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1. Introduction

Let B be the open unit ball in Cn, with the scalar product 〈z, w〉 = ∑n
k=1 zkwk and the

norm |z| =
√
〈z, z〉 (here, as usual, z = (z1, . . . , zn), w = (w1, . . . , wn), and z = (z1, . . . , zn)).

We denote the space of analytic functions on B by H(B), whereas we denote the class of
analytic self-maps of B by S(B) [1,2]. The linear operator < f (z) = ∑n

j=1 zjDj f (z), where

Dj f = ∂ f
∂zj

, j = 1, n, is called a radial derivative.

We denote the set of all positive and continuous functions on B by W(B). A w ∈W(B)
is called a weight. Let µ ∈W(B). Then,

H∞
µ (B) = { f ∈ H(B) : ‖ f ‖H∞

µ
:= sup

z∈B
µ(z)| f (z)| < +∞}

is called a weighted-type space. This space with the norm ‖ · ‖H∞
µ

is a Banach space. A little
weighted-type space consists of f ∈ H∞

µ (B) such that lim|z|→1 µ(z)| f (z)| = 0. These spaces
have been studied for a long time (see, e.g., [3–9]), as well as the operators acting on them
(see, e.g., [10–17] and the references therein). If µ is a nonzero constant, we obtain the space
H∞(B) with the norm ‖ f ‖∞ = supz∈B | f (z)| (bounded analytic functions).

Let µ ∈W(B). Then, the space

Bµ(B) = { f ∈ H(B) : bµ( f ) := sup
z∈B

µ(z)|< f (z)| < +∞},

is called a Bloch-type space. With the norm ‖ f ‖Bµ
= | f (0)|+ bµ( f ), it is a Banach space.

A little Bloch-type space consists of f ∈ Bµ(B) such that lim|z|→1 µ(z)|< f (z)| = 0. We
obtain the Bloch space B and little Bloch space B0 for µ(z) = 1− |z|2, whereas for µ(z) =
(1− |z|2)α, α > 0, we obtain the α-Bloch space Bα and the little α-Bloch space Bα

0 . For

µ(z) = µlogk
(z) = (1− |z|2)

k

∏
j=1

ln[j] e[k]

1− |z|2 ,
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where k ∈ N, e[1] = e, e[l] = ee[l−1]
, l ∈ N \ {1} and

ln[j] z = ln · · · ln︸ ︷︷ ︸
j times

z,

we obtain the iterated logarithmic Bloch space Blogk
(B) = Blogk

, which for k = 1, reduces
to Blog1

= Blog. The quantity

‖ f ‖′Blogk
= | f (0)|+ sup

z∈B
µlogk

(z)|∇ f (z)|, (1)

is a norm on Blogk
(B). From |< f (z)| ≤ |∇ f (z)| and a known theorem ([18–20]), it follows

that (1) is equivalent to the norm ‖ f ‖Blogk
= | f (0)|+ supz∈B µlogk

(z)|< f (z)| on Blogk
.

Suppose a ∈ [e[k],+∞). Then, for every z ∈ B, we have

(1− |z|)
k

∏
j=1

ln[j] a
1− |z| = (1− |z|)

k

∏
j=1

ln[j] e[k]
a(1 + |z|)

e[k](1− |z|2)

≤(1− |z|2)
k

∏
j=1

ln[j]

(
2a
e[k]

e[k]

1− |z|2

)
= (1− |z|2)

k

∏
j=1

ln[j−1]

(
ln

e[k]

1− |z|2 + ln
2a
e[k]

)

≤(1− |z|2)
k

∏
j=1

ln[j−1]

((
1 + ln

2a
e[k]

)
ln

e[k]

1− |z|2

)

=(1− |z|2)
(

1 + ln
2a
e[k]

)
ln

e[k]

1− |z|2
k

∏
j=2

ln[j−2]

(
ln
(

1 + ln
2a
e[k]

)
+ ln[2] e[k]

1− |z|2

)

≤(1− |z|2)
(

1 + ln
2a
e[k]

)
ln

e[k]

1− |z|2
k

∏
j=2

ln[j−2]

((
1 + ln

(
1 + ln

2a
e[k]

))
ln[2] e[k]

1− |z|2

)

=(1− |z|2)
(

1 + ln
2a
e[k]

)
ln

e[k]

1− |z|2

(
1 + ln

(
1 + ln

2a
e[k]

))
ln[2] e[k]

1− |z|2

×
k

∏
j=3

ln[j−2]

((
1 + ln

(
1 + ln

2a
e[k]

))
ln[2] e[k]

1− |z|2

)
...

≤(1− |z|2)
(

1 + ln
2a
e[k]

)
ln

e[k]

1− |z|2

(
1 + ln

(
1 + ln

2a
e[k]

))
ln[2] e[k]

1− |z|2

· · ·
(

1 + ln
(

1 + · · ·+ ln
(

1 + ln
(

1 + ln
2a
e[k]

))
· · ·
))

ln[k] e[k]

1− |z|2

=ca(1− |z|2)
k

∏
j=1

ln[j] e[k]

1− |z|2

≤2ca(1− |z|)
k

∏
j=1

ln[j] a
1− |z| . (2)

The consideration leading to (2) implies that, for a ∈ [e[k],+∞), the quantity

‖ f ‖(a)
Blogk

= | f (0)|+ b(a)
logk

( f ) := | f (0)|+ sup
z∈B

(1− |z|)
(

k

∏
j=1

ln[j] a
1− |z|

)
|∇ f (z)|, (3)

presents another equivalent norm on Blogk
.
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We define the corresponding little iterated logarithmic Bloch space Blogk ,0(B) = Blogk ,0
as the set of all f ∈ H(B) such that

lim
|z|→1

(1− |z|)
(

k

∏
j=1

ln[j] a
1− |z|

)
|∇ f (z)| = 0.

For some facts on logarithmic-type spaces, see, e.g., [10,14,21–23].
The product of the composition operator Cϕ f (z) = f (ϕ(z)) and an equivalent form of

the integral operator in [24,25]

Pg
ϕ( f )(z) =

∫ 1

0
f (ϕ(tz))g(tz)

dt
t

, z ∈ B, (4)

where g ∈ H(B), g(0) = 0 and ϕ ∈ S(B), was studied, e.g., in [22,26]. The introduction
of the operators in [24,25] was motivated by some special cases mentioned therein (see
also [27]). Many facts about this topic can be found in [28]. Operator (4), as well as some
related ones, has been considerably studied (see, e.g., [29–34] and the cited references
therein). Beside this product-type operator, many others have been studied during the last
two decades. One can consult the following references: [10,14,15,35,36].

The essential norm of a linear operator L : X → Y, where X and Y are Banach spaces
and ‖ · ‖X→Y denotes the operator norm, is the quantity

‖L‖e,X→Y = inf
{
‖L + K‖X→Y : K : X → Y, K is compact

}
.

One of the most popular topics in studying concrete linear operators is characterization
of their operator-theoretic properties in terms of the induced symbols. One of the basic
problems is the calculation of their norms and essential norms [18–20,37–39]. Some recent
formulas for the norms can be found in [11–14,23,26,31].

Let Mu( f )(z) = u(z) f (z), where u ∈ H(B). The following result was proved in [11].

Theorem 1. Let u ∈ H(B), ϕ ∈ S(B), µ ∈ W(B) and MuCϕ : X → H∞
µ be bounded, where

X ∈ {B,B0). Then,

‖MuCϕ‖X→H∞
µ
= max

{
‖u‖H∞

µ
,

1
2

sup
z∈B

µ(z)|u(z)| ln 1 + |ϕ(z)|
1− |ϕ(z)|

}
, (5)

where the norm on B is given by ‖ f ‖B = | f (0)|+ supz∈B(1− |z|2)|∇ f (z)|.

One can try to calculate the norm of MuCϕ : Bα → H∞
µ . To solve it, in [13], we had to

change the weight (1− |z|2)α. The method also works in some other situations [23]. Here,
we employ this idea to calculate the norm of Pg

ϕ : Blogk
(orBlogk ,0)→ Bµ (orBµ,0). Beside

this, we present a formula for its essential norm, extending the results in [23]. We use some
of the methods and ideas in [13,14,23,26].

2. Auxiliary Results

Our first auxiliary result is a nontrivial technical lemma.

Lemma 1. Assume that k ∈ N, a ∈ [e[k],+∞). Then,

hk(x) = x
k

∏
j=1

ln[j] a
x

, (6)

is a nonnegative and increasing function on (0, a
e[k]

].
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Proof. The case k = 1 is simple [23]. So, assume k ∈ N \ {1}. We have

hk(x) = hk−1(x) ln[k]
( a

x

)
. (7)

From (7), it follows that

h′k(x) = h′k−1(x) ln[k]
( a

x

)
− 1. (8)

The recursive relation in (8) implies

h′k(x) =
((
· · ·
((

ln
( a

x

)
− 1
)

ln[2]
( a

x

)
− 1
)
· · ·
)

ln[k−1]
( a

x

)
− 1
)
· ln[k]

( a
x

)
− 1. (9)

From (9), it follows that h′k(x) is decreasing on the interval (0, a
e[k−1] ) (here, we regard that

e[0] = 1). Hence,

h′k(x) ≥h′k

(
a

e[k]

)
=
((
· · ·
((

ln e[k] − 1
)

ln[2] e[k] − 1
)
· · ·
)

ln[k−1] e[k] − 1
)
· ln[k] e[k] − 1

=
((
· · ·
((

e[k−1] − 1
)

e[k−2] − 1
)
· · ·
)

e[1] − 1
)
− 1 > 0,

for x ∈ (0, a
e[k]

], from which the lemma follows.

Now, we present some point evaluation estimates for the functions in Blogk
(B).

Lemma 2. Assume that k ∈ N, a ∈ [e[k],+∞), f ∈ Blogk
(B), z ∈ B, and r ∈ [0, 1). Then,

| f (z)− f (rz)| ≤ b(a)
logk

( f )
(

ln[k+1] a
1− |z| − ln[k+1] a

1− r|z|

)
, (10)

and

| f (z)| ≤ ‖ f ‖(a)
Blogk

max
{

1, ln[k+1] a
1− |z| − ln[k+1] a

}
. (11)

Proof. Let ∇ f = (D1 f , . . . , Dn f ). Then,

| f (z)− f (rz)| =
∣∣∣∣ ∫ 1

r
〈∇ f (tz), z̄〉 dt

∣∣∣∣
≤b(a)

logk
( f )

∫ 1

r

|z|dt

(1− |z|t)∏k
j=1 ln[j] a

1−|z|t

=b(a)
logk

( f )
(

ln[k+1] a
1− |z| − ln[k+1] a

1− r|z|

)
. (12)

From (12), for r = 0, it follows that

| f (z)− f (0)| ≤ b(a)
logk

( f )
(

ln[k+1] a
1− |z| − ln[k+1] a

)
. (13)

Relation (13), along with the definition of ‖ · ‖(a)
Blogk

and the triangle inequality for numbers,

implies (11).

For the next lemma, see [22].
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Lemma 3. Let f , g ∈ H(B) and g(0) = 0. Then,

< Pg
ϕ( f )(z) = f (ϕ(z))g(z), z ∈ B. (14)

The following result is closely related to the corresponding one in [40], because of
which the proof is omitted.

Lemma 4. Assume that g ∈ H(B), g(0) = 0, ϕ ∈ S(B) and µ ∈ W(B). Then, Pg
ϕ :

Blogk
(orBlogk ,0) → Bµ is compact if and only if it is bounded and for any bounded sequence

( fk)k∈N ⊂ Blogk
(orBlogk ,0) converging to zero uniformly on compacts of B, we have

limk→+∞ ‖P
g
ϕ fk‖Bµ

= 0.

3. Main Results

Now, we are in a position to state and prove our main results.

Theorem 2. Suppose that k ∈ N, a ∈ [2e[k],+∞), g ∈ H(B), g(0) = 0, ϕ ∈ S(B), µ ∈ W(B)
and that Pg

ϕ : X → Bµ is bounded, where X ∈ {Blogk
,Blogk ,0}. Then,

‖Pg
ϕ‖X→Bµ

= max
{
‖g‖H∞

µ
, sup

z∈B
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)}

. (15)

Proof. From (14) and (11), it follows that, for f ∈ Blogk
, we have

‖Pg
ϕ f ‖Bµ

= sup
z∈B

µ(z)|g(z) f (ϕ(z))|

≤‖ f ‖(a)
Blogk

sup
z∈B

µ(z)|g(z)|max
{

1, ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

}
, (16)

Hence,

‖Pg
ϕ‖X→Bµ

≤ max
{
‖g‖H∞

µ
, sup

z∈B
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)}

. (17)

If Pg
ϕ : X → Bµ is bounded, then for f0(z) ≡ 1 ∈ Blogk ,0, we have ‖ f0‖Blogk

= 1, from
which together with the boundedness, it follows that

‖Pg
ϕ‖X→Bµ

≥ ‖Pg
ϕ f0‖Bµ

= sup
z∈B

µ(z)|g(z)|. (18)

Let

hw(z) = ln[k+1] a
1− 〈z, w〉 − ln[k+1] a, (19)

and w ∈ B.
Then,

1− |z| ≤ |1− 〈z, w〉| < 2. (20)
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for z, w ∈ B. Relation (20) together with Lemma 1 implies

(1− |z|)
(

k

∏
j=1

ln[j] a
1− |z|

)
|∇hw(z)| =

|w|(1− |z|)∏k
j=1 ln[j] a

1−|z|

|1− 〈z, w〉|
∣∣∣∏k

j=1 ln[j] a
1−〈z,w〉

∣∣∣ (21)

≤
|w|(1− |z|)∏k

j=1 ln[j] a
1−|z|

|1− 〈z, w〉|∏k
j=1 ln[j] a

|1−〈z,w〉|
< 1. (22)

Inequality (22) along with the fact that hw(0) = 0 implies

sup
w∈B
‖hw‖(a)

Blogk
≤ 1. (23)

Let |z| → 1 in (21); then, we have hw ∈ Blogk ,0, w ∈ B.
If ϕ(w) 6= 0 and t ∈ (0, 1), then from the boundedness of Pg

ϕ : X → Bµ and (23),
we have

‖Pg
ϕ‖X→Bµ

≥‖Pg
ϕhtϕ(w)/|ϕ(w)|‖Bµ

= sup
z∈B

µ(z)|g(z)|
∣∣∣∣ ln[k+1] a

1− t〈ϕ(z), ϕ(w)/|ϕ(w)|〉 − ln[k+1] a
∣∣∣∣

≥µ(w)|g(w)|
(

ln[k+1] a
1− t|ϕ(w)| − ln[k+1] a

)
. (24)

Note that (24) also holds when ϕ(w) = 0.
Let t→ 1− in (24), and taking the supremum over B, we obtain

‖Pg
ϕ‖X→Bµ

≥ sup
z∈B

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
. (25)

Relations (18) and (25) imply

‖Pg
ϕ‖X→Bµ

≥ max
{
‖g‖H∞

µ
, sup

z∈B
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)}

. (26)

Combining the inequalities in (17) and (26), the formula in (15) immediately fol-
lows.

Using the test function f0(z) ≡ 1 and the fact that the set of polynomials is dense in
Blogk ,0, the following theorem is easily proved. We omit the standard proof.

Theorem 3. Suppose that k ∈ N, g ∈ H(B), g(0) = 0, ϕ ∈ S(B), and µ ∈ W(B). Then,
Pg

ϕ : Blogk ,0 → Bµ,0 is bounded if and only if Pg
ϕ : Blogk ,0 → Bµ is bounded and g ∈ H∞

µ,0.

The following result is a consequence of the previous two theorems.

Corollary 1. Suppose that k ∈ N, g ∈ H(B), g(0) = 0, ϕ ∈ S(B), µ ∈ W(B) and that
Pg

ϕ : Blogk ,0 → Bµ,0 is bounded. Then,

‖Pg
ϕ‖Blogk ,0→Bµ,0 = max

{
‖g‖H∞

µ
, sup

z∈B
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)}

.

Theorem 4. Suppose that k ∈ N, a ∈ [2e[k],+∞), g ∈ H(B), g(0) = 0, ϕ ∈ S(B), µ ∈ W(B)
and Pg

ϕ : X → Bµ is bounded, where X ∈ {Blogk
,Blogk ,0}. Then,
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(a) If ‖ϕ‖∞ = 1, we have

‖Pg
ϕ‖e,X→Bµ

= lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
; (27)

(b) If ‖ϕ‖∞ < 1, we have

‖Pg
ϕ‖e,X→Bµ

= 0. (28)

Proof. (a) Let ε > 0 and w ∈ B \ {0} be fixed, and

hw,ε(z) =
(

ln[k+1] a
1− |w| − ln[k+1] a

)−ε(
ln[k+1] a(1 + |w|)

1− 〈z, w〉 − ln[k+1] a
)ε+1

, z ∈ B.

Then,

(1− |z|)
(

k

∏
j=1

ln[j] a
1− |z|

)
|∇hw,ε(z)|

=(ε + 1)
|w|(1− |z|)∏k

j=1 ln[j] a
1−|z|

|1− 〈z, w〉|
∣∣∣∏k

j=1 ln[j] a(1+|w|)
1−〈z,w〉

∣∣∣
×
∣∣∣∣ ln[k+1] a(1 + |w|)

1− 〈z, w〉 − ln[k+1] a
∣∣∣∣ε( ln[k+1] a

1− |w| − ln[k+1] a
)−ε

(29)

≤(ε + 1)
|w|(1− |z|)∏k

j=1 ln[j] a
1−|z|

|1− 〈z, w〉|
∣∣∣∏k

j=1 ln[j] a(1+|w|)
1−〈z,w〉

∣∣∣
(

ln[k+1] a
1− |w| − ln[k+1] a

)−ε

×
(

ln
(

ln
(
· · ·
(

ln
a(1 + |w|)
|1− 〈z, w〉| + 2π

)
· · ·
)
+ 2π

)
+ 2π − ln[k+1] a

)ε

≤(ε + 1)|w|
(

ln[k+1] a
1− |w| − ln[k+1] a

)−ε

(
ln
(

ln
(
· · ·
(

ln
a(1 + |w|)

1− |w| + 2π

)
· · ·
)
+ 2π

)
+ 2π − ln[k+1] a

)ε

. (30)

Relation (29) implies hw,ε ∈ Blogk ,0, for w ∈ B \ {0}, while by taking limit in relation (30),
we obtain

lim sup
|w|→1

b(a)
logk

(hw,ε) ≤ ε + 1. (31)

Note also that

lim
|w|→1

|hw,ε(0)| = 0. (32)

From (31) and (32), it follows that

lim sup
|w|→1

‖hw,ε‖(a)
Blogk

≤ ε + 1. (33)

If (ϕ(zk))k∈N ⊂ B satisfies the condition |ϕ(zk)| → 1 as k→ +∞, then (33) for

fk(z) := hϕ(zk),ε(z), k ∈ N,
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implies

lim sup
k→+∞

‖ fk‖
(a)
Blogk

≤ ε + 1. (34)

The assumption fk → 0 on compacts of B implies that fk → 0 weakly in Blogk ,0 as
k→ +∞. Indeed, the operator L( f ) = f ′ is an isometric isomorphism between Blogk ,0/C
and H∞

logk ,0. On the other hand, a bounded sequence converges weakly to zero in H∞
logk ,0 if

and only if it converges to zero uniformly on compacts of B (see, e.g., some reasoning in [3]
and the estimate in (11), and note that the unit ball in H∞

logk ,0 is a normal family).
Hence, if K : Blogk ,0 → Bµ is compact, then limk→+∞ ‖K fk‖Bµ

= 0. This fact, (34), and
the estimate

‖ fk‖
(a)
Blogk
‖Pg

ϕ + K‖Blogk ,0→Bµ
≥‖(Pg

ϕ + K)( fk)‖Bµ

≥‖Pg
ϕ fk‖Bµ

− ‖K fk‖Bµ
,

imply

‖Pg
ϕ + K‖Blogk ,0→Bµ

(ε + 1)−1 ≥ lim sup
k→∞

‖ fk‖
(a)
Blogk
‖Pg

ϕ + K‖Blogk ,0→Bµ

≥ lim sup
k→∞

(‖Pg
ϕ fk‖Bµ

− ‖K fk‖Bµ
)

= lim sup
k→∞

‖Pg
ϕ fk‖Bµ

= lim sup
k→∞

sup
z∈B

µ(z)|g(z)|| fk(ϕ(z))|

≥ lim sup
k→∞

µ(zk)|g(zk) fk(ϕ(zk))|

= lim sup
k→∞

µ(zk)|g(zk)|
(

ln[k+1] a
1− |ϕ(zk)|

− ln[k+1] a
)

. (35)

From (35) and since K : Blogk ,0 → Bµ is an arbitrary compact operator, by letting
ε→ +0, we have

‖Pg
ϕ‖e,Blogk ,0→Bµ

≥ lim sup
k→∞

µ(zk)|g(zk)|
(

ln[k+1] a
1− |ϕ(zk)|

− ln[k+1] a
)

.

Hence,

‖Pg
ϕ‖e,Blogk ,0→Bµ

≥ lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
. (36)

Let ρm ∈ (0, 1), m ∈ N, ρm ↗ 1 as m→ +∞, and

Pg
ρm ϕ( f )(z) =

∫ 1

0
f (ρm ϕ(tz))g(tz)

dt
t

, m ∈ N. (37)

Suppose that (hk)k∈N ⊂ X is bounded and hk → 0 uniformly on compacts of B. We have
Pg

ϕ( f0) = g ∈ H∞
µ , so

µ(z)|< Pg
ρm ϕ(hk)(z)| = µ(z)|g(z)hk(ρm ϕ(z))| ≤ ‖g‖H∞

µ
sup
|w|≤ρm

|hk(w)| → 0,

as k→ +∞.
Thus, Lemma 4 implies the compactness of Pg

ρm ϕ : X → Bµ, for each m ∈ N.
Since g ∈ H∞

µ , by Lemmas 2 and 3, we have that, for r ∈ (0, 1),
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‖Pg
ϕ − Pg

ρm ϕ‖Blogk
→Bµ

= sup
‖ f ‖(a)

Blogk
≤1

sup
z∈B

µ(z)|g(z)|| f (ϕ(z))− f (ρm ϕ(z))|

≤ sup
‖ f ‖(a)

Blogk
≤1

sup
|ϕ(z)|≤r

µ(z)|g(z)|| f (ϕ(z))− f (ρm ϕ(z))|

+ sup
‖ f ‖(a)

Blogk
≤1

sup
|ϕ(z)|>r

µ(z)|g(z)|| f (ϕ(z))− f (ρm ϕ(z))|

≤‖g‖H∞
µ

sup
‖ f ‖(a)

Blogk
≤1

sup
|ϕ(z)|≤r

| f (ϕ(z))− f (ρm ϕ(z))|

+ sup
|ϕ(z)|>r

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

1− ρm|ϕ(z)|

)
≤‖g‖H∞

µ
sup

‖ f ‖(a)
Blogk

≤1

sup
|ϕ(z)|≤r

| f (ϕ(z))− f (ρm ϕ(z))|

+ sup
|ϕ(z)|>r

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
. (38)

Furthermore,

lim sup
m→+∞

sup
‖ f ‖(a)

Blogk
≤1

sup
|ϕ(z)|≤r

| f (ϕ(z))− f (ρm ϕ(z))|

≤ lim sup
m→+∞

sup
‖ f ‖(a)

Blogk
≤1

sup
|ϕ(z)|≤r

(1− ρm)|ϕ(z)| sup
|w|≤r

|∇ f (w)|

≤ lim sup
m→+∞

(1− ρm)r

(1− r)∏k
j=1 ln[j] a

1−r

sup
‖ f ‖(a)

Blogk
≤1

‖ f ‖(a)
Blogk

= 0. (39)

Letting m→ +∞ in (38), using (39), then letting r → 1, it follows that

‖Pg
ϕ‖e,Blogk

→Bµ
≤ lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
. (40)

Relations (36), (40), and the obvious inequality

‖Pg
ϕ‖e,Blogk

→Bµ
≥ ‖Pg

ϕ‖e,Blogk ,0→Bµ
,

imply (27).

(b) From this assumption, the compactness of Pg
ϕ : X → Bµ follows, similar to the

operator in (37). So, (28) holds.

Theorem 5. Suppose that k ∈ N, a ∈ [2e[k],+∞), g ∈ H(B), g(0) = 0, ϕ ∈ S(B), µ ∈ W(B),
and Pg

ϕ : X → Bµ,0 is bounded, where X ∈ {Blogk
,Blogk ,0}. Then,

‖Pg
ϕ‖e,X→Bµ,0 = lim sup

|z|→1
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)

. (41)

Proof. Since Pg
ϕ : X → Bµ,0 is bounded, we have Pg

ϕ f0 = g ∈ H∞
µ,0.
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Assume that ‖ϕ‖∞ = 1. Then,

lim sup
|z|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
≥ lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
. (42)

Choose (zk)k∈N ⊂ B so that the following relation holds

lim sup
|z|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
= lim

k→∞
µ(zk)|g(zk)|

(
ln[k+1] a

1− |ϕ(zk)|
− ln[k+1] a

)
.

(43)

If supk∈N |ϕ(zk)| < 1, then the fact that g ∈ H∞
µ,0, implies

lim
k→∞

µ(zk)|g(zk)|
(

ln[k+1] a
1− |ϕ(zk)|

− ln[k+1] a
)
= 0.

Thus, (42) and (43) imply

lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
= 0.

If supk∈N |ϕ(zk)| = 1, then |ϕ(zkm)| → 1 as m → +∞, for a subsequence (ϕ(zkm))m∈N.
Hence,

lim sup
|z|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
= lim sup
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
.

This, along with Theorem 4, implies the theorem in this case.
If ‖ϕ‖∞ < 1, then Pg

ϕ : X → Bµ,0 is compact, so that ‖Pg
ϕ‖e,X→Bµ,0 = 0. Since g ∈ H∞

µ,0,
we have

lim sup
|z|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
≤
(

ln[k+1] a
1− ‖ϕ‖∞

− ln[k+1] a
)

lim
|z|→1

µ(z)|g(z)| = 0.

Hence, in this case, (41) holds.

Corollary 2. Suppose that k ∈ N, a ∈ [2e[k],+∞), g ∈ H(B), g(0) = 0, ϕ ∈ S(B), µ ∈W(B),
and X ∈ {Blogk

,Blogk ,0}. Then, the following claims hold.

(a) Pg
ϕ : X → Bµ is bounded if and only if

max
{
‖g‖H∞

µ
, sup

z∈B
µ(z)|g(z)|

(
ln[k+1] a

1− |ϕ(z)| − ln[k+1] a
)}

< +∞.
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(b) If Pg
ϕ : X → Bµ is bounded, then Pg

ϕ : X → Bµ is compact if and only if

lim
|ϕ(z)|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
= 0.

(c) If Pg
ϕ : X → Bµ,0 is bounded, then Pg

ϕ : X → Bµ,0 is compact if and only if

lim
|z|→1

µ(z)|g(z)|
(

ln[k+1] a
1− |ϕ(z)| − ln[k+1] a

)
= 0.
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14. Stević, S. Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces. Appl. Math. Comput. 2012, 218,

11163–11170. [CrossRef]
15. Yang, W.; Yan, W. Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces. Bull.

Korean Math. Soc. 2011, 48, 1195–1205.
16. Zhu, X. Weighted composition cperators from F(p, q, s) spaces to H∞

µ spaces. Abst. Appl. Anal. 2009, 2009, 290978. [CrossRef]
17. Zhu, X. Weighted composition operators from weighted Hardy spaces to weighted-type spaces. Demonstr. Math. 2013, 46,

335–344.
18. Dunford, N.; Schwartz, J.T. Linear Operators I; Interscience Publishers, Jon Willey and Sons: New York, NY, USA, 1958. [CrossRef]
19. Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991.
20. Trenogin, V.A. Funktsional’niy Analiz; Nauka: Moskva, Russia, 1980. (In Russian)
21. Malavé-Malavé, R.J.; Ramos-Fernández, J.C. Superposition operators between logarithmic Bloch spaces. Rend. Circ. Mat. Palermo

II Ser. 2019, 68, 105–121.
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30. Li, H.; Guo, Z. Note on a Li-Stević integral-type operator from mixed-norm spaces to nth weighted spaces. J. Math. Inequal. 2017,

11, 77–85. [CrossRef]
31. Li, H.; Li, S. Norm of an integral operator on some analytic function spaces on the unit disk. J. Inequal. Math. 2013, 2013, 342.

[CrossRef]
32. Li, S. An integral-type operator from Bloch spaces to Qp spaces in the unit ball. Math. Inequal. Appl. 2012, 15, 959–972. [CrossRef]
33. Li, S. On an integral-type operator from the Bloch space into the QK(p, q) space. Filomat 2012, 26, 331–339. [CrossRef]
34. Pan, C. On an integral-type operator from Qk(p, q) spaces to α-Bloch spaces. Filomat 2011, 25, 163–173.
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