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Abstract

:

Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices (ifpifs-matrices), proposed by Enginoğlu and Arslan in 2020, are worth utilizing in data classification in supervised learning due to coming into prominence with their ability to model decision-making problems. This study aims to define the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities, quasi-, semi-, and pseudo-similarities over ifpifs-matrices; develop a new classifier by using them; and apply it to data classification. To this end, it develops a new classifier, i.e., Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Classifier (IFPIFSC), based on six pseudo-similarities proposed herein. Moreover, this study performs IFPIFSC’s simulations using 20 datasets provided in the UCI Machine Learning Repository and obtains its performance results via five performance metrics, accuracy (Acc), precision (Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF). It also compares the aforementioned results with those of 10 well-known fuzzy-based classifiers and 5 non-fuzzy-based classifiers. As a result, the mean Acc, Pre, Rec, MacF, and MicF results of IFPIFSC, in comparison with fuzzy-based classifiers, are 94.45%, 88.21%, 86.11%, 87.98%, and 89.62%, the best scores, respectively, and with non-fuzzy-based classifiers, are 94.34%, 88.02%, 85.86%, 87.65%, and 89.44%, the best scores, respectively. Later, this study conducts the statistical evaluations of the performance results using a non-parametric test (Friedman) and a post hoc test (Nemenyi). The critical diagrams of the Nemenyi test manifest the performance differences between the average rankings of IFPIFSC and 10 of the 15 are greater than the critical distance (4.0798). Consequently, IFPIFSC is a convenient method for data classification. Finally, to present opportunities for further research, this study discusses the applications of ifpifs-matrices for machine learning and how to improve IFPIFSC.
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1. Introduction


Fuzzy sets [1,2] are a mathematical tool put forward by Zadeh to overcome the problems involving uncertainties in which classical sets are insufficient in modeling. Another tool offered to model problems involving uncertainties is soft sets [3,4,5]. Thus far, several hybrid versions of these two concepts have been defined, such as fuzzy soft sets [6] and fuzzy parameterized fuzzy soft sets (fpfs-sets) [7]. Recently, fpfs-sets have come to the fore due to their ability to model situations where both parameters and alternatives (objects) have fuzzy values. Afterward, fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [8] have been defined to benefit from the modeling capabilities of fpfs-sets and avoid their disadvantages in decision-making problems containing a large amount of data.



Latterly, Memiş et al. [9] proposed a classifier, named Fuzzy Parameterized Fuzzy Soft Normalized Hamming Classifier (FPFSNHC), by defining normalized Hamming pseudo-similarity over fpfs-matrices and successfully applied it to classify some known datasets, such as “Breast Cancer Wisconsin (Diagnostic)”, “Immunotherapy”, “Pima Indian Diabetes”, and “Statlog Heart”. In addition, Memiş and Enginoğlu [10] have developed Fuzzy Parameterized Fuzzy Soft Chebyshev Classifier (FPFSCC) by defining Chebyshev pseudo-similarity over fpfs-matrices and successfully applied it to a classification problem containing medical datasets, such as “Cryotherapy”, “Diabetic Retinopathy”, “Hepatitis”, and “Immunotherapy”. Furthermore, Memiş et al. [11] have suggested a classifier using Euclidean pseudo-similarity over fpfs-matrices, namely Fuzzy Parameterized Fuzzy Soft Euclidean Classifier (FPFS-EC), and successfully applied it to a numerical data classification problem involving the datasets “Breast Tissue” and “Parkinson’s Disease”. Moreover, Memiş et al. [12,13] have propounded Fuzzy Parameterized Fuzzy Soft Aggregation Classifier (FPFS-AC) and Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier (FPFS-CMC) utilizing soft decision-making (SDM) methods. Thus, they have given a point of view of classifier constructions. In addition, Memiş et al. [14] have introduced a classifier named Fuzzy Parameterized Fuzzy Soft k-Nearest Neighbor (FPFS-kNN) and compared it with the kNN-based classifiers. The authors have used Pearson, Spearman, and Kendall correlation coefficients in the construction of FPFS-kNN, and these three constructions have been denoted by FPFS-kNN(P), FPFS-kNN(S), and FPFS-kNN(K), respectively.



Despite these successes of fpfs-matrices, they cannot model intuitionistic fuzzy uncertainties [15,16]. Therefore, intuitionistic fuzzy soft sets (ifs-sets) [17], intuitionistic fuzzy parameterized soft sets (ifps-sets) [18], and intuitionistic fuzzy parameterized fuzzy soft sets (ifpfs-sets) [19] have been studied. Later, the concept intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets (ifpifs-sets) [20], which can model situations where both parameters and objects with intuitionistic fuzzy values, has been defined and successfully applied to an SDM problem. Thereafter, intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices (ifpifs-matrices) [21] has been proposed and successfully applied to two SDM problems.



This paper focuses on developing a new classifier in data classification in supervised learning by operationalizing ifpifs-matrices and making theoretical contributions to them. The major contributions of the present study can be summarized as follows:




	✓

	
Defining the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities, quasi-, semi-, and pseudo-similarities over ifpifs-matrices.




	✓

	
Proposing five pseudo-metrics and seven pseudo-similarities.




	✓

	
Developing a new classifier, i.e., Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Classifier (IFPIFSC), with the best scores.




	✓

	
Applying IFPIFSC to real-life classification problems successfully.









In the second part of this study, some basic definitions are required for the following sections are provided. Section 3 defines the metric, quasi-, semi-, and pseudo-metric over the ifpifs-matrices space and proposes five pseudo-metrics. In addition, it defines the concepts similarity, quasi-, semi-, and pseudo-similarity over the ifpifs-matrices space and suggests seven pseudo-similarities. Furthermore, this section clarifies some basic properties of the proposed five pseudo-metrics and seven pseudo-similarities. Section 4 proposes a classifier, i.e., IFPIFSC, based on multiple pseudo-similarities and presents the definitions used in the construction of IFPIFSC. Section 5 first provides the properties of 20 datasets in the UCI Machine Learning Repository (UCI-MLR) [22] used in the comparison of classifiers. In addition, it presents mathematical notations of the performance metrics. Afterward, this section compares the performance results of the fuzzy-based classifiers, i.e., Fuzzy kNN [23], Fuzzy Soft Set Classifier (FSSC) [24], Fuzzy Soft Set Classifier Using Distance-Based Similarity Measure (FussCyier) [25], Hamming Distance-Based Fuzzy Soft Set Classifier (HDFSSC) [26], FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-kNN(P), FPFS-kNN(S), and FPFS-kNN(K), with the performance results of IFPIFSC and the non-fuzzy-based classifiers, i.e., Support Vector Machines (SVM) [27], Decision Trees (DT) [28], Boosting Trees (BT) [29], Random Forests (RF) [30], and Adaptive Boosting (AdaBoost) [31], with those of IFPIFSC. Furthermore, this section performs the statistical evaluations of the performance results using Friedman [32] and Nemenyi [33] tests in a procedure suggested by Demšar [34] and presents the critical diagrams of the Nemenyi test. Furthermore, it compares the classifiers’ time complexities using a big O notation. The last section discusses classifiers that can be developed by distance/similarity measures of ifpifs-matrices and the need for further research.




2. Preliminaries


This section presents the concept ifpifs-matrices [21] and some of its basic properties. Throughout this study, let E be a parameter set and U be an alternative (object) set.



Definition 1 ([15]).

Let μ and ν be two functions from E to [0, 1] such that    μ ( x ) + ν ( x ) ≤ 1  , for all    x ∈ E  . Then, the set    ( x , μ ( x ) , ν ( x ) ) : x ∈ E    is called an intuitionistic fuzzy set (if-set) over E.





Here, for all   x ∈ E  ,   μ ( x )   and   ν ( x )   are called the membership and non-membership degrees, respectively, and   π ( x ) = 1 − μ ( x ) − ν ( x )   is called the indeterminacy degree of the element   x ∈ E  . Moreover, for all   x ∈ E  ,   0 ≤ π ( x ) ≤ 1   is straightforward. Across the present study, the set of all the if-sets over E is denoted by   I F ( E )   and   f ∈ I F ( E )  . For brevity, the notation      ν ( x )   μ ( x )   x   is used instead of   ( x , μ ( x ) , ν ( x ) )  . That is, an if-set f over E is denoted by   f =     ν ( x )   μ ( x )   x : x ∈ E   .



Definition 2 ([20]).

Let    f ∈ I F ( E )    and α be a function from f to    I F ( U )  . Then, the set


      ν ( x )   μ ( x )   x , α     ν ( x )   μ ( x )   x   : x ∈ E  








being the graphic of α, is called an ifpifs-set parameterized via E over U (or briefly over U).





Hereinafter, the set of all the ifpifs-sets over U is denoted by   I F P I F  S E   ( U )   . Further, in   I F P I F  S E   ( U )   , since the graph(α) and α generate each other uniquely, the notations are interchangeable. Therefore, if it causes no confusion, we denote an ifpifs-set graph(α) by α.



Definition 3 ([21]).

Let    α ∈ I F P I F  S E   ( U )   . Then,    [  a  i j   ]    is called ifpifs-matrix of α and defined by


   [  a  i j   ]  : =      a 01     a 02     a 03    ⋯    a  0 n     ⋯      a 11     a 12     a 13    ⋯    a  1 n     ⋯     ⋮   ⋮   ⋮   ⋱   ⋮   ⋮      a  m 1      a  m 2      a  m 3     ⋯    a  m n     ⋯     ⋮   ⋮   ⋮   ⋱   ⋮   ⋱      








such that for    i ∈ { 0 , 1 , 2 , ⋯ }    and    j ∈ { 1 , 2 , ⋯ }  ,


   a  i j   : =         ν (  x j  )   μ (  x j  )   ,     i = 0       α     ν (  x j  )   μ (  x j  )    x j    (  u i  )  ,     i ≠ 0       








or briefly    a  i j   : =    ν  i j    μ  i j     . Here, if   | U | = m − 1   and   | E | = n  , then   [  a  i j   ]   is an   m × n   ifpifs-matrix.





In this paper, if it causes no confusion, the membership and non-membership functions of   [  a  i j   ]  , i.e.,   μ  i j    and   ν  i j   , will be represented by   μ  i j  a   and   ν  i j  a  , respectively. Moreover, the set of all the ifpifs-matrices parameterized via E over U is denoted by   I F P I F  S E   [ U ]    and    [  a  i j   ]  ,  [  b  i j   ]  ,  [  c  i j   ]  ∈ I F P I F  S E   [ U ]   .



Definition 4 ([21]).

Let    [  a  i j   ]  ∈ I F P I F  S E   [ U ]   . For all i and j, if    μ  i j   = λ   and    ν  i j   = ε  , then   [  a  i j   ]   is called   ( λ , ε )  -ifpifs-matrix and denoted by     ε λ   . Here,     1 0    and     0 1    are called empty and universal ifpifs-matrices, respectively.





Definition 5 ([21]).

Let    [  a  i j   ]  ,  [  b  i j   ]  ∈ I F P I F  S E   [ U ]   .




	
i. For all i and j, if    μ  i j  a  =  μ  i j  b    and    ν  i j  a  =  ν  i j  b   , then it is said to be   [  a  i j   ]   and   [  b  i j   ]   are equal ifpifs-matrices and denoted by    [  a  i j   ]  =  [  b  i j   ]   .



	
ii. For all i and j, if    μ  i j  a  ≤  μ  i j  b    and    ν  i j  b  ≤  ν  i j  a   , then it is said to be   [  a  i j   ]   is a submatrix of   [  b  i j   ]   and denoted by    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   .



	
iii. If    [  a  i j   ]   ⊆ ˜   [  b  i j   ]    and    [  a  i j   ]  ≠  [  b  i j   ]   , then it is said to be   [  a  i j   ]   is a proper submatrix of   [  b  i j   ]   and denoted by    [  a  i j   ]   ⊊ ˜   [  b  i j   ]   .











3. Distance and Similarity Measures of ifpifs-Matrices


This section defines metric, quasi-, semi-, and pseudo-metric over   I F P I F  S E   [ U ]   , proposes Minkowski, Euclidean, Hamming, generalized Hausdorff, Hausdorff pseudo-metrics, and their normalized forms, and investigates some of their basic properties. Afterward, the section defines similarity, quasi-, semi-, and pseudo-similarity over   I F P I F  S E   [ U ]   , suggests Minkowski, Euclidean, Hamming, generalized Hausdorff, Hausdorff, Jaccard, Dice, and Cosine pseudo-similarities, and examines some of their basic properties. This section theoretically contributes to the next section in which the advantages of ifpifs-matrices are employed in classification problems. In other words, this section provides the advantage of relaying the modeling capability of ifpifs-matrices to machine learning via distance and similarity measures defined over   I F P I F  S E   [ U ]   . From now on, let    I n  =  { 1 , 2 , ⋯ , n }    and    I n *  =  { 0 , 1 , 2 , ⋯ , n }   .



3.1. Distance Measures of ifpifs-Matrices


This subsection first defines metric, quasi-, semi-, and pseudo-metric over   I F P I F  S E   [ U ]   . Let   d : X × X → R   be a mapping and for all   x , y , z ∈ X  , D1, D2, D3, D4, and D5 denote the following properties:




	D1. 

	
  d  x , y  ≥ 0   (Positive semi-definiteness);




	D2. 

	
  d  x , x  = 0  ;




	D3. 

	
  d  x , y  = 0 ⇔ x = y  ;




	D4. 

	
  d  x , y  = d  y , x    (Symmetry);




	D5. 

	
  d  x , y  ≤ d  x , z  + d  z , y    (Triangle inequality).









Definition 6.

Let   d : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   be a mapping. Then,




	
i. d is called a quasi-metric iff d satisfies D1, D3, and D5.



	
ii. d is called a semi-metric iff d satisfies D1, D3, and D4.



	
iii. d is called a pseudo-metric iff d satisfies D2, D4, and D5.



	
iv. d is called a metric iff d satisfies D3, D4, and D5.










Secondly, this subsection proposes Minkowski, Euclidean, Hamming, generalized Hausdorff, and Hausdorff pseudo-metrics over   I F P I F  S E   [ U ]    and their normalized forms and investigates some of their basic properties.



Proposition 1.

Let   p ∈  Z +   . Then, the mapping    d M p  : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   d M p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : =    1 2   ∑  i = 1   m − 1    ∑  j = 1  n      μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b   p  +    ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b   p  +    π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b   p     1 p    








is a pseudo-metric over   I F P I F  S E   [ U ]    and referred to as Minkowski pseudo-metric (MPM). Furthermore, the normalized MPM is as follows:


    d ^  M p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : =    1  2 ( m − 1 ) n    ∑  i = 1   m − 1    ∑  j = 1  n      μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b   p  +    ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b   p  +    π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b   p     1 p    













Here,   d M 1   and   d M 2   are called Hamming pseudo-metric (HPM) and Euclidean pseudo-metric (EPM) and denoted by   d H   and   d E  , respectively. Moreover,    d ^  M 1   and    d ^  M 2   are called normalized HPM and normalized EPM and denoted by    d ^  H   and    d ^  E  , respectively.



Proposition 2.

Let   p ∈  Z +   . Then, the mapping    d  H s  p  : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   d  H s  p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : =    ∑  i = 1   m − 1    max  j ∈  I n      |   μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b    |  p   + |   ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b    |  p  +   |  π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b  |  p     1 p    








is a pseudo-metric and referred to as generalized Hausdorff pseudo-metric (GHPM). In addition, normalized GHPM is as follows:


    d ^   H s  p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : =    1  m − 1    ∑  i = 1   m − 1    max  j ∈  I n      |   μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b    |  p   + |   ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b    |  p  +   |  π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b  |  p     1 p    













Here,   d  H s  1   is called Hausdorff pseudo-metric (HsPM) and denoted by   d  H s   . Moreover,    d ^   H s  1   is called normalized HsPM and denoted by    d ^   H s   .



Proposition 3.

Let   p ∈  Z +    and     [  a  i j   ]   m × n   ,   [  b  i j   ]   m × n   ,   [  c  i j   ]   m × n   ∈ I F P I F  S E   [ U ]   . Then, the following properties are valid.




	
i.    d M p      1 0   ,    0 1    =  d  H s  p      1 0   ,    0 1    = 1  ,



	
ii.    d M p    [  a  i j   ]  ,  [  b  i j   ]   ≤   ( m − 1 ) n  p   ,



	
iii.    d  H s  p    [  a  i j   ]  ,  [  b  i j   ]   ≤   m − 1  p   ,



	
iv.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  d M p    [  a  i j   ]  ,  [  b  i j   ]   ≤  d M p    [  a  i j   ]  ,  [  c  i j   ]   ∧  d M p    [  b  i j   ]  ,  [  c  i j   ]   ≤  d M p    [  a  i j   ]  ,  [  c  i j   ]    ,



	
v.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  d  H s  p    [  a  i j   ]  ,  [  b  i j   ]   ≤  d  H s  p    [  a  i j   ]  ,  [  c  i j   ]   ∧  d  H s  p    [  b  i j   ]  ,  [  c  i j   ]   ≤  d  H s  p    [  a  i j   ]  ,  [  c  i j   ]    .










Remark 1.

The propositions provided in Proposition 3 are also valid for the normalized pseudo-metrics    d ^  M p   and    d ^   H s  p  .






3.2. Similarity Measures of ifpifs-Matrices


This subsection first defines similarity, quasi-, semi-, and pseudo-similarity over   I F P I F  S E   [ U ]   . Let   s : X × X → R   be a mapping and for all   x , y , z ∈ X  , S1, S2, S3, and S4 denote the following properties:




	S1. 

	
  s  x , x  = 1  ,




	S2. 

	
  s  x , y  = 1 ⇔ x = y  ,




	S3. 

	
  s  x , y  = s  y , x   ,




	S4. 

	
  0 ≤ s  x , y  ≤ 1  .









Definition 7.

Let   s : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   be a mapping. Then,




	
i. s is called a similarity iff d satisfies S2, S3, and S4.



	
ii. s is called a quasi-similarity iff d satisfies S2 and S4.



	
iii. s is called a semi-similarity iff d satisfies S2 and S3.



	
iv. s is called a pseudo-similarity iff d satisfies S1, S3, and S4.










Secondly, this subsection proposes Minkowski, Euclidean, Hamming [35], generalized Hausdorff, and Hausdorff pseudo-similarities over   I F P I F  S E   [ U ]    using normalized pseudo-metrics of ifpifs-matrices provided in Section 3.1.



Proposition 4.

Let   p ∈  Z +   . Then, the mapping    s M p  : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   s M p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : = 1 −   d ^  M p   (  [  a  i j   ]  ,  [  b  i j   ]  )   








is a pseudo-similarity and referred to as Minkowski pseudo-similarity (MPS).





Here,   s M 1   and   s M 2   are called Hamming pseudo-similarity (HPS) [35] and Euclidean pseudo-similarity (EPS) and denoted by   s H   and   s E  , respectively.



Proposition 5.

Let   p ∈  Z +   . Then, the mapping    s  H s  p  : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   s  H s  p   (  [  a  i j   ]  ,  [  b  i j   ]  )  : = 1 −   d ^   H s  p   (  [  a  i j   ]  ,  [  b  i j   ]  )   








is a pseudo-similarity and referred to as generalized Hausdorff pseudo-similarity (GHsPS).





Here,   s  H s  1   is called Hausdorff pseudo-similarity (HsPS) and denoted by   s  H s   . Thirdly, this subsection suggests Jaccard, Dice, and Cosine pseudo-similarities over   I F P I F  S E   [ U ]   .



Proposition 6.

The mapping    s   J   : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   s   J    (  [  a  i j   ]  ,  [  b  i j   ]  )  : =  1  m − 1    ∑  i = 1   m − 1     ε +  x i    ε +  y i  +  z i  −  x i     








such that


   x i  =  ∑  j = 1  n   μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b   










   y i  =  ∑  j = 1  n     μ  0 j  a   μ  i j  a   2  +    ν  0 j  a   ν  i j  a   2  +    π  0 j  a   π  i j  a   2   








and


   z i  =  ∑  j = 1  n     μ  0 j  b   μ  i j  b   2  +    ν  0 j  b   ν  i j  b   2  +    π  0 j  b   π  i j  b   2   








is a pseudo-similarity and referred to as Jaccard pseudo-similarity (JPS). Here,   ε ≪ 1   is a positive constant, e.g.,   ε = 0.0001  .





Proof. 

Let    [  a  i j   ]  ,  [  b  i j   ]  ∈ I F P I F  S E   [ U ]   . It is clear that   s   J    satisfies the conditions S1 and S3. Then, it is sufficient to prove the condition S4. For   i ∈  I  m − 1     and for all   j ∈  I n   ,


    0   ≤     μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b        ≤       μ  0 j  a   μ  i j  a   2  +    ν  0 j  a   ν  i j  a   2  +    π  0 j  a   π  i j  a   2  +    μ  0 j  b   μ  i j  b   2  +    ν  0 j  b   ν  i j  b   2  +    π  0 j  b   π  i j  b   2          −   μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b       








because


    0   ≤       μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b   2  +    ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b   2  +    π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b   2      








Therefore,


  0 ≤ ε +  x i  ≤ ε +  y i  +  z i  −  x i   








Hence,


  0 ≤   ε +  x i    ε +  y i  +  z i  −  x i    ≤ 1  








Then,


      1  m − 1     ∑  i = 1   m − 1    0    ≤     s   J    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤     1  m − 1     ∑  i = 1   m − 1    1      0   ≤     s   J    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤     1  m − 1    ( m − 1 )       0   ≤     s   J    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤   1    











□





Proposition 7.

The mapping    s   D   : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   s   D    (  [  a  i j   ]  ,  [  b  i j   ]  )  : =  1  m − 1    ∑  i = 1   m − 1     ε + 2  x i    ε +  y i  +  z i     








such that


   x i  =  ∑  j = 1  n   μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b   










   y i  =  ∑  j = 1  n     μ  0 j  a   μ  i j  a   2  +    ν  0 j  a   ν  i j  a   2  +    π  0 j  a   π  i j  a   2   








and


   z i  =  ∑  j = 1  n     μ  0 j  b   μ  i j  b   2  +    ν  0 j  b   ν  i j  b   2  +    π  0 j  b   π  i j  b   2   








is a pseudo-similarity and referred to as Dice pseudo-similarity (DPS). Here,   ε ≪ 1   is a positive constant, e.g.,   ε = 0.0001  .





Proof. 

Let    [  a  i j   ]  ,  [  b  i j   ]  ∈ I F P I F  S E   [ U ]   . It is clear that   s   D    satisfies the conditions S1 and S3. Then, it is sufficient to prove the condition S4. For   i ∈  I  m − 1     and for all   j ∈  I n   , since


    0   ≤       μ  0 j  a   μ  i j  a  −  μ  0 j  b   μ  i j  b   2  +    ν  0 j  a   ν  i j  a  −  ν  0 j  b   ν  i j  b   2  +    π  0 j  a   π  i j  a  −  π  0 j  b   π  i j  b   2        =       μ  0 j  a   μ  i j  a   2  +    ν  0 j  a   ν  i j  a   2  +    π  0 j  a   π  i j  a   2  +    μ  0 j  b   μ  i j  b   2  +    ν  0 j  b   ν  i j  b   2  +    π  0 j  b   π  i j  b   2          − 2   μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b       








then


  0 ≤ ε + 2  x i  ≤ ε +  y i  +  z i   








Hence,


  0 ≤   ε + 2  x i    ε +  y i  +  z i    ≤ 1  








Then,


      1  m − 1     ∑  i = 1   m − 1    0    ≤     s   D    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤     1  m − 1      ∑  i = 1   m − 1     1      0   ≤     s   D    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤     1  m − 1    ( m − 1 )       0   ≤     s   D    (  [  a  i j   ]  ,  [  b  i j   ]  )     ≤   1    











□





Proposition 8.

The mapping    s   C   : I F P I F  S E   [ U ]  × I F P I F  S E   [ U ]  → R   defined by


   s   C    (  [  a  i j   ]  ,  [  b  i j   ]  )  : =  1  m − 1    ∑  i = 1   m − 1     ε +  x i    ε +   y i     z i      








such that


   x i  =  ∑  j = 1  n   μ  0 j  a   μ  i j  a   μ  0 j  b   μ  i j  b  +  ν  0 j  a   ν  i j  a   ν  0 j  b   ν  i j  b  +  π  0 j  a   π  i j  a   π  0 j  b   π  i j  b   










   y i  =  ∑  j = 1  n     μ  0 j  a   μ  i j  a   2  +    ν  0 j  a   ν  i j  a   2  +    π  0 j  a   π  i j  a   2   








and


   z i  =  ∑  j = 1  n     μ  0 j  b   μ  i j  b   2  +    ν  0 j  b   ν  i j  b   2  +    π  0 j  b   π  i j  b   2   








is a pseudo-similarity and referred to as Cosine pseudo-similarity (CPS). Here,   ε ≪ 1   is a positive constant, e.g.,   ε = 0.0001  .





Proposition 9.

Let   p ∈  Z +    and     [  a  i j   ]   m × n   ,   [  b  i j   ]   m × n   ,   [  c  i j   ]   m × n   ∈ I F P I F  S E   [ U ]   . Then, the following properties are valid.




	
i.    s M p      1 0   ,    0 1    =  s  H s  p      1 0   ,    0 1    =  s   J       1 0   ,    0 1    =  s   D       1 0   ,    0 1    =  s   C       1 0   ,    0 1    = 0  ,



	
ii.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  s M p    [  a  i j   ]  ,  [  c  i j   ]   ≤  s M p    [  a  i j   ]  ,  [  b  i j   ]   ∧  s M p    [  a  i j   ]  ,  [  c  i j   ]   ≤  s M p    [  b  i j   ]  ,  [  c  i j   ]    ,



	
iii.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  s  H s  p    [  a  i j   ]  ,  [  c  i j   ]   ≤  s  H s  p    [  a  i j   ]  ,  [  b  i j   ]   ∧  s  H s  p    [  a  i j   ]  ,  [  c  i j   ]   ≤  s  H s  p    [  b  i j   ]  ,  [  c  i j   ]    ,



	
iv.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  s J    [  a  i j   ]  ,  [  c  i j   ]   ≤  s J    [  a  i j   ]  ,  [  b  i j   ]   ∧  s J    [  a  i j   ]  ,  [  c  i j   ]   ≤  s J    [  b  i j   ]  ,  [  c  i j   ]    ,



	
v.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  s D    [  a  i j   ]  ,  [  c  i j   ]   ≤  s D    [  a  i j   ]  ,  [  b  i j   ]   ∧  s D    [  a  i j   ]  ,  [  c  i j   ]   ≤  s D    [  a  i j   ]  ,  [  c  i j   ]    ,



	
vi.    [  a  i j   ]   ⊆ ˜   [  b  i j   ]   ⊆ ˜   [  c  i j   ]  ⇒  s C    [  a  i j   ]  ,  [  c  i j   ]   ≤  s C    [  a  i j   ]  ,  [  b  i j   ]   ∧  s C    [  a  i j   ]  ,  [  c  i j   ]   ≤  s C    [  b  i j   ]  ,  [  c  i j   ]    .












4. Proposed Classifier (IFPIFSC)


This section presents the basic mathematical notations to be needed for the proposed classifier based on ifpifs-matrices. Throughout the present study, let   D =   [  d  i j   ]   m ×  ( n + 1 )      stand for a data matrix whose last column consists of the data’s labels, where m and n represent the samples’ and parameters’ numbers in the data matrix, respectively.    (  D  t r a i n   )    m 1  × n   ,   C   m 1  × 1   , and    (  D  t e s t   )    m 2  × n    stand for a training matrix, class matrix of the training matrix, and the testing matrix attained from the data matrix D, respectively, such that    m 1  +  m 2  = m  . Let   U  k × 1    be a matrix consisting of unique class labels of   C   m 1  × 1   .   D  i − t r a i n    and   D  i − t e s t    denote i-th rows of   D  t r a i n    and   D  t e s t   , respectively. Similarly,   D  t r a i n − j    and   D  t e s t − j    denote j-th rows of   D  t r a i n    and   D  t e s t   , respectively. Moreover,   T   m 2  × 1    ′    represents predicted class labels of the testing samples.



Definition 8.

Let   x , y ∈  R n   . Then, the function   P :  R n  ×  R n  →  [ − 1 , 1 ]    defined by


  P  ( x , y )  : =   n   ∑  j = 1  n     x j   y j   −    ∑  j = 1  n    x j      ∑  j = 1  n    y j       n   ∑  j = 1  n    x j 2  −     ∑  j = 1  n    x j   2    n   ∑  j = 1  n    y j 2  −     ∑  j = 1  n    y j   2       








is called the Pearson correlation coefficient between x and y.





Definition 9.

Let   x ∈  R n    and   j ∈  I n   . Then, the vector    x ^  ∈  R n    defined by


    x ^  j  : =         x j  −  min  k ∈  I n     {  x k  }     max  k ∈  I n     {  x k  }  −  min  k ∈  I n     {  x k  }    ,      max  k ∈  I n     {  x k  }  ≠  min  k ∈  I n     {  x k  }        1 ,      max  k ∈  I n     {  x k  }  =  min  k ∈  I n     {  x k  }        








is called normalizing vector of x.





Definition 10.

Let   D =   [  d  i j   ]   m ×  ( n + 1 )      be a data matrix,   i ∈  I m   , and   j ∈  I n   . Then, the matrix    D ˜  =   [   d ˜   i j   ]   m × n     defined by


    d ˜   i j   : =         d  i j   −  min  k ∈  I m     {  d  k j   }     max  k ∈  I m     {  d  k j   }  −  min  k ∈  I m     {  d  k j   }    ,      max  k ∈  I m     {  d  k j   }  ≠  min  k ∈  I m     {  d  k j   }        1 ,      max  k ∈  I m     {  d  k j   }  =  min  k ∈  I m     {  d  k j   }        








is called column normalized matrix (feature-fuzzification matrix) of D.





Definition 11.

Let    (  D  t r a i n   )    m 1  × n    be a training matrix obtained from   D =   [  d  i j   ]   m ×  ( n + 1 )     ,   i ∈  I  m 1    , and   j ∈  I n   . Then, the matrix     D ˜   t r a i n   =   [   d ˜   i j − t r a i n   ]    m 1  × n     defined by


    d ˜   i j − t r a i n   : =         d  i j − t r a i n   −  min  k ∈  I m     {  d  k j   }     max  k ∈  I m     {  d  k j   }  −  min  k ∈  I m     {  d  k j   }    ,      max  k ∈  I m     {  d  k j   }  ≠  min  k ∈  I m     {  d  k j   }        1 ,      max  k ∈  I m     {  d  k j   }  =  min  k ∈  I m     {  d  k j   }        








is called column normalized matrix (feature-fuzzification matrix) of   D  t r a i n   .





Definition 12.

Let    (  D  t e s t   )    m 2  × n    be a testing matrix obtained from   D =   [  d  i j   ]   m ×  ( n + 1 )     ,   i ∈  I  m 2    , and   j ∈  I n   . Then, the matrix     D ˜   t e s t   =   [   d ˜   i j − t e s t   ]    m 1  × n     defined by


    d ˜   i j − t e s t   : =         d  i j − t e s t   −  min  k ∈  I m     {  d  k j   }     max  k ∈  I m     {  d  k j   }  −  min  k ∈  I m     {  d  k j   }    ,      max  k ∈  I m     {  d  k j   }  ≠  min  k ∈  I m     {  d  k j   }        1 ,      max  k ∈  I m     {  d  k j   }  =  min  k ∈  I m     {  d  k j   }        








is called column normalized matrix (feature-fuzzification matrix) of   D  t e s t   .





Definition 13 ([35]).

Let    D  t r a i n   =   [  d  i j − t r a i n   ]    m 1  × n     and   C   m 1  × n    be a training matrix and its class matrix obtained from a data matrix   D =   [  d  i j   ]   m ×  ( n + 1 )     , respectively. Then, the matrix     i f w    D  t r a i n     λ P   =      ν  1 j   λ P    μ  1 j   λ P      1 × n     is called intuitionistic fuzzification weight matrix based on Pearson correlation coefficient of   D  t r a i n    and defined by


   μ  1 j   λ P   : =  1 − ( 1 − | P   (  D  t r a i n − j   , C )    | )  λ   








and


   ν  1 j   λ P   : =  ( 1 − | P   (  D  t r a i n − j   , C )    | )   λ ( λ + 1 )    








such that   j ∈  I n    and   λ ∈ [ 0 , ∞ )  .





Definition 14 ([35]).

Let     D ˜   t r a i n   =   [   d ˜   i j − t r a i n   ]    m 1  × n     be a column normalized matrix of a matrix    (  D  t r a i n   )    m 1  × n   . Then, the matrix     D ≈   t r a i n  λ  =  [   d ≈   t r a i n − i j  λ  ]  =      ν  i j − t r a i n    D ≈  λ    μ  i j − t r a i n    D ≈  λ       m 1  × n     is called intuitionistic fuzzification of    D ˜   t r a i n    and defined by


   μ  i j − t r a i n    D ≈  λ   : = 1 −   ( 1 −   d ˜   i j − t r a i n   )  λ   








and


   ν  i j − t r a i n    D ≈  λ   : =   ( 1 −   d ˜   i j − t r a i n   )   λ ( λ + 1 )    








such that   i ∈  I  m 1    ,   j ∈  I n   , and   λ ∈ [ 0 , ∞ )  .





Definition 15 ([35]).

Let     D ˜   t e s t   =   [   d ˜   i j − t e s t   ]    m 2  × n     be a column normalized matrix of a matrix    (  D  t e s t   )    m 2  × n   . Then, the matrix     D ≈   t e s t  λ  =  [   d ≈   t e s t − i j  λ  ]  =      ν  i j − t e s t    D ≈  λ    μ  i j − t e s t    D ≈  λ       m 2  × n     is called intuitionistic fuzzification of    D ˜   t e s t    and defined by


   μ  i j − t e s t    D ≈  λ   : = 1 −   ( 1 −   d ˜   i j − t e s t   )  λ   








and


   ν  i j − t e s t    D ≈  λ   : =   ( 1 −   d ˜   i j − t e s t   )   λ ( λ + 1 )    








such that   i ∈  I  m 2    ,   j ∈  I n   , and   λ ∈ [ 0 , ∞ )  .





Definition 16 ([35]).

Let    (   D ˜   t r a i n   )    m 1  × n    be a column normalized matrix of a matrix    (  D  t r a i n   )    m 1  × n    and     D ≈   t r a i n  λ  =  [   d ≈   t r a i n − i j  λ  ]  =      ν  i j − t r a i n    D ≈  λ    μ  i j − t r a i n    D ≈  λ       m 1  × n     be the intuitionistic fuzzification of     D ˜    t r a i n   . Then, the ifpifs-matrix     b  i j    D ≈   k − t r a i n  λ     2 × n    is called the training ifpifs-matrix obtained by k-th row of    D ≈   t r a i n  λ   and    i f w    D  t r a i n     λ P    and defined by


   b  0 j    D ≈   k − t r a i n  λ   :  =  ν  1 j   λ P    μ  1 j   λ P     and   b  1 j    D ≈   k − t r a i n  λ   :  =  ν  k j − t r a i n    D ≈  λ    μ  k j − t r a i n    D ≈  λ     








such that   k ∈  I  m 1     and   j ∈  I n   .





Definition 17 ([35]).

Let    (   D ˜   t e s t   )    m 2  × n    be a column normalized matrix of a matrix    (  D  t e s t   )    m 2  × n    and     D ≈   t e s t  λ  =  [   d ≈   t e s t − i j  λ  ]  =      ν  i j − t e s t    D ≈  λ    μ  i j − t e s t    D ≈  λ       m 2  × n     be the intuitionistic fuzzification of    D ˜   t e s t   . Then, the ifpifs-matrix     a  i j    D ≈   k − t e s t  λ     2 × n    is called the testing ifpifs-matrix obtained by k-th row of    D ≈   t e s t  λ   and    i f w    D  t r a i n     λ P    and defined by


   a  0 j    D ≈   k − t e s t  λ   :  =  ν  1 j   λ P    μ  1 j   λ P    and  a  1 j    D ≈   k − t e s t  λ   :  =  ν  k j − t e s t    D ≈  λ    μ  k j − t e s t    D ≈  λ     








such that   k ∈  I  m 1     and   j ∈  I n   .





Afterward, this section proposes a new classifier named IFPIFSC. This classifier utilizes Definition 13 to attain a parameter effect-based feature weight on classification. It then built the training ifpifs-matrix and the testing ifpifs-matrix using Definitions 11, 12, and 14–17. Later, employing HPS, EPS, MPS, HsPS, JPS, and CPS, a matrix of similarity values of the testing ifpifs-matrix to each training ifpifs-matrix is obtained. For each pseudo-similarity, the class of the training sample with the highest similarity is found, and the class with the highest frequency value is determined and assigned to the test sample. Similarly, this procedure repeats for all test samples. Lastly, the predicted class matrix is generated for the test data. IFPIFSC’s flowchart (Figure 1) and algorithm steps (Algorithm 1) are as follows:






	Algorithm 1 IFPIFSC’s pseudocode



	
Input:    (  D  t r a i n   )    m 1  × n   ,   C   m 1  × 1   ,    (  D  t e s t   )    m 2  × n   ,   λ 1  , and   λ 2  



Output:  T   m 2  × 1   



	1:

	
procedure IFPIFSC(  D  t r a i n   , C,   D  t e s t   ,   λ 1  ,   λ 2  )




	2:

	
  Compute    i f w    D  t r a i n      λ 1  P    using   D  t r a i n    and C




	3:

	
  Compute feature fuzzification of   D  t r a i n    and   D  t e s t   , namely    D ˜   t r a i n    and    D ˜   t e s t   




	4:

	
  Compute feature intuitionistic fuzzification of    D ˜   t r a i n    and    D ˜   t e s t   , namely    D ≈   t r a i n   λ 2    and    D ≈   t e s t   λ 2   




	5:

	
  for k from 1 to   m 2   do




	6:

	
    Compute the testing ifpifs-matrix     a  i j    D ≈   k − t e s t   λ 2      2 × n    using    i f w    D  t r a i n      λ 1  P    and    D ≈   k − t e s t   λ 2   




	7:

	
    for l from 1 to   m 1   do




	8:

	
     Compute the training ifpifs-matrix     b  i j    D ≈   k − t r a i n   λ 2      2 × n    using    i f w    D  t r a i n      λ 1  P    and    D ≈   l − t r a i n   λ 2   




	9:

	
       s  m  l 1   ←  s H     a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2        




	10:

	
       s  m  l 2   ←  s E     a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2        




	11:

	
       s  m  l 3   ←  s M 3     a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2        




	12:

	
       s  m  l 4   ←  s  H s      a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2        




	13:

	
       s  m  l 5   ←  s   J      a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2        




	14:

	
       s  m  l 6   ←  s   C      a  i j    D ≈   k − t e s t   λ 2     ,   b  i j    D ≈   k − t r a i n   λ 2       




	15:

	
    end for




	16:

	
       F   m 1  × s   ←   Sorted class matrix of   [   s m   l s   ]   in descending order in terms of each pseudo-similarity




	17:

	
    for i from 1 to   m 1   do




	18:

	
        F i  ← i  -th row of F




	19:

	
       w ←   mode  (  F i  )  




	20:

	
     if mode(Fi) is unique then




	21:

	
     break




	22:

	
     end if




	23:

	
    end for




	24:

	
       t  k 1   ← w  




	25:

	
  end for




	26:

	
  return   T   m 2  × 1    ′   




	27:

	
end procedure















5. Simulation and Performance Comparison


The present section provides the details of the 20 datasets in the UCI-MLR [22] for the classification task. It then presents five performance metrics to be used for performance comparison. Afterward, this section executes a simulation to demonstrate that IFPIFSC exhibits a better-classifying performance than Fuzzy kNN [23], FSSC [24], FussCyier [25], HDFSSC [26], FPFSCC [10], FPFSNHC [9], FPFS-EC [11], FPFS-AC [13], FPFS-CMC [12], FPFS-kNN(P) [14], FPFS-kNN(S) [14], FPFS-kNN(K) [14], SVM [27], DT [28], BT [29], RF [30], and AdaBoost [31] do. Moreover, it performs statistical analyzes of the simulation results employing the Friedman test [32], a non-parametric test, and the Nemenyi test [33], a post hoc test. Finally, this section provides the time complexities of the compared classifiers in compliance with big O notation.



5.1. UCI Datasets and Features


This subsection presents the properties of the following datasets [22], used in the simulation, in Table 1: “Zoo”, “Breast Tissue”, “Teaching Assistant Evaluation”, “Wine”, “Parkinsons[sic] ”, “Sonar”, “Seeds”, “Parkinson Acoustic”, “Ecoli”, “Leaf”, “Ionosphere”, “Libras Movement”, “Dermatology”, “Breast Cancer Wisconsin”, “HCV Data”, “Parkinson’s Disease Classification”, “Mice Protein Expression”, “Semeion Handwritten Digit”, “Car Evaluation”, and “Wireless Indoor Localization”.




5.2. Performance Metrics


This subsection provides the mathematical notations of five performance metrics [36,37,38], i.e., accuracy (Acc), precision (Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF), to compare the aforementioned classifiers. Let    D  t e s t   =  {  x 1  ,  x 2  , … ,  x n  }   ,   T = {  t 1  ,  t 2  , … ,  t n  }  ,    T   ′   =  {  t 1   ′   ,  t 2   ′   , … ,  t n   ′   }   , and l be n samples to be classified, ground truth class sets of the samples, prediction class sets of the samples, and the number of the class of the samples, respectively.


     Acc  ( T ,  T   ′   )  : =  1 l   ∑  i = 1  l    T  P i  + T  N i    T  P i  + T  N i  + F  P i  + F  N i          Pre  ( T ,  T   ′   )  : =  1 l   ∑  i = 1  l    T  P i    T  P i  + F  P i          Rec  ( T ,  T   ′   )  : =  1 l   ∑  i = 1  l    T  P i    T  P i  + F  N i          MacF  ( T ,  T   ′   )  : =  1 l   ∑  i = 1  l    2 T  P i    2 T  P i  + F  P i  + F  N i          MicF  ( T ,  T   ′   )  : =   2  ∑  i = 1  l   T  P i     2  ∑  i = 1  l   T  P i   +  ∑  i = 1  l   F  P i   +  ∑  i = 1  l   F  N i         








where   T  P i   ,   T  N i   ,   F  P i   , and   F  N i    are the number of true positive, true negative, false positive, and false negative, for the class i, respectively, and their mathematical notations are as follows:


     T  P i  : =    x k   | i ∈   T k  ∧ i ∈  T k   ′   , 1 ≤ k ≤ l         T  N i  : =    x t   | i ∉   T k  ∧ i ∉  T k   ′   , 1 ≤ k ≤ l         F  P i  : =    x t   | i ∉   T k  ∧ i ∈  T k   ′   , 1 ≤ k ≤ l         F  N i  : =    x t   | i ∈   T k  ∧ i ∉  T k   ′   , 1 ≤ k ≤ l       











Here, the notation   | . |   denotes the cardinality of a set.




5.3. Simulation Results


This subsection compares IFPIFSC with the state-of-the-art and well-known classifiers rely on fuzzy and soft sets, i.e., Fuzzy 3NN, FussCyier, FSSC, HDFSSC, FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K), and other well-known classifiers, i.e., DT, SVM, BT, RF, and AdaBoost, by utilizing MATLAB R2021b and a laptop with I(R) Core(TM) I5-3230M CPU @ 2.60 GHz and 16 GB RAM. Here, the mean performance results of the classifiers are obtained by random 10 independent runs based on the 5-fold cross-validation [38,39]. In each cross-validation, the relevant dataset is randomly split into five parts, and four of the parts are used for training and the other for testing (for more details about k-fold cross-validation, see [39]). Table 2 provides the average Acc, Pre, Rec, MacF, and MicF results of IFPIFSC, Fuzzy 3NN, FSSC, FussCyier, HDFSSC, FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K) for the datasets.



Table 2 manifests that IFPIFSC exactly classifies the dataset “Mice Protein Expression” just as HDFSSC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K) do. Moreover, in compliance with all performance metrics, the performance results of IFPIFSC for “Ionosphere”, “Zoo”, “Car Evaluation”, “Semeion Handwritten Digit”, “Parkinson’s Disease Classification”, “Seeds”, “Parkinsons[sic]”, “Breast Cancer Wisconsin”, “Dermatology”, “Wine”, and “Wireless Indoor Localization” are over 89%, 89%, 90%, 92%, 92%, 93%, 93%, 95%, 96%, 97%, and 98%, respectively. In addition, IFPIFSC produces the best results in all performance metrics in “Breast Tissue”, “Wine”, “Sonar” (except for Pre value), “Seeds”, “Leaf”, “Ionosphere” (except for Pre value), “Libras Movement”, “Parkinson’s Disease Classification”, “Semeion Handwritten Digit” (except for Pre value), “Car Evaluation” (except for Rec and MacF values), and “Wireless Indoor Localization”. Although IFPIFSC does not produce the best results in all performance metrics in “Parkinsons[sic]”, “Parkinson Acoustic”, and “HCV Data”, it generates the closest results to the best ones for these datasets, except for the Pre value in “Parkinsons[sic]” and the Rec and MacF values in “HCV Data”. Consequently, the mean performance results in Table 2 indicate that IFPIFSC is a more efficient classifier than other classifiers on the considered datasets.



IFPIFSC achieves exceptional classification performance due to its utilizing HPS, EPS, MPS, HsPS, JPS, and CPS over ifpifs-matrices space and Pearson correlation coefficient-based feature weight. Moreover, Table 3 consists of ranking numbers of the best results, while Table 4 includes a pairwise comparison of the ranking results.



Afterward, Table 5 provides the average Acc, Pre, Rec, MacF, and MicF results of IFPIFSC, SVM, DT, BT, RF, and AdaBoost for the datasets. Table 5 shows that IFPIFSC exactly classifies the dataset “Mice Protein Expression” just as SVM, DT, and RF do. Furthermore, according to all performance metrics, the performance results of IFPIFSC for “Ionosphere”, “Zoo”, “Car Evaluation”, “Semeion Handwritten Digit”, “Parkinson’s Disease Classification”, “Parkinsons[sic]”, “Seeds”, “Breast Cancer Wisconsin”, “Dermatology”, “Wine”, and “Wireless Indoor Localization” are over 89%, 89%, 90%, 92%, 92%, 92%, 93%, 95%, 96%, 96%, and 98%, respectively. In addition, IFPIFSC produces the best results in all performance metrics in “Breast Tissue”, “Teaching Assistant Evaluation” (except for Pre value), “Parkinsons[sic]”, “Sonar”, “Seeds”, “Parkinson Acoustic”, “Libras Movement”, “Parkinson’s Disease Classification”, and “Wireless Indoor Localization”. Moreover, though IFPIFSC does not generate the best results in all performance metrics in “Wine”, “Leaf”, and “Dermatology”, it produces the closest results to the best ones for these datasets. As a result, the mean performance results in Table 5 demonstrate that IFPIFSC is a more efficacious classifier than other classifiers on the considered datasets. Moreover, Table 6 consists of ranking numbers of the best results, while Table 7 includes a pairwise comparison of the ranking results.




5.4. Statistical Evaluation


The present subsection performs the Friedman test [32], a non-parametric test, and the Nemenyi test [33], a post hoc test, in a procedure proposed by Demšar [34] to analyze all performance results acquired in view of Acc, Pre, Rec, MacF, and MicF. The Friedman test generates a performance-based ranking of the classifiers for each dataset. Thus, the rank of 1 implies the best-performing classifier, the rank of 2 to the second best, etc. If the performances of the classifiers are equal, then it assigns the average of their possible ranks to their ranks. It then compares the average ranks and calculates   χ F 2  , distributed with   k − 1   degree of freedom. Here, k denotes the classifiers’ number. Afterward, a post hoc test, e.g., the Nemenyi test, is employed to determine the differences between the classifiers. The determined differences between any two classifiers more than critical distance are accepted as statistically significant.



This subsection calculates each classifier’s average ranking using the Friedman test. Here, the number of fuzzy-based classifiers compared with IFPIFSC is 12, i.e.,   k = 13  , and the number of datasets is 20, i.e.,   N = 20  . Friedman test statistics of Acc, Pre, Rec, MacF, and MicF results,    χ F 2  = 108.60  ,    χ F 2  = 106.69  ,    χ F 2  = 90.48  ,    χ F 2  = 108.51  , and    χ F 2  = 110.43  , respectively. For   k = 13   and   N = 20  , the Friedman test critical value is   21.03   at the   α = 0.05   significance level (for more details, see [40]). Since the Friedman test statistics of Acc (108.60), Pre (106.69), Rec (90.48), MacF (108.51), and MicF (110.43) are greater than the critical value 21.03; there is a significant difference between the performances of the classifiers. Hence, the null hypothesis “There are no performance differences between the classifiers” is rejected, and, thus, the Nemenyi test can be applied. For   k = 13  ,   N = 20  , and   α = 0.05  , since the critical value for the infinite degrees of freedom in the table Studentized Range q is   c v = 4.286  , the critical distance is   c d =   c v   2   ×    k × ( k + 1 )   6 × N    =   4.286   2   ×    8 × ( 8 + 1 )   6 × 20    ≈ 2.348   according to the Nemenyi test. The critical diagrams produced by the Nemenyi test for the five performance metrics are presented in Figure 2. Figure 2 manifests that the performance differences between the average rankings of IFPIFSC and those of FPFS-CMC, FPFCC, Fuzzy kNN, FPFS-NHC, FSSC, FussCyier, and HDFSSC, are greater than the critical distance (4.0798). Figure 2 shows that even though the difference between the average rankings of IFPIFSC and FPFS-EC, FPFS-AC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K) is less than the critical distance (4.0798), IFPIFSC performs better than them concerning all performance metrics. Therefore, IFPIFSC outperforms the others statistically for all five performance metrics.



Secondly, this subsection calculates each classifier’s average ranking using the Friedman test. Here, the number of non-fuzzy-based classifiers compared with IFPIFSC is 5, i.e.,   k = 6  , and the number of datasets is 20, i.e.,   N = 20  . Friedman test statistics of Acc, Pre, Rec, MacF, and MicF results,    χ F 2  = 48.65  ,    χ F 2  = 45.28  ,    χ F 2  = 39.93  ,    χ F 2  = 45.64  , and    χ F 2  = 48.65  , respectively. For   k = 6   and   N = 20  , the Friedman test critical value is   11.07   at the   α = 0.05   significance level (for more details, see [40]). Since the Friedman test statistics of Acc (48.65), Pre (45.28), Rec (39.93), MacF (45.64), and MicF (48.65) are greater than the critical value 11.07; there is a significant difference between the performances of the classifiers. Thereby, the null hypothesis “There are no performance differences between the classifiers” is rejected, and, thus, the Nemenyi test can be applied. For   k = 6  ,   N = 20  , and   α = 0.05  , since the value for the infinite degrees of freedom in the table Studentized Range q is   4.030  , the critical distance is     4.030   2   ×    6 × ( 6 + 1 )   6 × 20    ≈ 1.686   according to the Nemenyi test. The critical diagrams generated by the Nemenyi test for the five performance metrics are presented in Figure 3.



Figure 3 demonstrates that the performance differences between the average rankings of IFPIFSC and those of AdaBoost (MacF), SVM, and DT are greater than the critical distance (1.686). In addition, Figure 3 indicates that IFPIFSC realizes better than RF, BT, and AdaBoost in terms of all performance metrics, although the difference between the average rankings of IFPIFSC, RF, BT, and AdaBoost is less than the critical distance (1.686). Therefore, IFPIFSC outperforms the others statistically for all five performance metrics.




5.5. Comparison of the Time Complexity


The present section compares the time complexities of the classifiers by employing a big O notation. From the pseudocode of IFPIFSC, the time complexity is   O ( m n )   since   m n   is higher than   m 6   for each test sample. Here, m and n are the numbers of the training samples and of their attributes, respectively. The time complexities, big O notation herein, of the compared classifiers are presented in Table 8.





6. Conclusions


This study defined the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities, quasi-, semi-, and pseudo-similarities over ifpifs-matrices. Thus, it theoretically contributed to the literature. Next, this study suggested five pseudo-metrics and seven pseudo-similarities over ifpifs-matrices. Hence, it confirmed the existence of the aforementioned contribution. Later, this study propounded IFPIFSC simultaneously using six of the proposed pseudo-similarities and applied it to a data classification problem. In this way, this study clarified how to construct ifpifs-matrices and apply them to real problems in data classification. Furthermore, it compared IFPIFSC with the well-known and state-of-the-art classifiers Fuzzy kNN, FSSC, FussCyier, HDFSSC, FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-kNN(P), FPFS-kNN(S), FPFS-kNN(K), SVM, DT, BT, RF, and AdaBoost and statistically analyzed the comparison results. Thereby, the present study manifested that the proposed method has the best performance results and, thus, is a pretty convenient method in supervised learning.



The success of the available classifiers has natural limits depending on datasets. Therefore, IFPIFSC has been designed to cope with these drawbacks. This classifier allows using novel multiple-similarity functions and threshold values. By this means, IFPIFSC is open to improvement: one of the ways to improve this proposed classifier is to define or use different similarity measures over ifpifs-matrices. The second is to adapt the values   λ 1   and   λ 2   used in the intuitionistic fuzzification of real data. The third is to use SDM methods constructed by fpfs- or ifpifs-matrices to use multiple pseudo-similarities similar to FPFS-AC and FPFS-CMC [12,13]. The fourth, to reduce the negative effects of the inconsistent data in the used datasets on the classification success, is to develop an effective preprocessing step that eliminates or excludes inconsistent data from the evaluation using rough sets [41,42]. The fifth is to develop similar classifiers constructed by interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft matrices [43] modeling further uncertainties than intuitionistic fuzzy uncertainties. To struggle with different uncertainties, the sixth is to consider the new concepts, such as picture fuzzy sets [44,45], Pythagorean fuzzy sets [46,47], Fermatean fuzzy sets [48], q-rung orthopair fuzzy sets [49,50], T-spherical fuzzy sets [51,52], interval-valued fuzzy sets [53,54], interval-valued intuitionistic fuzzy sets [55], and bipolar fuzzy sets [56,57,58]. Finally, IFPIFSC can be customized to produce nearly 100% performance, especially for medical diagnosis problems. Classifiers whose codes are not shared privately or on online platforms, such as MathWorks and GitHub, are not included in the scope of this study.
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Figure 1. IFPIFSC’s flowchart. 
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Figure 2. The critical diagrams obtained by the Friedman test and Nemenyi test at 0.05 significance level for the five performance criteria (for fuzzy-based classifiers). 
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Figure 3. The critical diagrams obtained by the Friedman test and Nemenyi test at 0.05 significance level for the five performance criteria (for non-fuzzy-based classifiers). 
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Table 1. Descriptions of UCI datasets.
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	No.
	Name
	#Instance
	#Attribute
	#Class
	Balanced/Imbalanced





	1
	Zoo
	101
	16
	7
	Imbalanced



	2
	Breast Tissue
	106
	9
	6
	Imbalanced



	3
	Teaching Assistant Evaluation
	151
	5
	3
	Imbalanced



	4
	Wine
	178
	13
	3
	Imbalanced



	5
	Parkinsons[sic]
	195
	22
	2
	Imbalanced



	6
	Sonar
	208
	60
	2
	Imbalanced



	7
	Seeds
	210
	7
	3
	Balanced



	8
	Parkinson Acoustic
	240
	46
	2
	Balanced



	9
	Ecoli
	336
	7
	8
	Imbalanced



	10
	Leaf
	340
	14
	36
	Imbalanced



	11
	Ionosphere
	351
	34
	2
	Imbalanced



	12
	Libras Movement
	360
	90
	15
	Balanced



	13
	Dermatology
	366
	34
	6
	Imbalanced



	14
	Breast Cancer Wisconsin
	569
	30
	2
	Imbalanced



	15
	HCV Data
	589
	12
	5
	Imbalanced



	16
	Parkinson’s Disease Classification
	756
	754
	2
	Imbalanced



	17
	Mice Protein Expression
	1077
	72
	8
	Imbalanced



	18
	Semeion Handwritten Digit
	1593
	265
	2
	Imbalanced



	19
	Car Evaluation
	1728
	6
	4
	Imbalanced



	20
	Wireless Indoor Localization
	2000
	7
	4
	Balanced







# stands for “the number of”.
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Table 2. Simulation results of the fuzzy-based classifiers.






Table 2. Simulation results of the fuzzy-based classifiers.





	
Datasets

	
Classifiers

	
Acc ± SD

	
Pre ± SD

	
Rec ± SD

	
MacF ± SD

	
MicF ± SD






	
Zoo

	
Fuzzy 3NN

	
97.63 ± 1.42

	
90.41 ± 7.22

	
84.13 ± 10.2

	
92.05 ± 5.77

	
91.77 ± 4.98




	
FSSC

	
97.97 ± 1.32

	
90.03 ± 9.13

	
86.56 ± 9.46

	
93.25 ± 4.92

	
93.06 ± 4.51




	
FussCyier

	
97.74 ± 1.42

	
89.39 ± 9.23

	
86.27 ± 9.46

	
92.68 ± 5.21

	
92.26 ± 4.85




	
HDFSSC

	
98.29 ± 1.4

	
91.72 ± 8.15

	
87.45 ± 10.93

	
93.48 ± 5.2

	
94.15 ± 4.79




	
FPFSCC

	
97.17 ± 2.13

	
88.27 ± 10.11

	
82.05 ± 12.41

	
89.22 ± 7.87

	
90.27 ± 7.49




	
FPFSNHC

	
98.29 ± 1.43

	
92 ± 8.53

	
87.17 ± 11.35

	
93.26 ± 5.81

	
94.15 ± 4.9




	
FPFS-EC

	
98.85 ± 1.12

	
94.34 ± 6.98

	
89.86 ± 10.24

	
96.6 ± 4.17

	
96.04 ± 3.88




	
FPFS-AC

	
98.36 ± 1.3

	
91.66 ± 8.15

	
85.9 ± 10.94

	
94.94 ± 5.42

	
94.35 ± 4.49




	
FPFS-CMC

	
98.73 ± 1.48

	
93.81 ± 8.43

	
89.19 ± 12.28

	
96.31 ± 5.2

	
95.64 ± 5.08




	
FPFS-3NN(P)

	
98.22 ± 1.29

	
92.03 ± 7.25

	
86.67 ± 10.38

	
93.17 ± 5.13

	
93.87 ± 4.51




	
FPFS-3NN(S)

	
98.25 ± 1.26

	
92.35 ± 6.81

	
87.1 ± 10.18

	
93.23 ± 5.27

	
93.97 ± 4.38




	
FPFS-3NN(K)

	
98.25 ± 1.26

	
92.35 ± 6.81

	
87.1 ± 10.18

	
93.23 ± 5.27

	
93.97 ± 4.38




	
IFPIFSC

	
98.65 ± 1.23

	
92.79 ± 6.53

	
89.92 ± 8.2

	
96.31 ± 3.69

	
95.35 ± 3.38




	
Breast

Tissue

	
Fuzzy 3NN

	
84.37 ± 2.73

	
56.35 ± 9.71

	
51.64 ± 8.92

	
57.4 ± 7.04

	
53.1 ± 8.18




	
FSSC

	
87.83 ± 2.88

	
64.48 ± 10.14

	
61.95 ± 8.99

	
66.11 ± 7.27

	
63.48 ± 8.65




	
FussCyier

	
87.19 ± 2.97

	
64.15 ± 9.11

	
60.34 ± 9.26

	
64.79 ± 6.92

	
61.58 ± 8.91




	
HDFSSC

	
87.73 ± 3

	
67.57 ± 9.55

	
62.07 ± 9.08

	
64.47 ± 8.27

	
63.2 ± 9




	
FPFSCC

	
87.29 ± 2.65

	
63.77 ± 10.12

	
60.17 ± 8.76

	
67.03 ± 9.22

	
61.87 ± 7.95




	
FPFSNHC

	
87.89 ± 3.23

	
66.78 ± 10.22

	
62.41 ± 10.49

	
66.32 ± 7.89

	
63.66 ± 9.69




	
FPFS-EC

	
88.11 ± 2.74

	
65.95 ± 7.98

	
63.15 ± 8.84

	
70.24 ± 8.51

	
64.33 ± 8.23




	
FPFS-AC

	
89.58 ± 2.66

	
69.54 ± 8.57

	
68.05 ± 8.31

	
71.32 ± 7.91

	
68.75 ± 7.98




	
FPFS-CMC

	
87.82 ± 2.86

	
66.36 ± 8.3

	
62.67 ± 8.98

	
69.26 ± 8.6

	
63.47 ± 8.59




	
FPFS-3NN(P)

	
88.61 ± 2.51

	
65.99 ± 7.5

	
64.44 ± 8.14

	
69.99 ± 7.87

	
65.83 ± 7.54




	
FPFS-3NN(S)

	
88.01 ± 2

	
64.35 ± 5.82

	
62.53 ± 6.52

	
69.23 ± 6.3

	
64.03 ± 6.01




	
FPFS-3NN(K)

	
87.76 ± 2.2

	
63.65 ± 6.44

	
61.84 ± 7.16

	
68.6 ± 5.97

	
63.27 ± 6.6




	
IFPIFSC

	
91.39 ± 2.91

	
75.66 ± 9.25

	
73.18 ± 9.1

	
73.97 ± 8.64

	
74.16 ± 8.73




	
Teaching

Assistant

Evaluation

	
Fuzzy 3NN

	
72.06 ± 5.53

	
59.99 ± 8.74

	
58.06 ± 8.36

	
57.23 ± 8.83

	
58.08 ± 8.3




	
FSSC

	
63.6 ± 4.17

	
49.63 ± 13.36

	
45.98 ± 6.28

	
43.62 ± 6.25

	
45.41 ± 6.25




	
FussCyier

	
63.69 ± 4.33

	
49.43 ± 12.15

	
46.09 ± 6.47

	
43.33 ± 6.56

	
45.53 ± 6.49




	
HDFSSC

	
69.37 ± 4.66

	
55.55 ± 7.82

	
54.2 ± 7.07

	
53.37 ± 7.17

	
54.06 ± 6.99




	
FPFSCC

	
69.12 ± 5.83

	
54.57 ± 9.52

	
53.77 ± 8.73

	
52.49 ± 9.16

	
53.68 ± 8.75




	
FPFSNHC

	
60.86 ± 4.75

	
47.85 ± 14.61

	
41.84 ± 7.21

	
39.41 ± 6.38

	
41.3 ± 7.13




	
FPFS-EC

	
75.53 ± 5.42

	
64.65 ± 9.06

	
63.2 ± 8.24

	
62.67 ± 8.51

	
63.29 ± 8.13




	
FPFS-AC

	
75.75 ± 4.67

	
64.96 ± 7.6

	
63.6 ± 6.96

	
62.9 ± 7.29

	
63.63 ± 7.01




	
FPFS-CMC

	
75.62 ± 4.75

	
64.92 ± 7.88

	
63.41 ± 7.08

	
62.7 ± 7.39

	
63.43 ± 7.12




	
FPFS-3NN(P)

	
72.44 ± 5.48

	
59.41 ± 9.17

	
58.48 ± 8.34

	
57.54 ± 8.68

	
58.66 ± 8.22




	
FPFS-3NN(S)

	
72.39 ± 5.07

	
58.98 ± 8.43

	
58.39 ± 7.7

	
57.5 ± 7.97

	
58.58 ± 7.61




	
FPFS-3NN(K)

	
72.3 ± 5.19

	
58.86 ± 8.64

	
58.26 ± 7.88

	
57.37 ± 8.19

	
58.45 ± 7.79




	
IFPIFSC

	
75.65 ± 4.48

	
64.43 ± 7.28

	
63.31 ± 6.78

	
62.6 ± 6.91

	
63.47 ± 6.72




	
Wine

	
Fuzzy 3NN

	
82.24 ± 4.86

	
73.79 ± 7.79

	
72.06 ± 7.39

	
72.22 ± 7.54

	
73.36 ± 7.3




	
FSSC

	
96.26 ± 2.39

	
94.88 ± 3.1

	
95.3 ± 2.99

	
94.63 ± 3.46

	
94.38 ± 3.58




	
FussCyier

	
96.44 ± 2.21

	
94.97 ± 3.1

	
95.42 ± 2.89

	
94.91 ± 3.19

	
94.66 ± 3.31




	
HDFSSC

	
95.36 ± 2.66

	
93.49 ± 3.7

	
93.84 ± 3.61

	
93.35 ± 3.84

	
93.03 ± 3.99




	
FPFSCC

	
92.43 ± 2.53

	
89.31 ± 3.6

	
89.99 ± 3.4

	
88.89 ± 3.79

	
88.65 ± 3.8




	
FPFSNHC

	
95.54 ± 2.82

	
93.79 ± 3.74

	
94.41 ± 3.53

	
93.47 ± 4.23

	
93.31 ± 4.24




	
FPFS-EC

	
97.64 ± 1.69

	
96.59 ± 2.42

	
97.04 ± 2.1

	
96.61 ± 2.45

	
96.46 ± 2.53




	
FPFS-AC

	
95.87 ± 3.02

	
94.62 ± 3.45

	
94.82 ± 3.82

	
94.11 ± 4.42

	
93.81 ± 4.52




	
FPFS-CMC

	
97.22 ± 2.64

	
96.15 ± 3.51

	
96.52 ± 3.31

	
96 ± 3.9

	
95.84 ± 3.96




	
FPFS-3NN(P)

	
97.19 ± 2.15

	
96.03 ± 2.94

	
96.46 ± 2.72

	
95.93 ± 3.13

	
95.79 ± 3.22




	
FPFS-3NN(S)

	
97.3 ± 2.28

	
96.25 ± 2.98

	
96.61 ± 2.87

	
96.13 ± 3.25

	
95.95 ± 3.42




	
FPFS-3NN(K)

	
96.74 ± 2.54

	
95.59 ± 3.1

	
95.91 ± 3.2

	
95.34 ± 3.59

	
95.11 ± 3.8




	
IFPIFSC

	
98.24 ± 1.71

	
97.65 ± 2.12

	
97.79 ± 2.16

	
97.56 ± 2.36

	
97.36 ± 2.57




	
Parkinsons[sic]

	
Fuzzy 3NN

	
85.38 ± 4.25

	
81.81 ± 6.39

	
78.34 ± 6.89

	
79.19 ± 6.29

	
85.38 ± 4.25




	
FSSC

	
73.79 ± 6.35

	
72.76 ± 4.16

	
79.88 ± 5.09

	
71.49 ± 5.98

	
73.79 ± 6.35




	
FussCyier

	
73.9 ± 6.44

	
73.25 ± 3.95

	
80.51 ± 4.79

	
71.73 ± 6.01

	
73.9 ± 6.44




	
HDFSSC

	
78.21 ± 6.16

	
75.13 ± 5.07

	
82.04 ± 5.57

	
75.41 ± 6.11

	
78.21 ± 6.16




	
FPFSCC

	
74.92 ± 6.14

	
68.07 ± 8.01

	
70.61 ± 10.07

	
68.22 ± 8.38

	
74.92 ± 6.14




	
FPFSNHC

	
73.9 ± 6.51

	
72.86 ± 4.3

	
79.94 ± 5.16

	
71.58 ± 6.15

	
73.9 ± 6.51




	
FPFS-EC

	
95.85 ± 3.15

	
94.37 ± 4.71

	
95.15 ± 4.12

	
94.48 ± 4.17

	
95.85 ± 3.15




	
FPFS-AC

	
92.97 ± 4.27

	
91.04 ± 5.81

	
90.83 ± 6.1

	
90.56 ± 5.67

	
92.97 ± 4.27




	
FPFS-CMC

	
95.03 ± 3.29

	
92.85 ± 4.62

	
94.67 ± 4.17

	
93.5 ± 4.24

	
95.03 ± 3.29




	
FPFS-3NN(P)

	
94.41 ± 3.8

	
93.31 ± 5.26

	
92.03 ± 5.21

	
92.38 ± 5.01

	
94.41 ± 3.8




	
FPFS-3NN(S)

	
93.95 ± 3.62

	
93.2 ± 5.11

	
90.83 ± 5.59

	
91.6 ± 5.03

	
93.95 ± 3.62




	
FPFS-3NN(K)

	
93.95 ± 3.62

	
93.2 ± 5.11

	
90.83 ± 5.59

	
91.6 ± 5.03

	
93.95 ± 3.62




	
IFPIFSC

	
95.23 ± 3.15

	
93.22 ± 4.51

	
94.99 ± 4.17

	
93.73 ± 4.11

	
95.23 ± 3.15




	
Sonar

	
Fuzzy 3NN

	
82.5 ± 5.73

	
83.3 ± 5.77

	
82.04 ± 5.89

	
82.15 ± 5.89

	
82.5 ± 5.73




	
FSSC

	
74.92 ± 7.5

	
75.5 ± 7.88

	
74.44 ± 7.62

	
74.42 ± 7.7

	
74.92 ± 7.5




	
FussCyier

	
72.12 ± 5.63

	
73.68 ± 5.82

	
72.79 ± 5.66

	
71.94 ± 5.73

	
72.12 ± 5.63




	
HDFSSC

	
69.38 ± 7.7

	
69.75 ± 7.96

	
69.46 ± 7.91

	
69.17 ± 7.82

	
69.38 ± 7.7




	
FPFSCC

	
69.22 ± 6.77

	
69.38 ± 6.92

	
68.95 ± 6.84

	
68.82 ± 6.96

	
69.22 ± 6.77




	
FPFSNHC

	
71.06 ± 5.46

	
72.63 ± 5.63

	
71.76 ± 5.44

	
70.87 ± 5.57

	
71.06 ± 5.46




	
FPFS-EC

	
86.57 ± 4.79

	
87.37 ± 4.69

	
86.22 ± 4.88

	
86.34 ± 4.9

	
86.57 ± 4.79




	
FPFS-AC

	
84.99 ± 5.18

	
86.2 ± 4.96

	
84.47 ± 5.38

	
84.62 ± 5.41

	
84.99 ± 5.18




	
FPFS-CMC

	
85.53 ± 4.78

	
86.33 ± 4.73

	
85.22 ± 4.92

	
85.29 ± 4.92

	
85.53 ± 4.78




	
FPFS-3NN(P)

	
86.77 ± 4.62

	
88.1 ± 4.35

	
86.21 ± 4.83

	
86.42 ± 4.87

	
86.77 ± 4.62




	
FPFS-3NN(S)

	
86.19 ± 4.77

	
87.82 ± 4.48

	
85.56 ± 4.97

	
85.79 ± 5.04

	
86.19 ± 4.77




	
FPFS-3NN(K)

	
86.19 ± 4.77

	
87.82 ± 4.48

	
85.56 ± 4.97

	
85.79 ± 5.04

	
86.19 ± 4.77




	
IFPIFSC

	
86.88 ± 5.15

	
87.83 ± 5.35

	
86.47 ± 5.25

	
86.65 ± 5.26

	
86.88 ± 5.15




	
Seeds

	
Fuzzy 3NN

	
90.32 ± 3.44

	
87.35 ± 4.44

	
85.48 ± 5.16

	
85.36 ± 5.4

	
85.48 ± 5.16




	
FSSC

	
94.1 ± 2.08

	
91.54 ± 2.96

	
91.14 ± 3.12

	
91.08 ± 3.18

	
91.14 ± 3.12




	
FussCyier

	
94.13 ± 2.23

	
91.63 ± 3.14

	
91.19 ± 3.34

	
91.15 ± 3.37

	
91.19 ± 3.34




	
HDFSSC

	
93.17 ± 2.13

	
90.34 ± 3.11

	
89.76 ± 3.2

	
89.76 ± 3.19

	
89.76 ± 3.2




	
FPFSCC

	
90.48 ± 3.32

	
86.35 ± 4.91

	
85.71 ± 4.98

	
85.68 ± 5.02

	
85.71 ± 4.98




	
FPFSNHC

	
93.52 ± 2.46

	
90.92 ± 3.43

	
90.29 ± 3.69

	
90.28 ± 3.71

	
90.29 ± 3.69




	
FPFS-EC

	
93.14 ± 2.59

	
90.18 ± 3.98

	
89.71 ± 3.89

	
89.58 ± 4

	
89.71 ± 3.89




	
FPFS-AC

	
93.49 ± 2.59

	
90.71 ± 3.9

	
90.24 ± 3.89

	
90.11 ± 3.95

	
90.24 ± 3.89




	
FPFS-CMC

	
93.05 ± 2.74

	
90.02 ± 4.03

	
89.57 ± 4.11

	
89.45 ± 4.19

	
89.57 ± 4.11




	
FPFS-3NN(P)

	
92.86 ± 2.38

	
89.82 ± 3.5

	
89.29 ± 3.58

	
89.23 ± 3.61

	
89.29 ± 3.58




	
FPFS-3NN(S)

	
93.02 ± 2.66

	
90.06 ± 3.94

	
89.52 ± 4

	
89.46 ± 4.03

	
89.52 ± 4




	
FPFS-3NN(K)

	
92.79 ± 2.51

	
89.77 ± 3.73

	
89.19 ± 3.76

	
89.14 ± 3.78

	
89.19 ± 3.76




	
IFPIFSC

	
95.49 ± 2.11

	
93.59 ± 3.07

	
93.24 ± 3.17

	
93.19 ± 3.25

	
93.24 ± 3.17




	
Parkinson

Acoustic

	
Fuzzy 3NN

	
75.96 ± 5.94

	
76.71 ± 5.98

	
75.96 ± 5.94

	
75.78 ± 6.01

	
75.96 ± 5.94




	
FSSC

	
79.75 ± 5.69

	
80.34 ± 5.56

	
79.75 ± 5.69

	
79.63 ± 5.77

	
79.75 ± 5.69




	
FussCyier

	
80 ± 5.79

	
80.5 ± 5.71

	
80 ± 5.79

	
79.9 ± 5.85

	
80 ± 5.79




	
HDFSSC

	
82.58 ± 4.79

	
83.03 ± 4.65

	
82.58 ± 4.79

	
82.51 ± 4.85

	
82.58 ± 4.79




	
FPFSCC

	
79.96 ± 5.08

	
80.73 ± 5.16

	
79.96 ± 5.08

	
79.83 ± 5.12

	
79.96 ± 5.08




	
FPFSNHC

	
79.08 ± 5.57

	
79.63 ± 5.51

	
79.08 ± 5.57

	
78.97 ± 5.62

	
79.08 ± 5.57




	
FPFS-EC

	
75.71 ± 7.05

	
76.05 ± 7.09

	
75.71 ± 7.05

	
75.62 ± 7.07

	
75.71 ± 7.05




	
FPFS-AC

	
80.67 ± 5.63

	
81.23 ± 5.66

	
80.67 ± 5.63

	
80.58 ± 5.66

	
80.67 ± 5.63




	
FPFS-CMC

	
75.79 ± 6.75

	
76.14 ± 6.89

	
75.79 ± 6.75

	
75.72 ± 6.76

	
75.79 ± 6.75




	
FPFS-3NN(P)

	
80.38 ± 5.33

	
80.98 ± 5.28

	
80.38 ± 5.33

	
80.26 ± 5.4

	
80.38 ± 5.33




	
FPFS-3NN(S)

	
79.79 ± 5.6

	
80.41 ± 5.51

	
79.79 ± 5.6

	
79.67 ± 5.69

	
79.79 ± 5.6




	
FPFS-3NN(K)

	
80.46 ± 5.53

	
81.12 ± 5.47

	
80.46 ± 5.53

	
80.34 ± 5.61

	
80.46 ± 5.53




	
IFPIFSC

	
82.54 ± 5.44

	
82.97 ± 5.39

	
82.54 ± 5.44

	
82.48 ± 5.48

	
82.54 ± 5.44




	
Ecoli

	
Fuzzy 3NN

	
92.08 ± 1.22

	
53.87 ± 3.94

	
60.13 ± 6.24

	
64.95 ± 5.85

	
68.34 ± 4.89




	
FSSC

	
94.73 ± 1.31

	
70.9 ± 7.74

	
74.61 ± 4.46

	
81.39 ± 5.05

	
80.69 ± 4.41




	
FussCyier

	
95.23 ± 1.19

	
73.87 ± 7.4

	
75.16 ± 4.73

	
82.21 ± 5.03

	
82.59 ± 4.08




	
HDFSSC

	
94.99 ± 1.1

	
69.08 ± 6

	
74.43 ± 4.63

	
81.44 ± 4.4

	
81.41 ± 3.85




	
FPFSCC

	
88.74 ± 1.78

	
47.56 ± 8.84

	
51.08 ± 8.31

	
56.28 ± 6.8

	
57.89 ± 5.7




	
FPFSNHC

	
93.64 ± 1.39

	
64 ± 7.65

	
66.75 ± 7.76

	
74.49 ± 6.31

	
76.13 ± 4.98




	
FPFS-EC

	
94.08 ± 1.28

	
68.97 ± 11.17

	
65.21 ± 8.02

	
74.07 ± 6.9

	
78.66 ± 4.75




	
FPFS-AC

	
94.1 ± 1.12

	
72.12 ± 8.3

	
67.66 ± 6.71

	
74.88 ± 4.71

	
79.04 ± 4.06




	
FPFS-CMC

	
93.94 ± 1.14

	
67.75 ± 9.7

	
64.38 ± 6.89

	
72.69 ± 5.24

	
78.18 ± 4.14




	
FPFS-3NN(P)

	
94.49 ± 1.03

	
74.72 ± 8.65

	
65.59 ± 6.41

	
74.75 ± 5.57

	
81.31 ± 3.45




	
FPFS-3NN(S)

	
95.18 ± 1.01

	
78.06 ± 7.5

	
70.1 ± 6.75

	
78.82 ± 5.3

	
83.66 ± 3.43




	
FPFS-3NN(K)

	
95.26 ± 1

	
77.83 ± 7.43

	
70.88 ± 6.87

	
78.46 ± 5.68

	
83.93 ± 3.34




	
IFPIFSC

	
94.8 ± 1.06

	
77.54 ± 7.7

	
71.43 ± 5.67

	
79.18 ± 4.76

	
81.73 ± 3.65




	
Leaf

	
Fuzzy 3NN

	
96.14 ± 0.23

	
31.16 ± 4.69

	
31.18 ± 3.95

	
61.27 ± 4.03

	
31.94 ± 4.05




	
FSSC

	
97.43 ± 0.34

	
66.6 ± 5.92

	
61.82 ± 5.22

	
70.9 ± 3.85

	
61.5 ± 5.13




	
FussCyier

	
97.46 ± 0.35

	
66.76 ± 5.82

	
62.26 ± 5.23

	
71.58 ± 3.66

	
61.97 ± 5.21




	
HDFSSC

	
97.6 ± 0.32

	
68.65 ± 5.49

	
64.47 ± 5.01

	
72.52 ± 3.51

	
63.97 ± 4.77




	
FPFSCC

	
96.95 ± 0.32

	
59.05 ± 5.89

	
54.58 ± 5.07

	
67.86 ± 4.42

	
54.26 ± 4.75




	
FPFSNHC

	
97.46 ± 0.3

	
66.45 ± 5.12

	
62.43 ± 4.6

	
72.58 ± 3.27

	
61.97 ± 4.52




	
FPFS-EC

	
97.8 ± 0.3

	
71.26 ± 5.97

	
67.11 ± 5.04

	
74.37 ± 3.3

	
67.06 ± 4.54




	
FPFS-AC

	
97.85 ± 0.28

	
72.46 ± 4.26

	
67.86 ± 4.56

	
74.59 ± 3.43

	
67.74 ± 4.27




	
FPFS-CMC

	
97.74 ± 0.28

	
70.79 ± 4.49

	
66.38 ± 4.59

	
73.41 ± 3.59

	
66.15 ± 4.21




	
FPFS-3NN(P)

	
97.78 ± 0.28

	
71.74 ± 4.52

	
66.47 ± 3.9

	
74.31 ± 4.11

	
66.65 ± 4.13




	
FPFS-3NN(S)

	
97.94 ± 0.3

	
74.14 ± 4.72

	
68.83 ± 4.46

	
75.74 ± 4.15

	
69.12 ± 4.56




	
FPFS-3NN(K)

	
97.92 ± 0.31

	
74.32 ± 4.83

	
68.6 ± 4.43

	
75.16 ± 4.04

	
68.82 ± 4.62




	
IFPIFSC

	
98.15 ± 0.26

	
76.88 ± 4.09

	
72.17 ± 3.95

	
76.88 ± 3.11

	
72.24 ± 3.87




	
Ionosphere

	
Fuzzy 3NN

	
84.99 ± 3.61

	
89.17 ± 3.11

	
79.57 ± 4.86

	
81.66 ± 4.98

	
84.99 ± 3.61




	
FSSC

	
64.1 ± 0.37

	
64.1 ± 0.37

	
50 ± 0

	
78.13 ± 0.27

	
64.1 ± 0.37




	
FussCyier

	
64.1 ± 0.37

	
64.1 ± 0.37

	
50 ± 0

	
78.13 ± 0.27

	
64.1 ± 0.37




	
HDFSSC

	
64.1 ± 0.37

	
64.1 ± 0.37

	
50 ± 0

	
78.13 ± 0.27

	
64.1 ± 0.37




	
FPFSCC

	
84.88 ± 6.17

	
84.51 ± 6.72

	
83.52 ± 5.79

	
83.58 ± 6.36

	
84.88 ± 6.17




	
FPFSNHC

	
82.6 ± 4.17

	
83.27 ± 5.08

	
78.43 ± 4.94

	
79.76 ± 5.1

	
82.6 ± 4.17




	
FPFS-EC

	
89.55 ± 3.65

	
91.98 ± 2.91

	
85.94 ± 4.97

	
87.73 ± 4.71

	
89.55 ± 3.65




	
FPFS-AC

	
88.81 ± 3.5

	
91.82 ± 2.63

	
84.79 ± 4.77

	
86.76 ± 4.52

	
88.81 ± 3.5




	
FPFS-CMC

	
89.12 ± 2.91

	
91.59 ± 2.48

	
85.44 ± 3.98

	
87.28 ± 3.69

	
89.12 ± 2.91




	
FPFS-3NN(P)

	
87.81 ± 2.84

	
91.11 ± 2.4

	
83.42 ± 3.83

	
85.51 ± 3.66

	
87.81 ± 2.84




	
FPFS-3NN(S)

	
87.78 ± 3.11

	
90.9 ± 3.02

	
83.47 ± 4.01

	
85.53 ± 3.9

	
87.78 ± 3.11




	
FPFS-3NN(K)

	
87.87 ± 3.09

	
91.03 ± 2.88

	
83.55 ± 4.04

	
85.62 ± 3.91

	
87.87 ± 3.09




	
IFPIFSC

	
91.14 ± 2.91

	
91.26 ± 3.43

	
89.54 ± 3.25

	
90.19 ± 3.22

	
91.14 ± 2.91




	
Libras

Movement

	
Fuzzy 3NN

	
95.9 ± 0.55

	
73.7 ± 3.83

	
69.23 ± 4.06

	
69.07 ± 4.07

	
69.22 ± 4.13




	
FSSC

	
93.13 ± 0.75

	
54.48 ± 5.59

	
48.39 ± 5.68

	
52.25 ± 5.52

	
48.44 ± 5.62




	
FussCyier

	
93.39 ± 0.72

	
55.52 ± 5.74

	
50.39 ± 5.58

	
53.84 ± 4.93

	
50.42 ± 5.43




	
HDFSSC

	
93.94 ± 0.72

	
59.18 ± 5.98

	
54.49 ± 5.51

	
58.01 ± 4.74

	
54.58 ± 5.41




	
FPFSCC

	
93.17 ± 0.75

	
53.71 ± 5.96

	
48.71 ± 5.7

	
52.09 ± 5.15

	
48.81 ± 5.66




	
FPFSNHC

	
93.15 ± 0.8

	
53.32 ± 6.05

	
48.64 ± 6

	
53 ± 5.49

	
48.64 ± 5.99




	
FPFS-EC

	
97.01 ± 0.56

	
80.44 ± 4.62

	
77.59 ± 4.18

	
77.63 ± 4.17

	
77.56 ± 4.2




	
FPFS-AC

	
97.33 ± 0.52

	
82.59 ± 3.83

	
80.09 ± 3.78

	
79.78 ± 3.61

	
79.94 ± 3.87




	
FPFS-CMC

	
96.95 ± 0.59

	
79.7 ± 4.51

	
77.27 ± 4.26

	
77.64 ± 4.35

	
77.14 ± 4.4




	
FPFS-3NN(P)

	
96.85 ± 0.59

	
80.47 ± 4.13

	
76.42 ± 4.4

	
76.22 ± 4.21

	
76.39 ± 4.44




	
FPFS-3NN(S)

	
96.74 ± 0.6

	
79.61 ± 3.79

	
75.55 ± 4.43

	
75.26 ± 4.24

	
75.56 ± 4.5




	
FPFS-3NN(K)

	
96.75 ± 0.62

	
79.67 ± 3.96

	
75.62 ± 4.57

	
75.31 ± 4.37

	
75.61 ± 4.65




	
IFPIFSC

	
97.89 ± 0.46

	
86.55 ± 3.16

	
84.21 ± 3.53

	
83.65 ± 3.59

	
84.17 ± 3.43




	
Dermatology

	
Fuzzy 3NN

	
91.22 ± 1.2

	
77.95 ± 3.66

	
71.9 ± 4.71

	
72.01 ± 4.45

	
73.66 ± 3.6




	
FSSC

	
99.15 ± 0.55

	
97.36 ± 1.75

	
97.14 ± 1.88

	
97.13 ± 1.86

	
97.46 ± 1.65




	
FussCyier

	
98.62 ± 0.81

	
95.82 ± 2.32

	
96.27 ± 2.11

	
95.78 ± 2.41

	
95.85 ± 2.44




	
HDFSSC

	
98.87 ± 0.72

	
96.51 ± 2.2

	
96.5 ± 2.16

	
96.31 ± 2.28

	
96.61 ± 2.16




	
FPFSCC

	
93.85 ± 1.33

	
83.13 ± 3.86

	
82.69 ± 3.73

	
81.68 ± 3.88

	
81.56 ± 3.99




	
FPFSNHC

	
97.75 ± 0.96

	
93.65 ± 2.52

	
93.77 ± 2.72

	
93.08 ± 2.95

	
93.25 ± 2.88




	
FPFS-EC

	
98.03 ± 0.77

	
94.21 ± 2.19

	
93.98 ± 2.4

	
93.69 ± 2.41

	
94.1 ± 2.31




	
FPFS-AC

	
98.83 ± 0.78

	
96.53 ± 2.33

	
96.23 ± 2.5

	
96.23 ± 2.5

	
96.5 ± 2.33




	
FPFS-CMC

	
97.66 ± 0.81

	
92.75 ± 2.6

	
92.65 ± 2.74

	
92.42 ± 2.66

	
92.98 ± 2.43




	
FPFS-3NN(P)

	
97.4 ± 0.88

	
92.31 ± 2.57

	
91.98 ± 2.76

	
91.76 ± 2.8

	
92.21 ± 2.65




	
FPFS-3NN(S)

	
98.31 ± 0.72

	
94.78 ± 2.3

	
94.65 ± 2.37

	
94.46 ± 2.38

	
94.94 ± 2.17




	
FPFS-3NN(K)

	
98.24 ± 0.76

	
94.66 ± 2.3

	
94.5 ± 2.38

	
94.28 ± 2.44

	
94.72 ± 2.27




	
IFPIFSC

	
99.01 ± 0.72

	
96.93 ± 2.37

	
96.72 ± 2.3

	
96.67 ± 2.41

	
97.02 ± 2.15




	
Breast

Cancer

Wisconsin

	
Fuzzy 3NN

	
92.02 ± 2.1

	
91.97 ± 2.24

	
90.96 ± 2.39

	
91.36 ± 2.29

	
92.02 ± 2.1




	
FSSC

	
93.64 ± 2.33

	
93.4 ± 2.49

	
93.03 ± 2.64

	
93.16 ± 2.52

	
93.64 ± 2.33




	
FussCyier

	
93.53 ± 2.3

	
94.3 ± 2.18

	
91.98 ± 2.88

	
92.88 ± 2.58

	
93.53 ± 2.3




	
HDFSSC

	
92.85 ± 2.27

	
93 ± 2.29

	
91.69 ± 2.79

	
92.22 ± 2.52

	
92.85 ± 2.27




	
FPFSCC

	
93.34 ± 1.9

	
93.09 ± 2.09

	
92.73 ± 2.12

	
92.85 ± 2.04

	
93.34 ± 1.9




	
FPFSNHC

	
93.81 ± 2.25

	
94.69 ± 2.11

	
92.22 ± 2.79

	
93.19 ± 2.52

	
93.81 ± 2.25




	
FPFS-EC

	
95.27 ± 1.65

	
95.09 ± 1.94

	
94.88 ± 1.68

	
94.94 ± 1.75

	
95.27 ± 1.65




	
FPFS-AC

	
95.08 ± 1.58

	
94.85 ± 1.79

	
94.76 ± 1.74

	
94.74 ± 1.68

	
95.08 ± 1.58




	
FPFS-CMC

	
95.03 ± 1.74

	
94.84 ± 1.9

	
94.62 ± 1.94

	
94.67 ± 1.86

	
95.03 ± 1.74




	
FPFS-3NN(P)

	
96.63 ± 1.43

	
96.75 ± 1.6

	
96.07 ± 1.59

	
96.37 ± 1.54

	
96.63 ± 1.43




	
FPFS-3NN(S)

	
96.54 ± 1.52

	
96.68 ± 1.69

	
95.96 ± 1.68

	
96.27 ± 1.63

	
96.54 ± 1.52




	
FPFS-3NN(K)

	
96.54 ± 1.52

	
96.68 ± 1.69

	
95.96 ± 1.68

	
96.27 ± 1.63

	
96.54 ± 1.52




	
IFPIFSC

	
95.69 ± 1.43

	
95.57 ± 1.59

	
95.28 ± 1.6

	
95.38 ± 1.54

	
95.69 ± 1.43




	
HCV

Data

	
Fuzzy 3NN

	
97.17 ± 0.53

	
54.58 ± 11.24

	
48.12 ± 12.36

	
67.13 ± 10.33

	
92.94 ± 1.31




	
FSSC

	
97.29 ± 0.62

	
64.38 ± 8.68

	
63.6 ± 11.47

	
69.32 ± 7.91

	
93.23 ± 1.55




	
FussCyier

	
97.32 ± 0.61

	
65.17 ± 9.47

	
62.55 ± 11.3

	
69.64 ± 8.84

	
93.31 ± 1.52




	
HDFSSC

	
96.73 ± 0.96

	
62.71 ± 8.67

	
64.74 ± 11.14

	
67.65 ± 6.87

	
91.82 ± 2.41




	
FPFSCC

	
95.95 ± 0.99

	
51.7 ± 13.03

	
50.43 ± 11.24

	
65.59 ± 10.15

	
89.88 ± 2.48




	
FPFSNHC

	
97.15 ± 0.64

	
63.69 ± 12.44

	
54.98 ± 11

	
68.58 ± 6.68

	
92.87 ± 1.61




	
FPFS-EC

	
97.11 ± 0.57

	
60.45 ± 14.64

	
47.08 ± 10

	
82.26 ± 10.98

	
92.78 ± 1.42




	
FPFS-AC

	
97.97 ± 0.58

	
73.93 ± 14.51

	
55.96 ± 10.7

	
76.71 ± 10.02

	
94.92 ± 1.45




	
FPFS-CMC

	
97.04 ± 0.55

	
63.74 ± 13.69

	
48.65 ± 10.22

	
76.46 ± 10.7

	
92.6 ± 1.38




	
FPFS-3NN(P)

	
97 ± 0.33

	
56.97 ± 9.95

	
38.03 ± 5.65

	
84.43 ± 9.4

	
92.51 ± 0.84




	
FPFS-3NN(S)

	
97.3 ± 0.41

	
67.66 ± 12.12

	
43.88 ± 7.76

	
80.49 ± 9.48

	
93.26 ± 1.04




	
FPFS-3NN(K)

	
97.3 ± 0.41

	
67.22 ± 11.88

	
43.88 ± 7.76

	
80.4 ± 9.54

	
93.26 ± 1.04




	
IFPIFSC

	
97.92 ± 0.52

	
70.56 ± 10.8

	
57.48 ± 12.03

	
74.69 ± 7.55

	
94.81 ± 1.29




	
Parkinson’s

Disease

Classification

	
Fuzzy 3NN

	
71.27 ± 3.19

	
61.36 ± 4.28

	
60.41 ± 3.76

	
60.68 ± 3.93

	
71.27 ± 3.19




	
FSSC

	
38.3 ± 7

	
47.68 ± 4.78

	
48 ± 4.87

	
37.76 ± 6.63

	
38.3 ± 7




	
FussCyier

	
62.3 ± 16.08

	
47.44 ± 6.03

	
49.01 ± 2.09

	
44.4 ± 11.95

	
62.3 ± 16.08




	
HDFSSC

	
62.52 ± 15.96

	
47.31 ± 6.73

	
49.01 ± 2.22

	
45.17 ± 13.02

	
62.52 ± 15.96




	
FPFSCC

	
74.56 ± 3.9

	
69.04 ± 4.1

	
72.65 ± 4.7

	
69.79 ± 4.35

	
74.56 ± 3.9




	
FPFSNHC

	
73.79 ± 2.84

	
67.85 ± 3.19

	
70.99 ± 4.09

	
68.52 ± 3.36

	
73.79 ± 2.84




	
FPFS-EC

	
94.1 ± 2.37

	
92.32 ± 3.28

	
92.24 ± 3.28

	
92.22 ± 3.12

	
94.1 ± 2.37




	
FPFS-AC

	
93.63 ± 1.88

	
91.87 ± 2.76

	
91.38 ± 2.66

	
91.55 ± 2.46

	
93.63 ± 1.88




	
FPFS-CMC

	
90.9 ± 2.32

	
88.37 ± 3.44

	
87.72 ± 2.89

	
87.94 ± 2.94

	
90.9 ± 2.32




	
FPFS-3NN(P)

	
92.39 ± 1.93

	
91.11 ± 2.59

	
88.57 ± 3.4

	
89.62 ± 2.79

	
92.39 ± 1.93




	
FPFS-3NN(S)

	
91.67 ± 1.88

	
89.89 ± 2.54

	
87.84 ± 3.3

	
88.69 ± 2.73

	
91.67 ± 1.88




	
FPFS-3NN(K)

	
91.67 ± 1.85

	
89.96 ± 2.44

	
87.74 ± 3.36

	
88.66 ± 2.73

	
91.67 ± 1.85




	
IFPIFSC

	
94.95 ± 1.56

	
93.76 ± 2.18

	
92.96 ± 2.56

	
93.27 ± 2.12

	
94.95 ± 1.56




	
Mice

Protein

Expression

	
Fuzzy 3NN

	
99.89 ± 0.12

	
99.58 ± 0.43

	
99.56 ± 0.47

	
99.56 ± 0.46

	
99.55 ± 0.47




	
FSSC

	
98.67 ± 0.48

	
95.01 ± 1.8

	
94.9 ± 1.86

	
94.83 ± 1.88

	
94.69 ± 1.92




	
FussCyier

	
98.75 ± 0.48

	
95.33 ± 1.78

	
95.22 ± 1.85

	
95.14 ± 1.88

	
94.99 ± 1.9




	
HDFSSC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFSCC

	
99.98 ± 0.05

	
99.91 ± 0.18

	
99.91 ± 0.19

	
99.91 ± 0.19

	
99.91 ± 0.19




	
FPFSNHC

	
99.98 ± 0.05

	
99.93 ± 0.16

	
99.93 ± 0.16

	
99.92 ± 0.16

	
99.92 ± 0.18




	
FPFS-EC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFS-AC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFS-CMC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFS-3NN(P)

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFS-3NN(S)

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
FPFS-3NN(K)

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
IFPIFSC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
Semeion

Handwritten

Digit

	
Fuzzy 3NN

	
97.23 ± 0.71

	
97.67 ± 1.47

	
86.67 ± 3.56

	
91.16 ± 2.66

	
97.23 ± 0.71




	
FSSC

	
44.16 ± 2.96

	
57.54 ± 0.36

	
68.98 ± 1.66

	
40.62 ± 2.23

	
44.16 ± 2.96




	
FussCyier

	
76.2 ± 2.65

	
64.06 ± 1.33

	
84.36 ± 2.19

	
64.53 ± 2.41

	
76.2 ± 2.65




	
HDFSSC

	
89.45 ± 1.75

	
73.53 ± 2.52

	
88.22 ± 2.91

	
78 ± 2.7

	
89.45 ± 1.75




	
FPFSCC

	
66.56 ± 7.62

	
60.04 ± 2.83

	
75.92 ± 4.98

	
56.13 ± 6.03

	
66.56 ± 7.62




	
FPFSNHC

	
80.18 ± 2.34

	
65.7 ± 1.66

	
85.25 ± 2.8

	
67.85 ± 2.51

	
80.18 ± 2.34




	
FPFS-EC

	
96.65 ± 0.9

	
92.33 ± 2.98

	
88.4 ± 3.78

	
90.11 ± 2.86

	
96.65 ± 0.9




	
FPFS-AC

	
95.2 ± 1.37

	
88.24 ± 4.48

	
83.75 ± 4.72

	
85.68 ± 4.24

	
95.2 ± 1.37




	
FPFS-CMC

	
94.46 ± 1.15

	
85.4 ± 3.78

	
82.85 ± 3.92

	
83.93 ± 3.42

	
94.46 ± 1.15




	
FPFS-3NN(P)

	
96.62 ± 0.77

	
94.26 ± 2.45

	
86.1 ± 3.52

	
89.53 ± 2.62

	
96.62 ± 0.77




	
FPFS-3NN(S)

	
96.62 ± 0.77

	
94.26 ± 2.45

	
86.1 ± 3.52

	
89.53 ± 2.62

	
96.62 ± 0.77




	
FPFS-3NN(K)

	
96.62 ± 0.77

	
94.26 ± 2.45

	
86.1 ± 3.52

	
89.53 ± 2.62

	
96.62 ± 0.77




	
IFPIFSC

	
98.14 ± 0.75

	
97.32 ± 1.85

	
92.16 ± 3.47

	
94.42 ± 2.43

	
98.14 ± 0.75




	
Car

Evaluation

	
Fuzzy 3NN

	
94.43 ± 0.71

	
79.11 ± 2.84

	
62.39 ± 4.61

	
66.95 ± 4.89

	
88.86 ± 1.41




	
FSSC

	
72.2 ± 1.04

	
38.09 ± 1.48

	
57.24 ± 3.43

	
34.39 ± 1.83

	
44.39 ± 2.08




	
FussCyier

	
80.38 ± 1.08

	
44.49 ± 1.83

	
65.07 ± 3.52

	
45.43 ± 2.22

	
60.76 ± 2.16




	
HDFSSC

	
86.66 ± 1.05

	
55.65 ± 2.45

	
76.71 ± 4.15

	
60.53 ± 3.05

	
73.32 ± 2.09




	
FPFSCC

	
84.99 ± 1.43

	
58.65 ± 4.56

	
75.17 ± 4.82

	
62.41 ± 5.01

	
69.98 ± 2.87




	
FPFSNHC

	
79.61 ± 1.06

	
42.66 ± 2.21

	
63.24 ± 3.35

	
43.42 ± 2.78

	
59.21 ± 2.11




	
FPFS-EC

	
97.46 ± 0.54

	
90.01 ± 2.56

	
89.04 ± 3.82

	
89.25 ± 2.96

	
94.91 ± 1.07




	
FPFS-AC

	
97.79 ± 0.56

	
90.51 ± 3.23

	
92.62 ± 2.64

	
91.24 ± 2.86

	
95.57 ± 1.13




	
FPFS-CMC

	
97.42 ± 0.62

	
89.93 ± 3.01

	
88.59 ± 3.57

	
88.88 ± 2.95

	
94.85 ± 1.24




	
FPFS-3NN(P)

	
97.7 ± 0.69

	
89.07 ± 3.8

	
90.77 ± 3.76

	
89.62 ± 3.7

	
95.41 ± 1.38




	
FPFS-3NN(S)

	
97.77 ± 0.64

	
89.4 ± 3.55

	
91.12 ± 3.47

	
89.99 ± 3.39

	
95.54 ± 1.28




	
FPFS-3NN(K)

	
97.75 ± 0.65

	
89.39 ± 3.61

	
91.03 ± 3.45

	
89.93 ± 3.42

	
95.49 ± 1.29




	
IFPIFSC

	
98.03 ± 0.42

	
91.27 ± 3.03

	
90.41 ± 3.19

	
90.59 ± 2.64

	
96.06 ± 0.85




	
Wireless

Indoor

Localization

	
Fuzzy 3NN

	
99.13 ± 0.28

	
98.29 ± 0.55

	
98.26 ± 0.56

	
98.26 ± 0.56

	
98.26 ± 0.56




	
FSSC

	
97.5 ± 0.42

	
95.42 ± 0.71

	
95 ± 0.83

	
94.99 ± 0.84

	
95 ± 0.83




	
FussCyier

	
97.62 ± 0.4

	
95.64 ± 0.68

	
95.24 ± 0.8

	
95.24 ± 0.8

	
95.24 ± 0.8




	
HDFSSC

	
96.73 ± 0.57

	
93.9 ± 1.04

	
93.46 ± 1.15

	
93.46 ± 1.15

	
93.46 ± 1.15




	
FPFSCC

	
91.39 ± 0.88

	
83.12 ± 1.73

	
82.79 ± 1.76

	
82.61 ± 1.78

	
82.79 ± 1.76




	
FPFSNHC

	
94.64 ± 0.75

	
89.79 ± 1.36

	
89.27 ± 1.5

	
89.33 ± 1.48

	
89.27 ± 1.5




	
FPFS-EC

	
94.86 ± 0.79

	
89.83 ± 1.57

	
89.73 ± 1.58

	
89.73 ± 1.58

	
89.73 ± 1.58




	
FPFS-AC

	
95.63 ± 0.59

	
91.4 ± 1.18

	
91.26 ± 1.19

	
91.26 ± 1.19

	
91.26 ± 1.19




	
FPFS-CMC

	
94.54 ± 0.69

	
89.22 ± 1.37

	
89.09 ± 1.39

	
89.1 ± 1.38

	
89.09 ± 1.39




	
FPFS-3NN(P)

	
95.27 ± 0.73

	
90.71 ± 1.43

	
90.54 ± 1.46

	
90.57 ± 1.45

	
90.54 ± 1.46




	
FPFS-3NN(S)

	
95.05 ± 0.73

	
90.28 ± 1.41

	
90.11 ± 1.46

	
90.14 ± 1.44

	
90.11 ± 1.46




	
FPFS-3NN(K)

	
96.32 ± 0.67

	
92.8 ± 1.29

	
92.64 ± 1.33

	
92.67 ± 1.32

	
92.64 ± 1.33




	
IFPIFSC

	
99.15 ± 0.24

	
98.32 ± 0.47

	
98.3 ± 0.48

	
98.3 ± 0.48

	
98.3 ± 0.48




	
Mean

Performance

Results

	
Fuzzy 3NN

	
89.1 ± 2.42

	
75.91 ± 4.92

	
72.31 ± 5.51

	
76.27 ± 5.06

	
78.7 ± 3.99




	
FSSC

	
82.93 ± 2.53

	
73.21 ± 4.9

	
73.38 ± 4.66

	
72.95 ± 4.25

	
73.58 ± 4.08




	
FussCyier

	
86.01 ± 2.9

	
73.98 ± 4.86

	
74.51 ± 4.5

	
74.96 ± 4.49

	
77.12 ± 4.48




	
HDFSSC

	
87.43 ± 2.91

	
75.51 ± 4.69

	
76.26 ± 4.69

	
77.25 ± 4.55

	
79.42 ± 4.44




	
FPFSCC

	
86.25 ± 3.08

	
72.2 ± 5.91

	
73.07 ± 5.94

	
73.55 ± 5.58

	
75.43 ± 4.9




	
FPFSNHC

	
87.2 ± 2.49

	
75.07 ± 5.28

	
75.64 ± 5.21

	
75.39 ± 4.4

	
77.92 ± 4.13




	
FPFS-EC

	
93.17 ± 2.1

	
84.82 ± 5.04

	
82.56 ± 4.91

	
85.91 ± 4.43

	
86.92 ± 3.5




	
FPFS-AC

	
93.2 ± 2.1

	
85.81 ± 4.87

	
83.25 ± 4.85

	
85.63 ± 4.35

	
87.36 ± 3.48




	
FPFS-CMC

	
92.68 ± 2.1

	
84.03 ± 4.97

	
81.73 ± 4.9

	
84.63 ± 4.4

	
86.24 ± 3.55




	
FPFS-3NN(P)

	
93.04 ± 1.95

	
84.75 ± 4.47

	
81.39 ± 4.46

	
85.38 ± 4.28

	
86.67 ± 3.31




	
FPFS-3NN(S)

	
92.99 ± 1.95

	
85.45 ± 4.41

	
81.9 ± 4.53

	
85.38 ± 4.19

	
86.84 ± 3.26




	
FPFS-3NN(K)

	
93.03 ± 1.96

	
85.51 ± 4.43

	
81.98 ± 4.58

	
85.38 ± 4.21

	
86.89 ± 3.3




	
IFPIFSC

	
94.45 ± 1.83

	
88.21 ± 4.21

	
86.11 ± 4.31

	
87.98 ± 3.68

	
89.62 ± 3.03








Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. The best performance results are shown in bold.
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Table 3. Ranking numbers of the best results for all fuzzy-based classifiers.






Table 3. Ranking numbers of the best results for all fuzzy-based classifiers.





	Classifiers
	Acc
	Pre
	Rec
	MacF
	MicF
	Total Rank





	Fuzzy 3NN
	0/20
	1/20
	0/20
	0/20
	0/20
	1/100



	FSSC
	1/20
	1/20
	1/20
	1/20
	1/20
	5/100



	FussCyier
	0/20
	0/20
	1/20
	1/20
	0/20
	2/100



	HDFSSC
	2/20
	2/20
	3/20
	2/20
	2/20
	11/100



	FPFSCC
	0/20
	0/20
	0/20
	0/20
	0/20
	0/100



	FPFSNHC
	0/20
	0/20
	0/20
	0/20
	0/20
	0/100



	FPFS-EC
	3/20
	4/20
	2/20
	3/20
	3/20
	15/100



	FPFS-AC
	3/20
	3/20
	3/20
	3/20
	3/20
	15/100



	FPFS-CMC
	1/20
	1/20
	1/20
	1/20
	1/20
	5/100



	FPFS-3NN(P)
	2/20
	3/20
	2/20
	3/20
	2/20
	12/100



	FPFS-3NN(S)
	1/20
	2/20
	1/20
	1/20
	1/20
	6/100



	FPFS-3NN(K)
	2/20
	1/20
	1/20
	1/20
	2/20
	7/100



	IFPIFSC
	12/20
	9/20
	12/20
	11/20
	12/20
	56/100
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Table 4. Ranking numbers of the best results of IFPIFSC over the others.






Table 4. Ranking numbers of the best results of IFPIFSC over the others.





	Classifiers
	Acc
	Pre
	Rec
	MacF
	MicF





	IFPIFSC versus Fuzzy 3NN
	20
	19
	20
	20
	20



	IFPIFSC versus FSSC
	19
	19
	17
	18
	19



	IFPIFSC versus FussCyier
	19
	20
	18
	19
	20



	IFPIFSC versus HDFSSC
	18
	19
	17
	18
	19



	IFPIFSC versus FPFSCC
	20
	20
	20
	20
	20



	IFPIFSC versus FPFSNHC
	20
	20
	20
	20
	20



	IFPIFSC versus FPFS-EC
	18
	16
	19
	16
	17



	IFPIFSC versus FPFS-AC
	18
	17
	18
	17
	18



	IFPIFSC versus FPFS-CMC
	19
	17
	19
	19
	19



	IFPIFSC versus FPFS-3NN(P)
	19
	17
	18
	18
	19



	IFPIFSC versus FPFS-3NN(S)
	18
	18
	18
	18
	18



	IFPIFSC versus FPFS-3NN(K)
	18
	18
	18
	18
	18
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Table 5. Simulation results of the non-fuzzy-based classifiers.






Table 5. Simulation results of the non-fuzzy-based classifiers.





	
Datasets

	
Classifiers

	
Acc ± SD

	
Pre ± SD

	
Rec ± SD

	
MacF ± SD

	
MicF ± SD






	
Zoo

	
SVM

	
98.51 ± 1.14

	
92.64 ± 6.1

	
89.79 ± 7.5

	
94.88 ± 4.55

	
94.84 ± 3.99




	
DT

	
96.97 ± 1.19

	
83.19 ± 8.82

	
76.02 ± 9.61

	
87.71 ± 4.33

	
89.6 ± 4.18




	
BT

	
82.45 ± 1.28

	
40.57 ± 1.15

	
14.76 ± 0.96

	
57.71 ± 1.15

	
40.57 ± 1.15




	
RF

	
98.9 ± 1.02

	
94.96 ± 6.42

	
90.36 ± 9.41

	
96.58 ± 4

	
96.24 ± 3.54




	
AdaBoost

	
82.45 ± 1.28

	
40.57 ± 1.15

	
14.76 ± 0.96

	
57.71 ± 1.15

	
40.57 ± 1.15




	
IFPIFSC

	
98.67 ± 1.03

	
93.29 ± 6.43

	
89.38 ± 8.15

	
95.44 ± 4.57

	
95.44 ± 3.59




	
Breast

Tissue

	
SVM

	
89.03 ± 3.56

	
69.42 ± 11.53

	
66.12 ± 11.07

	
68.75 ± 9.86

	
67.1 ± 10.68




	
DT

	
88.8 ± 2.98

	
69.31 ± 9.82

	
65.28 ± 9.38

	
69.12 ± 8.28

	
66.41 ± 8.94




	
BT

	
89.75 ± 2.92

	
71.85 ± 9.62

	
68.49 ± 8.9

	
70.29 ± 7.01

	
69.26 ± 8.75




	
RF

	
89.81 ± 3.16

	
70.99 ± 11.25

	
68.13 ± 9.58

	
72.02 ± 7.23

	
69.42 ± 9.48




	
AdaBoost

	
89.75 ± 2.92

	
71.85 ± 9.62

	
68.49 ± 8.9

	
70.29 ± 7.01

	
69.26 ± 8.75




	
IFPIFSC

	
90.97 ± 2.22

	
74.85 ± 8.12

	
71.96 ± 7.36

	
73.15 ± 6.85

	
72.91 ± 6.67




	
Teaching

Assistant

Evaluation

	
SVM

	
68.03 ± 5.17

	
53.94 ± 8.34

	
52.2 ± 7.79

	
51.88 ± 7.59

	
52.05 ± 7.76




	
DT

	
69.76 ± 6.08

	
55.26 ± 9.74

	
54.57 ± 9.12

	
53.91 ± 9.36

	
54.65 ± 9.12




	
BT

	
70.5 ± 5.73

	
56.88 ± 9.61

	
55.73 ± 8.63

	
55.36 ± 8.75

	
55.75 ± 8.59




	
RF

	
74.56 ± 4.68

	
62.81 ± 7.87

	
61.73 ± 7.08

	
61.16 ± 7.32

	
61.85 ± 7.01




	
AdaBoost

	
70.5 ± 5.73

	
56.88 ± 9.61

	
55.73 ± 8.63

	
55.36 ± 8.75

	
55.75 ± 8.59




	
IFPIFSC

	
74.62 ± 5

	
62.75 ± 8.12

	
61.79 ± 7.6

	
61.34 ± 7.85

	
61.94 ± 7.5




	
Wine

	
SVM

	
96.78 ± 2.27

	
95.45 ± 3.06

	
95.43 ± 3.12

	
95.19 ± 3.33

	
95.16 ± 3.4




	
DT

	
93.69 ± 3.48

	
91.08 ± 5.21

	
90.91 ± 4.92

	
90.59 ± 5.27

	
90.54 ± 5.22




	
BT

	
61.17 ± 6.34

	
41.79 ± 9.64

	
35.54 ± 10.93

	
58.21 ± 6.24

	
41.76 ± 9.51




	
RF

	
98.68 ± 1.44

	
98.02 ± 2.18

	
98.29 ± 1.85

	
98.06 ± 2.11

	
98.03 ± 2.16




	
AdaBoost

	
61.17 ± 6.34

	
41.79 ± 9.64

	
35.54 ± 10.93

	
58.21 ± 6.24

	
41.76 ± 9.51




	
IFPIFSC

	
97.98 ± 2.05

	
97.37 ± 2.39

	
97.45 ± 2.62

	
97.2 ± 2.88

	
96.97 ± 3.08




	
Parkinsons[sic]

	
SVM

	
86.67 ± 3.06

	
87.29 ± 6.23

	
75.98 ± 5.42

	
79.04 ± 5.42

	
86.67 ± 3.06




	
DT

	
86.67 ± 5.38

	
82.75 ± 6.98

	
83.58 ± 6.64

	
82.57 ± 6.51

	
86.67 ± 5.38




	
BT

	
89.23 ± 5.56

	
86.83 ± 7.62

	
84.09 ± 8.17

	
84.87 ± 7.85

	
89.23 ± 5.56




	
RF

	
90.67 ± 3.76

	
90.23 ± 5.54

	
84.64 ± 6.44

	
86.45 ± 5.57

	
90.67 ± 3.76




	
AdaBoost

	
88.87 ± 6.85

	
87.64 ± 8.09

	
81.6 ± 13.94

	
87.43 ± 5.42

	
88.87 ± 6.85




	
IFPIFSC

	
94.67 ± 3.97

	
92.72 ± 5.29

	
93.76 ± 5.59

	
92.95 ± 5.13

	
94.67 ± 3.97




	
Sonar

	
SVM

	
76.2 ± 6.51

	
77.01 ± 6.77

	
75.69 ± 6.54

	
75.68 ± 6.7

	
76.2 ± 6.51




	
DT

	
71.87 ± 6.85

	
72.33 ± 6.94

	
71.67 ± 6.83

	
71.51 ± 6.92

	
71.87 ± 6.85




	
BT

	
85.04 ± 5.91

	
85.65 ± 6

	
84.75 ± 5.94

	
84.84 ± 5.97

	
85.04 ± 5.91




	
RF

	
83.7 ± 6

	
84.73 ± 5.82

	
83.34 ± 6.1

	
83.37 ± 6.2

	
83.7 ± 6




	
AdaBoost

	
84.37 ± 5.16

	
85.05 ± 5.18

	
83.99 ± 5.22

	
84.12 ± 5.26

	
84.37 ± 5.16




	
IFPIFSC

	
87.45 ± 5.13

	
88.26 ± 5.01

	
87.04 ± 5.23

	
87.21 ± 5.27

	
87.45 ± 5.13




	
Seeds

	
SVM

	
94.44 ± 2.41

	
92.12 ± 3.55

	
91.67 ± 3.61

	
91.58 ± 3.67

	
91.67 ± 3.61




	
DT

	
94.29 ± 2.57

	
92.03 ± 3.69

	
91.43 ± 3.85

	
91.38 ± 3.91

	
91.43 ± 3.85




	
BT

	
88.7 ± 14.81

	
83.41 ± 22.36

	
83.05 ± 22.21

	
85.64 ± 16.15

	
83.05 ± 22.21




	
RF

	
95.27 ± 2.28

	
93.39 ± 3.25

	
92.9 ± 3.42

	
92.87 ± 3.44

	
92.9 ± 3.42




	
AdaBoost

	
88.7 ± 14.81

	
83.41 ± 22.36

	
83.05 ± 22.21

	
85.64 ± 16.15

	
83.05 ± 22.21




	
IFPIFSC

	
95.68 ± 2.44

	
94.02 ± 3.39

	
93.52 ± 3.66

	
93.48 ± 3.71

	
93.52 ± 3.66




	
Parkinson

Acoustic

	
SVM

	
80.17 ± 6.12

	
80.85 ± 5.98

	
80.17 ± 6.12

	
80.03 ± 6.23

	
80.17 ± 6.12




	
DT

	
72.54 ± 5.95

	
73.1 ± 6.17

	
72.54 ± 5.95

	
72.38 ± 5.98

	
72.54 ± 5.95




	
BT

	
80.29 ± 5.46

	
81.03 ± 5.42

	
80.29 ± 5.46

	
80.16 ± 5.52

	
80.29 ± 5.46




	
RF

	
80.46 ± 5.39

	
81.13 ± 5.48

	
80.46 ± 5.39

	
80.35 ± 5.43

	
80.46 ± 5.39




	
AdaBoost

	
81.54 ± 5.76

	
82.21 ± 5.72

	
81.54 ± 5.76

	
81.43 ± 5.81

	
81.54 ± 5.76




	
IFPIFSC

	
81.88 ± 4.67

	
82.32 ± 4.62

	
81.88 ± 4.67

	
81.81 ± 4.72

	
81.88 ± 4.67




	
Ecoli

	
SVM

	
93.91 ± 0.78

	
78.32 ± 9.3

	
51.95 ± 9.5

	
75.99 ± 6.39

	
79.29 ± 2.95




	
DT

	
94.43 ± 1.16

	
71.31 ± 8.92

	
57.72 ± 7.98

	
75.75 ± 5.77

	
80.69 ± 4.34




	
BT

	
95.28 ± 1.09

	
78.54 ± 9.7

	
67.64 ± 9.94

	
80.4 ± 5.47

	
83.49 ± 4.16




	
RF

	
95.8 ± 0.97

	
84.53 ± 5.55

	
71.05 ± 9.06

	
83.45 ± 4.34

	
85.69 ± 3.53




	
AdaBoost

	
95.28 ± 1.09

	
78.54 ± 9.7

	
67.64 ± 9.94

	
80.4 ± 5.47

	
83.49 ± 4.16




	
IFPIFSC

	
94.85 ± 1.01

	
77.57 ± 7.86

	
71.34 ± 6.66

	
79.43 ± 4.82

	
81.82 ± 3.81




	
Leaf

	
SVM

	
96.96 ± 0.29

	
62.81 ± 5.15

	
53.46 ± 4.08

	
68.93 ± 4.32

	
54.47 ± 4.35




	
DT

	
97.44 ± 0.36

	
66.56 ± 6.58

	
61.31 ± 5.54

	
70.92 ± 3.94

	
61.65 ± 5.4




	
BT

	
97.84 ± 0.38

	
73.3 ± 6.15

	
67.39 ± 5.9

	
74.64 ± 4.25

	
67.62 ± 5.63




	
RF

	
98.4 ± 0.35

	
80.12 ± 5.24

	
75.43 ± 5.25

	
80.56 ± 3.94

	
75.94 ± 5.25




	
AdaBoost

	
97.84 ± 0.38

	
73.3 ± 6.15

	
67.39 ± 5.9

	
74.64 ± 4.25

	
67.62 ± 5.63




	
IFPIFSC

	
98.11 ± 0.31

	
76.44 ± 4.84

	
71.4 ± 4.7

	
75.83 ± 3.95

	
71.59 ± 4.69




	
Ionosphere

	
SVM

	
87.18 ± 2.85

	
89.02 ± 2.87

	
83.44 ± 3.83

	
85.08 ± 3.61

	
87.18 ± 2.85




	
DT

	
88.58 ± 3.32

	
87.84 ± 3.7

	
87.75 ± 3.69

	
87.61 ± 3.6

	
88.58 ± 3.32




	
BT

	
93.93 ± 2.7

	
94.57 ± 2.64

	
92.32 ± 3.41

	
93.21 ± 3.1

	
93.93 ± 2.7




	
RF

	
93.3 ± 2.7

	
93.55 ± 2.9

	
91.98 ± 3.24

	
92.58 ± 3.03

	
93.3 ± 2.7




	
AdaBoost

	
93.25 ± 2.39

	
94.01 ± 2.43

	
91.43 ± 3.03

	
92.43 ± 2.75

	
93.25 ± 2.39




	
IFPIFSC

	
91.43 ± 2.56

	
91.6 ± 2.69

	
89.87 ± 3.4

	
90.47 ± 2.95

	
91.43 ± 2.56




	
Libras

Movement

	
SVM

	
95.86 ± 0.63

	
73.58 ± 4.58

	
68.99 ± 4.61

	
68.76 ± 4.83

	
68.97 ± 4.73




	
DT

	
94.92 ± 0.88

	
65.79 ± 6.93

	
61.87 ± 6.68

	
63.13 ± 6.09

	
61.89 ± 6.62




	
BT

	
96.09 ± 0.63

	
74.11 ± 4.32

	
70.63 ± 4.8

	
70.94 ± 5.08

	
70.64 ± 4.72




	
RF

	
97.45 ± 0.57

	
83.09 ± 3.92

	
80.95 ± 4.21

	
80.78 ± 4.45

	
80.86 ± 4.29




	
AdaBoost

	
96.09 ± 0.63

	
74.11 ± 4.32

	
70.63 ± 4.8

	
70.94 ± 5.08

	
70.64 ± 4.72




	
IFPIFSC

	
97.93 ± 0.5

	
86.88 ± 3.56

	
84.55 ± 3.78

	
83.9 ± 4.08

	
84.5 ± 3.77




	
Dermatology

	
SVM

	
98.89 ± 0.55

	
96.57 ± 1.78

	
96.33 ± 1.86

	
96.25 ± 1.89

	
96.67 ± 1.66




	
DT

	
98.12 ± 0.64

	
94.09 ± 2.55

	
93.37 ± 3.04

	
93.23 ± 2.67

	
94.35 ± 1.91




	
BT

	
98.87 ± 0.58

	
96.08 ± 2.36

	
95.6 ± 2.94

	
95.53 ± 2.67

	
96.61 ± 1.75




	
RF

	
99.25 ± 0.57

	
97.79 ± 1.8

	
97.45 ± 1.94

	
97.51 ± 1.9

	
97.76 ± 1.71




	
AdaBoost

	
98.87 ± 0.58

	
96.08 ± 2.36

	
95.6 ± 2.94

	
95.53 ± 2.67

	
96.61 ± 1.75




	
IFPIFSC

	
99.03 ± 0.58

	
96.83 ± 2.01

	
96.79 ± 1.84

	
96.67 ± 1.93

	
97.08 ± 1.75




	
Breast

Cancer

Wisconsin

	
SVM

	
95.29 ± 2.07

	
95.31 ± 2.36

	
94.67 ± 2.17

	
94.93 ± 2.21

	
95.29 ± 2.07




	
DT

	
93.03 ± 2.37

	
92.56 ± 2.61

	
92.67 ± 2.5

	
92.56 ± 2.52

	
93.03 ± 2.37




	
BT

	
96.64 ± 1.8

	
96.92 ± 1.8

	
95.96 ± 2.14

	
96.37 ± 1.95

	
96.64 ± 1.8




	
RF

	
95.9 ± 1.76

	
95.88 ± 1.94

	
95.4 ± 1.94

	
95.6 ± 1.89

	
95.9 ± 1.76




	
AdaBoost

	
96.92 ± 1.65

	
97.12 ± 1.7

	
96.34 ± 1.92

	
96.68 ± 1.79

	
96.92 ± 1.65




	
IFPIFSC

	
95.57 ± 1.59

	
95.4 ± 1.82

	
95.18 ± 1.66

	
95.26 ± 1.69

	
95.57 ± 1.59




	
HCV Data

	
SVM

	
97.89 ± 0.7

	
70.03 ± 13.49

	
62.44 ± 13.79

	
72.6 ± 7.52

	
94.72 ± 1.75




	
DT

	
97.18 ± 0.71

	
63.1 ± 11.34

	
53.11 ± 12.66

	
70.15 ± 8.79

	
92.95 ± 1.79




	
BT

	
97.9 ± 0.52

	
70.93 ± 12.7

	
56.71 ± 11.99

	
75.35 ± 8.03

	
94.75 ± 1.29




	
RF

	
97.76 ± 0.63

	
68.44 ± 14.52

	
54.28 ± 13.14

	
76.44 ± 9.19

	
94.41 ± 1.57




	
AdaBoost

	
97.9 ± 0.52

	
70.93 ± 12.7

	
56.71 ± 11.99

	
75.35 ± 8.03

	
94.75 ± 1.29




	
IFPIFSC

	
97.92 ± 0.48

	
70.4 ± 10.95

	
57.58 ± 11.82

	
72.78 ± 7.15

	
94.8 ± 1.19




	
Parkinson’s

Disease

Classification

	
SVM

	
74.6 ± 0.29

	
74.6 ± 0.29

	
50 ± 0

	
85.45 ± 0.19

	
74.6 ± 0.29




	
DT

	
80.54 ± 3.35

	
74.46 ± 4.45

	
74.34 ± 4.9

	
74.25 ± 4.58

	
80.54 ± 3.35




	
BT

	
91.28 ± 2.03

	
91.87 ± 2.78

	
84.75 ± 3.55

	
87.44 ± 3.09

	
91.28 ± 2.03




	
RF

	
87.17 ± 2.22

	
87.78 ± 3.73

	
77.34 ± 3.92

	
80.53 ± 3.77

	
87.17 ± 2.22




	
AdaBoost

	
90.29 ± 2.37

	
91 ± 3.08

	
82.89 ± 4.34

	
85.77 ± 3.84

	
90.29 ± 2.37




	
IFPIFSC

	
94.83 ± 1.85

	
93.6 ± 2.27

	
92.69 ± 3.05

	
93.08 ± 2.56

	
94.83 ± 1.85




	
Mice

Protein

Expression

	
SVM

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
DT

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
BT

	
78.48 ± 0.01

	
13.93 ± 0.03

	
12.5 ± 0

	
24.45 ± 0.05

	
13.93 ± 0.03




	
RF

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
AdaBoost

	
78.48 ± 0.01

	
13.93 ± 0.03

	
12.5 ± 0

	
24.45 ± 0.05

	
13.93 ± 0.03




	
IFPIFSC

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
Semeion

Handwritten

Digit

	
SVM

	
97.81 ± 0.78

	
95.05 ± 2.51

	
92.57 ± 3.29

	
93.67 ± 2.36

	
97.81 ± 0.78




	
DT

	
93.07 ± 1.53

	
81.28 ± 4.69

	
80.16 ± 3.67

	
80.48 ± 3.57

	
93.07 ± 1.53




	
BT

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0

	
100 ± 0




	
RF

	
96.7 ± 0.88

	
97.19 ± 1.53

	
84.12 ± 4.34

	
89.19 ± 3.31

	
96.7 ± 0.88




	
AdaBoost

	
97.93 ± 1.19

	
96.35 ± 3.61

	
91.88 ± 4.03

	
93.89 ± 3.48

	
97.93 ± 1.19




	
IFPIFSC

	
98.15 ± 0.73

	
97.21 ± 1.91

	
92.27 ± 3.25

	
94.49 ± 2.25

	
98.15 ± 0.73




	
Car

Evaluation

	
SVM

	
92.53 ± 0.7

	
79.4 ± 4.27

	
75.88 ± 4.2

	
76.98 ± 3.69

	
85.07 ± 1.39




	
DT

	
97.82 ± 0.48

	
90.42 ± 2.87

	
91.52 ± 3.65

	
90.66 ± 2.75

	
95.64 ± 0.96




	
BT

	
98.51 ± 0.46

	
90.14 ± 3.25

	
94.03 ± 3.13

	
91.67 ± 3.06

	
97.02 ± 0.92




	
RF

	
98.94 ± 0.47

	
94.21 ± 2.84

	
96.29 ± 2.7

	
95.1 ± 2.61

	
97.88 ± 0.94




	
AdaBoost

	
98.51 ± 0.46

	
90.14 ± 3.25

	
94.03 ± 3.13

	
91.67 ± 3.06

	
97.02 ± 0.92




	
IFPIFSC

	
97.97 ± 0.51

	
90.52 ± 3.27

	
90.47 ± 3.45

	
90.21 ± 2.58

	
95.94 ± 1.01




	
Wireless

Indoor

Localization

	
SVM

	
99 ± 0.35

	
98.02 ± 0.68

	
97.99 ± 0.69

	
97.99 ± 0.69

	
97.99 ± 0.69




	
DT

	
98.52 ± 0.4

	
97.08 ± 0.78

	
97.05 ± 0.8

	
97.04 ± 0.8

	
97.05 ± 0.8




	
BT

	
99.08 ± 0.31

	
98.18 ± 0.61

	
98.16 ± 0.63

	
98.16 ± 0.63

	
98.16 ± 0.63




	
RF

	
99.09 ± 0.34

	
98.21 ± 0.66

	
98.19 ± 0.68

	
98.19 ± 0.68

	
98.19 ± 0.68




	
AdaBoost

	
99.08 ± 0.31

	
98.18 ± 0.61

	
98.16 ± 0.63

	
98.16 ± 0.63

	
98.16 ± 0.63




	
IFPIFSC

	
99.15 ± 0.32

	
98.33 ± 0.64

	
98.31 ± 0.65

	
98.31 ± 0.65

	
98.31 ± 0.65




	
Mean

Performance

Results

	
SVM

	
90.99 ± 2.01

	
83.07 ± 4.94

	
77.74 ± 4.96

	
82.68 ± 4.25

	
83.8 ± 3.43




	
DT

	
90.41 ± 2.48

	
80.18 ± 5.64

	
77.84 ± 5.57

	
80.75 ± 4.78

	
83.16 ± 4.09




	
BT

	
89.55 ± 2.92

	
76.33 ± 5.89

	
72.12 ± 5.98

	
78.26 ± 4.8

	
77.45 ± 4.64




	
RF

	
93.59 ± 1.96

	
87.85 ± 4.62

	
84.12 ± 4.98

	
87.04 ± 4.02

	
88.85 ± 3.31




	
AdaBoost

	
89.39 ± 3.02

	
76.16 ± 6.07

	
71.5 ± 6.46

	
78.01 ± 4.84

	
77.29 ± 4.74




	
IFPIFSC

	
94.34 ± 1.85

	
88.02 ± 4.26

	
85.86 ± 4.46

	
87.65 ± 3.78

	
89.44 ± 3.09








Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. The best performance results are shown in bold.
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Table 6. Ranking numbers of the best results for all non-fuzzy-based classifiers.






Table 6. Ranking numbers of the best results for all non-fuzzy-based classifiers.





	Classifiers
	Acc
	Pre
	Rec
	MacF
	MicF
	Total Rank





	SVM
	1/20
	1/20
	2/20
	1/20
	1/20
	6/100



	DT
	1/20
	1/20
	1/20
	1/20
	1/20
	5/100



	BT
	2/20
	3/20
	2/20
	2/20
	2/20
	11/100



	RF
	7/20
	8/20
	6/20
	8/20
	7/20
	36/100



	AdaBoost
	1/20
	2/20
	1/20
	1/20
	1/20
	6/100



	IFPIFSC
	11/20
	9/20
	11/20
	10/20
	11/20
	52/100
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Table 7. Ranking numbers of the best results of IFPIFSC over the others.






Table 7. Ranking numbers of the best results of IFPIFSC over the others.





	Classifiers
	Acc
	Pre
	Rec
	MacF
	MicF





	IFPIFSC versus SVM
	20
	19
	17
	20
	20



	IFPIFSC versus DT
	20
	20
	19
	19
	20



	IFPIFSC versus BT
	15
	15
	16
	14
	15



	IFPIFSC versus RF
	12
	11
	13
	11
	12



	IFPIFSC versus AdaBoost
	16
	16
	17
	15
	16
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Table 8. Time complexities based on big O notation of the classifiers.






Table 8. Time complexities based on big O notation of the classifiers.





	Classifier
	Time Complexity





	Fuzzy kNN
	   O (  n 2  log k )   



	FSSC
	   O ( m l )   



	FussCyier
	   O ( m l )   



	HDFSSC
	   O ( m l )   



	FPFSCC
	   O ( m l )   



	FPFSNHC
	   O ( m l )   



	FPFS-EC
	   O ( m n )   



	FPFS-AC
	   O ( m n )   



	FPFS-CMC
	   O (  m 2  + m n )   



	FPFS-kNN(P)
	   O (  m 2  l )   



	FPFS-kNN(S)
	   O (  m 2  l )   



	FPFS-kNN(K)
	   O (  m 2  l )   



	SVM
	   O (  m 2   n 2  )   



	DT
	   O ( m n log n )   



	BT
	   O ( t m n log n )   



	RF
	   O ( t m n log n )   



	AdaBoost
	   O ( t m n log n )   



	IFPIFSC
	   O ( m n )   







k is the number of the nearest neighbours, m is the sample number of the training data, n is the parameter number of the training data, l is the class number of the data, and t is the number of tree.
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