (18) and ((26)i, ii) are satisfied by the
functions α and β. In addition, U (w) 6= 0. Then, we obtain U = U (w), and we can find the
function U by integrating relation (23) twice with respect to w. The result is

U (w) = d1

∫
e
∫
R(w)dwdw + d2, d1, d2 = const. (27)

As a conclusion, by using solution (27), we can find the potential function V analytically.
Now, we can formulate the following.

Proposition 1. If r2 6= 0 and r1 6= 0 and the three conditions (18) and ((26)i, ii) are satisfied
for the given functions α and β, then a potential of the form V = U (w) always exists, and it is
determined uniquely from (27) up to two arbitrary constants.

We remark here that:

• Case I. If r2 6= 0 and r1 = 0, then we obtain U ′′(w) = 0 from (20). Thus, we have
U (w) = d1w + d2, d1, d2 = const.

• Case II. If r2 = 0 and r1 = 0, then Equation (20) is identically zero. Thus, any function
V = U (w) is a solution to our problem.

• Case III. If r2 = 0 and r1 6= 0, then in this case, we obtain
U ′(w) = 0 from (20). Thus, U (w) = const., and this case is excluded from our study.

4. Results
4.1. Central Potentials

In this section, we shall offer an example that covers the general theory (r1, r2 6= 0).

Example 1 (The Newtonian potential). We consider the two-parametric family of orbits (see
Figure 1a)

f (x, y, z) = 5
√

x2 + y2 + z2 + 2x = c1, g(x, y, z) =
z
x
= c2 (28)

which leads to the pair

α = −5x2 + 5z2 + 2x
√

x2 + y2 + z2)

5xy
, β =

z
x

(29)

and we check the first condition (18). It is satisfied only for p = 2, and then we proceed to the other
conditions, i.e., Equation ((26)i, ii). They are also satisfied for p = 2, and we determine the function
R(w) from (23). It is:

R(w) = − 3
2w

, w = x2 + y2 + z2, (30)

and, from (27), we find

U (w) = − 2d1√
w

+ d2, d1, d2 = const. (31)

Thus, we conclude that the family of orbits (28) is created by the potential

V(x, y, z) = − 2d1√
x2 + y2 + z2

+ d2. (32)
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For d1 = 1
2 and d2 = 0, we obtain the well-known Newtonian potential, which is the most basic

spherical potential. It is homogeneous of degree m = −1 and axisymmetric. The energy of the
family of orbits (28) is

E = −
21 + 25c2

2
10(1 + c2

2)c1
= const. (33)

and the allowed region is (15) A = 5
√

x2 + y2 + z2 + 2x ≥ 0.

(a) (b)

Figure 1. (a) One member of the family of orbits (28). (b) One member of the family of orbits (34).
The test particle moves in the orbit (blue line curve), which is the intersection of two surfaces.

4.2. Polynomial Potentials

In this section, we shall present results that belong to Case I (r2 6= 0, r1 = 0).

Example 2. We consider the two-parametric family of elliptic orbits (see Figure 1b)

f (x, y, z) = x2 + 4y2 + 3z2 = c1, g(x, y, z) =
z
x
= c2 (34)

which leads to the pair

α = − x2 + 3z2

4xy
, β =

z
x

(35)

and we check the first condition (18). It is satisfied only for p = 2, and then we examine the other two
conditions, i.e., Equation ((26)i, ii). In this case, we have r2 6= 0 and r1 = 0. Conditions ((26)i, ii)
are also satisfied for p = 2, and we determine the functionR(w) from (23). It isR(w) = 0. Then,
we find the function U (w) according to Case I. It is:

U (w) = d1w + d2, w = x2 + y2 + z2, d1, d2 = const. (36)

For d1 = 1
2 and d2 = 0, we obtain the well-known harmonic oscillator

V(x, y, z) =
1
2
(x2 + y2 + z2). (37)

The energy of the family of orbits is found to be (14)

E =
c1(5 + 7c2

2)

8(1 + 3c2
2)

= const. (38)
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and the allowed region of the motion of the test particle is A = 4x2y2

x2+3z2 ≥ 0, which means that the
test particle can move everywhere in 3D space.

Other pairs of orbits compatible with potential (37) are shown in Table 1.

Table 1. Families of orbits compatible with potential (37).

Family of Orbits Pair of Orbits (α, β) Energy (E)

f (x, y, z) = x2 + y2 − z2 = c1,
g(x, y, z) = z

x = c2
α = − (x−z)(x+z)

xy , β = z
x

c1
1−c2

2

f (x, y, z) = x2 − y2 − z2 = c1,
g(x, y, z) = z

x = c2
α = (x−z)(x+z)

xy , β = z
x

c1c2
2

1−c2
2

f (x, y, z) = x2 + y2 = c1,
g(x, y, z) = y+z

x = c2
α = − x

y , β =
x2+y2+yz

xy
1
2 c1(3 + c2

2)

One member of the family of orbits (No. 1 in Table 1) is presented at Figure 2a.

(a) (b)

Figure 2. (a) One member of the family of orbits (No. 1 in Table 1) for c1 = c2 = 2. (b) One member
of the family of orbits in (45) for c1 = 4, c2 = 2.

Example 3. We shall study the two-parametric family of orbits

f (x, y, z) =
x2 + y2

x2y2 = c1, g(x, y, z) =
x2 − z2

x2z2 = c2 (39)

or, equivalently, given by the pair

α = − y3

x3 , β =
z3

x3 (40)

and we check the first condition (18). It is satisfied only for p = 6, and then we proceed to the other
conditions, i.e., Equation ((26)i, ii). In this case, we obtain r1 = 0 and r2 6= 0 again. Conditions
((26)i, ii) are also satisfied for p = 6, and we determine the function U (w) according to Case I. It is:

U (w) = d1w + d2, w = x6 + y6 + z6, d1, d2 = const. (41)

Thus, we obtain the separable potential

V(x, y, z) = d1(x6 + y6 + z6) + d2. (42)
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The energy is found to be (14)
E = 0. (43)

and the allowed region is (15) A = −2d1x6 ≥ 0. This inequality is valid only for d1 < 0.

Theorem 1. For any values of s (s 6= 0), the pair of slope functions α = −( y
x )

s, β = ( z
x )

s is
compatible with the potential V(x, y, z) = d1(xp + yp + zp)d2 (d1, d2 =const., p 6= 0, 1), where
p = 2s. The allowed region is A = −2d1xp ≥ 0 (d1 < 0).

Proof. For the pair of orbits α = −( y
x )

s, β = ( z
x )

s, we check the first condition (18). It is
satisfied only for p = 2s, and then we proceed to the other conditions, i.e., Equation ((26)i, ii).
In this case, we have r2 6= 0 and r1 = 0. Conditions ((26)i, ii) are also satisfied for p = 2s,
and we determine the function U (w) according to Case I. It is:

U (w) = d1w + d2, w = x2s + y2s + z2s, d1, d2 = const. (44)

4.3. Potentials Depending on the Distance r

In this section, we shall present results that belong to Case II, i.e., r2 = r1 = 0. These
potentials are compatible with the two-parametric family of orbits (45).

Example 4. We consider the two-parametric family of orbits given by the pair (see Figure 2b)

f (x, y, z) = x2 + y2 + z2 = c1, g(x, y, z) =
x + y + z

z
= c2 (45)

or, equivalently, by the pair

α = − x2 + xy + z2

xy + y2 + z2 , β = − (x− y)z
xy + y2 + z2 (46)

and we check the first condition (18). It is satisfied only for p = 2. The value p = 2 leads to Case II of
the general theory, i.e., r1 = r2 = 0, and conditions ((26)i, ii) are identically zero. Thus, we can
select any arbitrary function V = U (w), w = x2 + y2 + z2 = r2, as a solution to our problem.

(1) The cored potential. This potential was studied by [32] for the planar problem. More precisely,
the authors applied the averaging theory of the first order in the small parameter ε to compute
periodic orbits of a perturbed differential system depending on the parameter ε. Now, we
consider the potential

V(x, y, z) =
√

1 + r2 =
√

1 + x2 + y2 + z2. (47)

As was shown by [33], potential (47) is completely integrable with analytic first integrals. The
allowed region of the motion of the test particle is everywhere in 3D space.

(2) The logarithmic potential.
The well-known logarithmic potential was studied by many researchers in the past. In particu-
lar, the phase space structure for the singular logarithmic potential in two-dimensional space
was studied in [34] with the method of Poincaré surfaces of section, and a stability analysis
for axial orbits was performed by the same authors. In [32], the potential was examined in a
similar way, together with the cored potential.

V(x, y, z) =
1
2

log (1 + r2) =
1
2

log (1 + x2 + y2 + z2), (48)

and the allowed region of the motion of the test particle is everywhere in 3D space.

4.4. Polynomial Potentials as Solutions to Laplace’s Equation

In this paragraph, we shall examine an interesting case of potentials that are solutions
of Laplace’s equation.
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Example 5. We regard the two-parametric family of orbits

f (x, y, z) =
x
u0

= c1, g(x, y, z) =
y
u0

= c2 (49)

where
u0 = s log

(
z +

√
z2 + 4

)
, s =

1√
2

.

The family of orbits (49) leads to the pair

α = − y
x

cot2 (u0), β = −2s
√

4 + z2

x
cot (u0) (50)

We shall find solutions of the form

V = U (w), w = k1(xp + yp) + k2zp, p, k1, k2 6= 0, (51)

for Equations (6) and (8), where U is an arbitrary function of C2-class. First, we check the first
condition (18). It is satisfied only for p = 2 and k2 = −2k1. In this case, we have r2 6= 0 and r1 = 0.
Conditions ((26)i, ii) are also satisfied for the above values, and we determine the function R(w)
from (23). It isR(w) = 0. Then, we find the function U (w) according to Case I. It is:

U (w) = d1w + d2, w = k1(x2 + y2 − 2z2), d1, d2 = const. (52)

For k1 =1, d1 = 1
2 and d2 = 0, we obtain the following result:

V(x, y, z) =
1
2
(x2 + y2 − 2z2). (53)

and the allowed region of the motion of the test particle is A = x2 tan (u0) ≥ 0, which means
that the test particle can move everywhere in 3D space. We can easily check that potential (53) is
homogeneous of degree m = 2 and satisfies Laplace’s equation ∇2V = 0.

5. Other Results

By using the above methodology, we can find many other potentials in addition to
homogeneous and polynomial ones. We shall offer the following example.

Example 6. We take into account the two-parametric family of orbits given by the pair

f (x, y, z) = (x + y + z + 2)e−x = c1, g(x, y, z) = z− x = c2 (54)

or, equivalently, by the pair
α = x + y + z, β = 1 (55)

and we check the first condition (18). It is satisfied for p = 1. In this case, conditions ((26)i, ii) are
also verified for p = 1, and we obtain the functionR(w) from (23). It is:

R(w) = − 7 + 2w
(w− 1)(w + 2)

, w = x + y + z, (56)

and, from (27), we find

U (w) =
d1(1 + 2w)

2(w− 1)2 + d2, d1, d2 = const. (57)

Setting d1 = −1 and d2 = 0, we obtain the potential

V(x, y, z) = − 1 + 2(x + y + z)
2(x + y + z− 1)2 . (58)
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The energy of the family of orbits is found to be E = 1
2 , and the allowed region of the

motion of the test particle is A = 1
x+y+z−1)2 ≥ 0, which means that the motion of the test

particle can take place everywhere in 3D space except for the plane x + y + z = 1.

6. The Direct Problem

The direct problem of Newtonian dynamics seeks all the two-parametric families of or-
bits that are produced by a three-dimensional potential V = V(x, y, z) given in advance ([8]).
As was shown by [8] (p. 550), we can rearrange the two basic Equations (6) and (8) and
write two new linear PDEs for the families of orbits when the expression of the potential
V = V(x, y, z) is known. So, the totality of orbits is included in these two equations. Since
the orbital functions (α, β) appear in these equations, we can develop a methodology for
searching for families of orbits in the form (α, β).

1. Plan A1. We select a linear combination of the arguments ψ = y
x , ω = z

x , τ = x
z for

the orbital functions (α, β), i.e.,

α = k1ψ + k2ω + k3τ, β = k4ψ + k5ω + k6τ, (59)

where k j, j = 1, . . . , 6 = const. We insert the expressions from (59) into Equations (18)
and (26), and we look for suitable values of the constants k j, j = 1, . . . , 6 for which
these conditions are satisfied. Then, by using system (5), we analytically find the
two-parametric family of orbits (1).

2. Plan A2. We choose a linear combination of the arguments ξ = z
y , ω = z

x for the
orbital functions (α, β), i.e.,

α = k1ξ + k2ω + k3, β = k4ξ + k5ω + k6, (60)

where k j, j = 1, . . . , 6. We insert the expressions from (60) into Equations (18) and
(26), and we seek appropriate values of the constants k j, j = 1, . . . , 6 for which these
conditions are satisfied. Then, by using system (5), we analytically find the two-
parametric family of orbits (1).

6.1. New Families of Orbits Produced by the 3D Harmonic Oscillator

We set p = 2 from the beginning, and we examine the potentials V = U (x2 + y2 + z2).

1. Following Plan A1, we find one appropriate solution for the constants k j, j = 1, . . . , 6.
This is

k1 = 1, k2 = k3 = −1, k4 = k5 = 0, k6 = −1, (61)

Thus, we have the pair of orbits

α =
y
x
− z

x
− x

z
, β = − x

z
(62)

This set of orbits leads to Case I of the general theory (r1 = 0, r2 6= 0). Thus, we have
R(w) = 0. Now, we obtain the potential

V(x, y, z) = d1(x2 + y2 + z2) + d2, d1, d2 = const. (63)

For d1 = 1
2 and d2 = 0, we have V(x, y, z) = 1

2 (x2 + y2 + z2). System (5) is written as
follows:

dy
dx

=
y
x
− z

x
− x

z
,

dz
dx

= − x
z

. (64)

By analytically solving system (64), we obtain the two-parametric family of orbits (see
Figure 3a)

f (x, y, z) = x2 + z2 = c1, g(x, y, z) =
y− z

x
= c2 (65)
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and the allowed region is A = 2d1z2 ≥ 0. This inequality is valid only for d1 > 0.

2. According to Plan A2, we find one appropriate solution for the constants k j, j = 1, . . . , 6.
This is

k1 = −1, k5 = 1, k2 = k3 = k4 = k6 = 0 (66)

Thus, we have the pair of orbits

α = − z
y

, β =
z
x

(67)

This set of orbits leads to Case I of the general theory. Now, we obtain the potential

V(x, y, z) = d1(x2 + y2 + z2) + d2, d1, d2 = const. (68)

System (5) is written as follows:

dy
dx

= − z
y

,
dz
dx

=
z
x

. (69)

By analytically solving system (69), we obtain the two-parametric family of orbits (see
Figure 3b)

f (x, y, z) = y2 + xz = c1, g(x, y, z) =
z
x
= c2 (70)

and the allowed region is A = xy2

z ≥ 0, or, equivalently, xz ≥ 0.

(a) (b)

Figure 3. (a) One member of the family of orbits (65) for c1 = c2 = 2. (b) One member of the family
of orbits (70) for c1 = c2 = 2. The test particle moves in the orbit (blue line curve), which is the
intersection of two surfaces.

6.2. Families of Orbits Produced by the Perturbed Harmonic Oscillator

Now, we set p = 2 from the beginning, and we study the potentials V = U (w), where
w = (x2 + y2 + z2) + d3zm ( d3 = const, m 6= p).

Example 7. We consider the two-parametric family of orbits

f (x, y, z) = x2 + y2 + z2 = c1, g(x, y, z) =
y
x
= c2 (71)
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or, equivalently, the pair

α =
y
x

, β = − x2 + y2

xz
(72)

This pair of slope functions leads to the case α0 = 0 and β0 6= 0; so, we shall use Equations (6)
and (11). Firstly, we check condition (18). It is satisfied for m = 0, 2, −2. The case for m = 2
leads to the well-known known harmonic oscillator V = 1

2 (x2 + y2 + z2), and it is not taken into
account. The case m = 0 leads to the case r1 = r2 = 0, and the function R = − r1

r2
in (23) is not

defined. Thus, according to Case II, we can consider that any function V = U (x2 + y2 + z2), U
is an arbitrary C2-function, is a solution to our problem. We excluded this value from our study
because we do not have a perturbation in the harmonic oscillator in this case. Thus, we are left only
with the value m = −2.

For m = −2, we have r2 6= 0 and r1 = 0, and we determine the functionR(w) from (23). It
isR(w) = 0. Then, we find the function U (w) according to Case I. It is:

U (w) = d1w + d2, w = x2 + y2 + z2 +
d3

z2 , d1, d2, d3 = const. (73)

For d1 = 1
2 , d2 = 0, we obtain the harmonic oscillator with a small perturbation. It is

V(x, y, z) =
1
2
(x2 + y2 + z2) +

d3

2z2 . (74)

The energy of the family of orbits is found to be (14)

E = x2 + y2 + z2 = c1. (75)

Since α0 = 0 and β0 6= 0, the allowed region of the motion of the test particle is given by ([8], p. 550)

B̃ =
βVx −Vz

β0
≥ 0. (76)

So, the allowed region is (76) B̃ = z2(x2 + y2 + z2) ≥ 2d3. For the planar problem, families of
orbits related to an unharmonic oscillator for elliptical galaxies were studied by [35].

7. Two-Dimensional Potentials

An interesting class of potentials that produce two-parametric families of orbits in
3D space are those that depend on two variables, i.e., V = V(x, z) or V = V(y, z). These
are two-dimensional potentials and were studied in detail by [31]. We set p = 2, and we
obtain w = y2 + z2 in (16). Then, we select a combination for the orbital functions (α, β) as
follows:

1. Plan B1. We select a linear combination of the arguments ψ = y
x , ω = z

x for the orbital
functions (α, β), i.e.,

α = k1ψ + k2ω, β = k3ψ + k4ω, (77)

where k j, j = 1, . . . , 4 = const. We insert the expressions from (77) into Equations (18)
and (26), and we look for suitable values of the constants k j, j = 1, . . . , 4 for which
these conditions are satisfied. Then, by using system (5), we analytically find the
two-parametric family of orbits (1).

2. Plan B2. We consider the following pair of slope functions:

α = k1x2 + k2z2, β = k3(
y
x
) + k4(

z
x
), (78)

where k j, j = 1, . . . , 4 = const. We insert the expressions from (78) into Equations (18)
and (26), and we aim to find the correct values of the constants k j, j = 1, . . . , 4 for
which these conditions are satisfied.
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Examples

Now, we shall present two examples of 2D potentials.

1. Following Plan B1, we have found the set of values

k1 = k4 = −s 6= 0, k2 = k3 = 0 (79)

This set of values of the constants k j, j = 1, . . . , 4 for the orbital functions (α, β) leads
to the case r2, r1 6= 0. According to Proposition 1, there exists a potential that produces
the above family of orbits, and it is found from (27). It is

V(y, z) = − (y2 + z2)q

q
, q =

s + 1
s

, s 6= 0. (80)

Then, with the aid of system (5), we analytically find the two-parametric family of
orbits (1). System (5) is written as

dy
dx

= − sy
x

,
dz
dx

= − sz
x

. (81)

By analytically solving system (81), we obtain the two-parametric family of orbits

f (x, y, z) = yxs = c1, g(x, y, z) = zxs = c2, s 6= 0, −1 (82)

and the allowed region is A = 2x2(y2+z2)1/s

s(s+1) ≥ 0.

2. According to Plan B2, an appropriate set of values is

k1 6= 0, k2 6= 0, k3 = 0, k4 = 1 (83)

This set of values of the constants k j, j = 1, . . . , 4 for the orbital functions (α, β) leads
to the general case r2, r1 6= 0. According to Proposition 1, there exists a potential that
produces the above family of orbits, and it is found from (27). It is

V(y, z) = − d1

2(x2 + z2)2 + d2, d1, d2 = const. (84)

Then, by using system (5), we analytically find the two-parametric family of orbits (1).
System (5) is written

dy
dx

= k1x2 + k2z2,
dz
dx

=
z
x

. (85)

By analytically solving system (85), we obtain the two-parametric family of orbits

f (x, y, z) = 3y− x(k1x2 + k2z2) = c1, g(x, y, z) =
z
x

(86)

and the allowed region is A = − xy
(x2+y2)(y2+z2)3 ≥ 0, which is valid only when xy ≤ 0.

Remark 1. The potential found in (84) is two-dimensional, and we can easily ascertain that
Vy = 0. This means that the test particle of unit mass moving under the action of such a potential
will follow a uniform motion, i.e., ẏ = const. Thus, the orbits cannot be closed. Furthermore, the
projection of this orbit on the level xz is a regular curve, and it is determined by system (86).

8. Families of Straight Lines

If α0 = 0 and β0 = 0, then we have to study a two-parameter family of straight lines
(FSL) in 3D space. As was shown by [7], potentials that produce two-parametric fam-
ilies of straight lines in 3D space have to satisfy the following necessary and sufficient
differential conditions:
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Vxy(V2
x −V2

y )−VxVy(Vxx −Vyy) + Vz(VxVyz −VyVxz) = 0,

Vxz(V2
x −V2

z )−VxVz(Vxx −Vzz) + Vy(VxVyz −VzVxy) = 0. (87)

We substitute (11) into (87), and we find that the equations in (87) are satisfied only for
p = 1, 2. Thus, we have two solutions for the potential

V = U (x + y + z) (88)

and
V = U (x2 + y2 + z2) (89)

The family of straight lines is

α =
Vy

Vx
, β =

Vz

Vx
(90)

For the potential (88), we obtain
α = 1, β = 1, (91)

or, equivalently,
f (x, y, z) = y− x = c1, g(x, y, z) = z− x = c2. (92)

For potential (89), we obtain

α =
y
x

, β =
z
x

(93)

or, equivalently,

f (x, y, z) =
y
x
= c1, g(x, y, z) =

z
x
= c2. (94)

This result was also found by [7] and verified by [12]. The potentials in (89) are of the form
V = U (r). All the potentials of this form studied in previous sections belong to this case
and produce the two-parametric family of straight lines (94) in 3D space.

9. Conclusions

The present paper gives a new idea to the reader of how we can find new solutions of
the 3D inverse problem of dynamics by using the two basic equations. Here, we studied
an interesting case of the 3D inverse problem of dynamics relating three-dimensional
polynomial potentials of the form V = U(xp + yp + zp) to preassigned two-parametric
families of spatial regular orbits f (x, y, z) = c1, g(x, y, z) = c2 (c1, c2 = const).

We used the two basic PDEs (6) and (8) that combine families of orbits and 3D po-
tentials (Section 3), taking into account that at least one of {α0, β0} is different from zero.
We imposed three differential conditions on the slope functions α, β in order to obtain
solutions to our problem. We focused our interest on central and polynomial potentials
of the form V(x, y, z) = U (xp + yp + zp) (p = integer). Our results were not restricted only
to polynomial potentials, but we extended them to homogeneous potentials of degree m
and to other known potentials from the literature. We did not obtain only mathematical
results; we also found potentials with applications in many areas of physics, e.g., Galactic
Dynamics. Such potentials are the following: the Newtonian and logarithmic potentials.
Furthermore, an interesting case of potentials is the 3D harmonic oscillator, and many
families of orbits that are compatible with it were found. Our aim was to find a suitable
pair of orbits that are produced by these potentials. All the results are completely new and
original.

In the present paper, we present families of orbits produced by the Newtonian po-
tential, central and polynomial potentials and the three-dimensional harmonic oscillator.
Polynomial potentials for solutions to Laplace’s equation were also studied. In each case,
we determined the allowed area for the motion of the test particle. We focused our interest
on the 3D harmonic oscillator, because it is widely used in many areas of physics. The two-
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dimensional potentials constitute a special case of potentials and were examined separately.
We also studied the case of straight lines, which is a special category of orbits in 3D space.
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