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Abstract: In this paper, we consider a variant of dominating set problem, i.e., the total dominating
set problem. Given an undirected graph G = (V, E), a subset of vertices T ⊆ V is called a total
dominating set if every vertex in V is adjacent to at least one vertex in T. Based on LP relaxation
techniques, this paper gives a distributed approximation algorithm for the total dominating set
problem in general graphs. The presented algorithm obtains a fractional total dominating set that is, at
most, k(1 + ∆

1
k )∆

1
k times the size of the optimal solution to this problem, where k is a positive integer

and ∆ is the maximum degree of G. The running time of this algorithm is constant communication
rounds under the assumption of a synchronous communication model.
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MSC: 05C90

1. Introduction

A subset D ⊆ V of vertices is called a dominating set of G if every vertex in V − D
is adjacent to at least one vertex in D. Domination is one of the central problems in the
theoretical study of network design and is a widely used class of combinatorial optimiza-
tion problems with applications in surveillance communications [1], coding theory [2],
cryptography [3,4], complex ecosystems [5], electric power networks [6], etc. More practical
applications and theoretical results can be found in [7–10].

A dominating set can be used to optimize the number and location of servers in a
network. It is also used in some routing protocols for ad hoc networks [11,12], when it
satisfies certain specific properties (weakly connected or connected). In a dominating set,
the vertices represent the servers in a network, which can provide essential services to the
users. However, when a server is attacked or suddenly crashes, the service provided will
be affected. As each server is adjacent to another server in a total dominating set, it can
provide greater fault tolerance and serve as a backup when a server crashes. Because each
vertex is dominated by another vertex in the total dominating set, this special domination
property is precisely adapted to peer-to-peer networks [13]. A total dominating set is a
variant of dominating sets; Cockayne introduced its definition in [14]. In a network graph
G = (V, E), a subset T ⊆ V of vertices of G is called a total dominating set (TDS) if each
vertex in V is adjacent to at least one vertex in T. For a TDS T of G, if no proper subset of T
is a TDS of G, T is called minimal. The minimum total dominating set (MTDS) problem is
to find a total dominating set of the minimum size.

In this paper, we present a distributed approximation algorithm for this MTDS problem
based on LP relaxation techniques. The algorithm obtains a fractional total dominating set
that is, at most, k(1 + ∆

1
k )∆

1
k times the size of the optimal solution for the TDS problem

in general graphs, where k is a positive integer and ∆ is the maximum degree. The
key to designing this algorithm is to use the maximum dynamic degree in the second
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neighborhood of the vertex, where the dynamic degree is the number of white vertices
in the open neighborhood of a vertex at a given time. The communication model used
in this paper is synchronous [15]. That is to say, in each communication round, every
vertex can send a message to each of its neighbors in the given graph; the time complexity
of the algorithm is to compute the number of communication rounds. In this paper,
the number of communication rounds for our algorithm is a constant. Unlike the existing
distributed algorithms, the algorithms in [16,17] focus on special graphs (planar graphs
without three or four cycles), while this paper is concerned with general graphs. The self-
stabilizing distributed algorithm designed in [13] can obtain a minimal total dominating
set in polynomial time O(mn) (m is the number of edges in the graph and n is the number
of vertices in the graph) in general graphs. Comparatively, the distributed algorithm
designed in this paper, under a synchronous communication model, can obtain a non-
trivial approximation ratio in general graphs with a constant number of rounds. The time
complexity of our algorithm is O(k2), where k is a positive integer.

The paper is organized as follows. We first give some complexity and algorithmic
results on the TDS problem in Section 2. Section 3 introduces some necessary notations and
presents the linear programming relaxation of the TDS problem. In Section 4, based on LP
relaxation techniques and the definition of the maximum dynamic degree in the second
neighborhood of the vertex, we design a distributed approximation algorithm for the TDS
problem. In Section 5, we summarize this paper and introduce some future work.

2. Related Work

The concept of total domination in graphs was introduced in [14], and has been
extensively studied in [18–21]. Garey et al. showed that the problem of finding an MTDS is
NP-hard for general graphs [22] and is also MAX SNP-hard [23–25]. Laskar et al. [26] gave
a linear time algorithm to compute the total domination number in a tree and showed that
it is NP-complete to find an MTDS in undirected path graphs.

Henning et al. [27] proposed a heuristic algorithm to find a TDS whose size is at
most n(1 + ln δ)/ ln δ, where n is the number of vertices in G and δ ≥ 2 is the minimum

degree. An (H∆ − 1
2 )-approximation algorithm was presented in [28], where Hi =

i
∑

h=1

1
h

is the i-th harmonic number. In [28], they also showed that there exist two constants,
a ≥ 3 and b > 0, such that, for each ∆ ≥ a, it is NP-hard to approximate MTDS within
factor ln ∆− b ln ln ∆ in bipartite graphs. Zhu [29] designed a greedy algorithm for the
TDS problem; the performance ratio of the algorithm, ln(∆− 0.5) + 1.5, showed that it
is NP-hard to approximate MTDS within factor (1− ε) ln |V| (ε > 0) in sparse graphs,
unless NP ⊆ DTIME(|V|O(log log |V|)), within factor 391/390 for three-bounded degree
graphs, within factor 681/680 for three-regular graphs, and within factor 250/249 for
four-regular graphs. More complexity results can be found in [20].

Schaudt et al. [30] showed that it is NP-hard to seek for a TDS T such that the subgraph
G[T] belongs to a member of a given graph class, such as perfect graphs, bipartite graphs,
asteroidal-triple-free graphs, interval graphs, unicyclic graphs, etc. By integrating a genetic
algorithm and local search, Yuan et al. [31] designed a hybrid evolutionary algorithm for
the TDS problem.

In a planar graph without three cycles, a 16-approximation algorithm was presented
in [16] for the TDS problem. Alipour and Jafari [17] presented a 9-approximation algorithm
for the TDS problem in a planar graph without four cycles. Bahadir [32] provided an
algorithm to determine whether a graph satisfies γt(G) = 2γ(G) or not, where γt(G) is the
total domination number and γ(G) is the domination number of a graph G. Hu et al. [33]
designed an improved local search framework to deal with the TDS problem by analyzing
the algorithm in [31]. In [34], Jana and Das first showed that it is NP-complete to find an
MTDS in a given geometric unit disk graph. Next, they presented an 8-approximation
algorithm for the TDS problem in the geometric unit disk graphs, with the running time
of the algorithm as O(n log k), where k is the size of the output result of their algorithm.
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By using the shifting strategy technique in [35], a polynomial time approximation scheme
(PTAS) was given in [34] for the TDS problem in the geometric unit disk graphs.

In a network, a scheduler is called fair if a continuously enabled node will eventually be
selected by the scheduler. Otherwise, an unfair scheduler can only guarantee the progress
of the global system [13]. For the minimal TDS problem, Goddard et al. [36] presented
a self-stabilizing algorithm whose running time is exponential under the unfair central
scheduler, i.e., only one enabled node performs a move step at a time. Belhoul et al. [13]
designed another self-stabilizing algorithm under the unfair distributed scheduler (any
non-empty subset of enabled nodes will be selected to perform the move step); however,
the running time of its algorithm is polynomial time.

3. Preliminaries

Firstly, we introduce some notations. Given a graph G = (V, E), for the sake of
discussion, we assume that V = {v1, v2, . . . , vn}. For a vertex vi ∈ V, let N(vi) = {vj ∈
V|vivj ∈ E} denote the open neighborhood of vi. Denote the degree of vi in graph by δ(vi),
which is the number of vertices in the neighborhood N(vi), i.e., δ(vi) = |N(vi)|. Let ∆
denote the maximum degree of all vertices in G. Denote the maximum degree of vi in N(vi)
by δ(1)(vi) := max

vj∈N(vi)
δ(vj), and the maximum degree of vi in the second neighborhood by

δ(2)(vi) := max
vj∈N(vi)

δ(1)(vj).

Secondly, we give the linear programming relaxation for the total dominating set
problem. Given an undirected graph G = (V, E), T ⊆ V is a total dominating set of
G if each vertex v ∈ V satisfies N(vi)

⋂
T 6= ∅. For each vertex vi ∈ V, we assign a

corresponding binary variable xi. If xi is set to 1 if and only if vi is a member of the total
dominating set T, i.e., vi ∈ T. Hence, T is called a total dominating set of G if, and only
if, it satisfies ∑

vj∈N(vi)
xj ≥ 1 for every vertex vi ∈ V. Denote the adjacency matrix for G by

N. The MTDS problem can be formulated as the following integer linear programming
(ILPMTDS):

minimize
n

∑
i=1

xi

s.t. N · x ≥ 1̄

x ∈ {0, 1}n,

where the first constraint indicates that if the vertex vi satisfies ∑
vj∈N(vi)

xj ≥ 1, then the

vertex vi is a member of the total dominating set.
By relaxing the constraints, we can obtain the linear programming relaxation (LPMTDS)

of ILPMTDS:

minimize
n

∑
i=1

xi

s.t. N · x ≥ 1̄

x ≥ 0.

The dual programming (DLPMTDS) of LPMTDS is

maximize
n

∑
i=1

yi

s.t. N · y ≤ 1̄

y ≥ 0,
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where the first constraint indicates that if we introduce a positive value yi for every vertex
vi, then ∑ yi of all vertices in N(vi) of every vertex vi is at most 1. This means that the sum
of the corresponding xi in N(vi) of every vertex vi is at least 1.

4. Algorithm for the TDS Problem

In this section, based on the LP relaxation techniques and the definition of the maxi-
mum dynamic degree in the second neighborhood of the vertex, we present a distributed
approximation algorithm for the TDS problem by integrating the techniques in [37,38].

Similarly to the assumption about dominating sets in [39,40], for each vertex vi, if the
vertex satisfies ∑vj∈N(vi)

xj ≥ 1, we say that the vertex is covered, and it will be colored
black. Initially all vertices are colored white. Denote the dynamic degree of a vertex vi
by δ̃(vi), and use it to compute the number of white vertices in N(vi). Hence, when the
algorithm starts, we have δ̃(vi) = δ(vi).

Before analyzing our algorithm, we give a brief description of the algorithm. We
introduce a variable xi to every vertex vi, xi is initialized as 0, as the algorithm runs, it
gradually increases. The outer loop iteration h̄ is mainly to reduce δ̃(vi). In the outer loop
iteration of the algorithm, let τ(1)(vi) and τ(2)(vi) denote the maximum dynamic degree in
N(vi) and the second neighborhood of vi, respectively. In each inner loop iteration, only

the vertices that satisfy δ̃(vi) ≥ τ(2)(vi)
h̄

h̄+1 increase the corresponding xi. We call these
vertices active. For a white vertex vi, denote the number of active vertices in N(vi) by a(vi).
If the vertex vi is colored black, let a(vi) = 0. For each vertex vj ∈ N(vi), let a(1)(vi) denote
the maximum a(vj). The key to solving the total dominating set problem in this paper is
how to use the maximum dynamic degree in the second neighborhood of the vertex to
design Algorithm 1.

First, we illustrate the execution of Algorithm 1 with an example in Figure 1, where
k = 5 and ∆ = 5. Figure 1a is the topology graph of the network with n = 12, the δ̃(vi) of
each vertex is marked on the graph, initial values of variables xi, δ̃(vi), τ(2)(vi) are shown

in Table 1. In Figure 1b, when h̄ = k− 1 = 4 and m = 4, v6, v8 satisfy δ̃(vi) ≥ τ(2)(vi)
h̄

h̄+1 ,
v6, v8 are active vertices, hence v6, v8 are selected, then the corresponding x6, x8 of v6, v8 are
changed from 0 to a(1)(vi)

− m
m+1 ≈ 0.57. According to lines 20–22 of Algorithm 1, v7 satisfies

∑vj∈N(v7)
xj ≥ 1, hence v7 is colored black and we need to update δ̃(vi). New values of

variables τ(2)(vi)
h̄

h̄+1 , a(vi), a(1)(vi), xi, δ̃(vi) are shown in Table 1. When m = 3, new
values of variables a(vi), a(1)(vi), xi, δ̃(vi) are shown in Table 1, we continue to execute the
algorithm, and v4, v5, v11, v12 are colored black in Figure 1c. When m : 2→ 0, the dynamic
degrees δ̃(vi) of all vertices are less than the corrsponding τ(2)(vi)

4
5 , so the outer iteration

h̄ = 4 ends, and we update τ(2)(vi) in Table 1. By continuing to execute Algorithm 1, when
h̄ : 3 → 0 and m : 4 → 0, the coloring process of all vertices and the changes in δ̃(vi) are
shown in Figure 1d–f. Initially, all xi = 0. By executing the algorithm, the final xi of all
vertices is shown in Figure 1g. So, we can determine that the size of the output solution of

Algorithm 1 is
12
∑

i=1
xi = 4 + 0.57 = 4.57.

The optimal TDS for this example is shown in Figure 2. Hence, we can see that
the optimal TDS in this case is {v4, v6, v8, v9}, so its size is 4. The performance ratio of
Algorithm 1 is 4.57

4 ≈ 1.14 in this case.
Second, we give some lemmas that will be used to analyze the approximation ratio of

Algorithm 1.
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Algorithm 1 Approximating LPMTDS

Input: Given a graph G = (V, E), a positive integer k.
Output: A feasible solution x for LPMTDS.

1: initially xi := 0, δ̃(vi) := δ(vi), V′ := V;
2: calculate δ(2)(vi), set τ(2)(vi) := δ(2)(vi);
3: for h̄ := k− 1 to 0 by −1 do
4: (? δ̃(vi), set zi := 0 ?)
5: for m := k− 1 to 0 by −1 do

6: if δ̃(vi) ≥ τ(2)(vi)
h̄

h̄+1 , vi ∈ V′ then
7: send ‘active vertex’ to all neighbors
8: end if
9: calculate a(vi) := |{vj ∈ N(vi)|the vertex vj is active vertex}|

10: if the vertex vi is colored ‘black’ then
11: a(vi) := 0
12: end if
13: send a(vi) to all vertices in N(vi);
14: calculate a(1)(vi) := maxj∈N(vi)

{a(vj)};
15: (? a(vi), a(1)(vi) ?)

16: if δ̃(vi) ≥ τ(2)(vi)
h̄

h̄+1 , vi ∈ V′ then
17: xi := max{xi, a(1)(vi)

− m
m+1 }

18: end if
19: send xi to all vertices in N(vi);
20: if ∑vj∈N(vi)

xj ≥ 1 then
21: the vertex vi is colored ‘black’
22: end if
23: send the color of vertex vi to all vertices in N(vi);
24: update δ̃(vi) := |{vj ∈ N(vi)|the vertex vj is white}|
25: end for
26: (? zi ?)
27: send δ̃(vi) to all vertices in N(vi);
28: calculate τ(1)(vi) := maxj∈N(vi)

{δ̃(vj)};
29: send τ(1)(vi) to all vertices in N(vi);
30: update τ(2)(vi) := maxj∈N(vi)

{τ(1)(vj)};
31: if δ̃(vi) = τ(2)(vi) = 0 then
32: V′ =: V′ − {vi}
33: end if
34: if V′ 6= ∅ then
35: continue to execute the algorithm
36: end if
37: end for

Lemma 1. When each outer loop iteration h̄ starts, for each vertex vi ∈ V, we can obtain

δ̃(vi) ≤ ∆
h̄+1

k .

Proof of Lemma 1. We prove it by using induction.
Firstly, when h̄ = k − 1, the condition ∆

h̄+1
k = ∆. Due to δ̃(vi) being the dynamic

degree in N(vi) and ∆ being the maximum degree, it is clear that δ̃(vi) ≤ ∆.
Secondly, in order to prove that the other iterations also hold, we use the algorithm

in [37] to approximate LPMTDS (the modified algorithm will be available in Appendix A),
where all vertices know ∆ in their algorithm. Thus, similar to their algorithmic analysis,
in the last step (m = 0) of the preceding outer loop iteration h̄ + 1, the xi of all vertices
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with δ̃(vi) ≥ ∆
h̄+1

k is changed to 1. Hence, all vertices in N(vi) will be colored black, so
δ̃(vi) will be changed to 0. Thus, the dynamic degrees of all vertices with δ̃(vi) ≥ ∆

h̄+1
k is

changed to 0, and the dynamic degrees of the other vertices clearly satisfy this inequality
δ̃(vi) ≤ ∆

h̄+1
k . Therefore, by using the algorithm in [37], we can verify that δ̃(vi) ≤ ∆

h̄+1
k

holds when each outer loop iteration h̄ starts. Hence, for our algorithm, we only need
to show that the xi of all vertices with δ̃(vi) ≥ ∆

h̄
k is changed to 1 when each inner loop

iteration ends (m = 0). According to lines 17–19 of Algorithm 1, we can see that the xi of all

vertices with δ̃(vi) ≥ τ(2)(vi)
h̄

h̄+1 are changed to 1 when m = 0. Therefore, we only need to

prove that τ(2)(vi)
h̄

h̄+1 ≤ ∆
h̄
k for each vertex vi.

d d d
d d d d d
d d d d

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

2 3 2

3 4 3 5 1

1 1 1 2

(a)

d d d
d d t d d
d d d d

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

2 2 2

3 3 3 4 1

1 1 1 2

(b)

d t t
d d t d t
d d d t

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

2 1 1

3 3 2 0 1

1 1 0 2

(c)

t t t
d d t t t

d d t t

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

2 0 0

2 2 1 0 0

1 1 0 0

(d)

t t t
t t t t t
d d t t

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

0 0 0

1 1 0 0 0

0 0 0 0

(e)

t t t
t t t t t

t t t t

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

0 0 0

0 0 0 0 0

0 0 0 0

(f)

t t t
t t t t t

t t t t

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

0.57 0 0

1 1 0 1 0

0 0 0 1

(g)

Figure 1. An illustration of Algorithm 1, in which k = 5 and ∆ = 5. (a) is the topology graph, δ̃(vi)

of each vertex is marked on the graph. (b) When h̄ = k− 1 = 4 and m = 4, v7 is colored black and
we update δ̃(vi). (c) When h̄ = k− 1 = 4 and m : 3 → 0, v4, v5, v11, v12 are colored black and we
update δ̃(vi). (d) When h̄ = k− 2 = 3 and m : 4 → 0, v3, v6, v10 are colored black and we update
δ̃(vi). (e) When h̄ = k− 3 = 2 and m : 4→ 0, v8, v9 are colored black and we update δ̃(vi). (f) When
h̄ = k− 4 = 1 and m : 4→ 0, v1, v2 are colored black and we update δ̃(vi). By executing the algorithm,
the final xi of all vertices is shown in (g).
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Based on the induction hypothesis, we can obtain, for each vertex vi, δ̃(vi) ≤ ∆
h̄+1

k in
each outer loop iteration start. As τ(2)(vi) is the maximum dynamic degree in the second
neighborhood of vi, we can obtain τ(2)(vi) ≤ ∆

h̄+1
k for each vertex vi. Hence, we have

τ(2)(vi)
h̄

h̄+1 ≤ ∆
h̄+1

k ·
h̄

h̄+1 = ∆
h̄
k .

We complete the proof.

d d d
td td d td d
d d d td

v10 v11 v12

v9 v8 v7 v6 v5

v1 v2 v3 v4

Figure 2. The optimal total dominating set, in which k = 5 and ∆ = 5.

Table 1. Initial and new values of some variables.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

xi 0 0 0 0 0 0 0 0 0 0 0 0

initial δ̃(vi) 1 1 1 2 1 5 3 4 3 2 3 2

τ(2)(vi) 4 4 5 5 5 4 5 5 4 4 5 5

τ(2)(vi)
4
5 3.03 3.03 3.62 3.62 3.62 3.03 3.62 3.62 3.03 3.03 3.62 3.62

h̄ = 4 a(vi) 0 1 0 1 1 0 2 0 1 1 1 1

a(1)(vi) 1 0 1 0 0 2 1 2 1 1 2 1

m = 4 xi 0 0 0 0 0 0.57 0 0.57 0 0 0 0

δ̃(vi) 1 1 1 2 1 4 3 3 3 2 2 2

a(vi) 0 0 0 1 1 0 0 0 0 0 1 1

h̄ = 4 a(1)(vi) 0 0 1 0 0 1 1 0 0 0 1 1

xi 0 0 0 0 0 1 0 0.57 0 0 0 0

m = 3 δ̃(vi) 1 1 0 2 1 0 2 3 3 2 1 1

2 m→ 0 τ(2)(vi) 3 3 2 2 2 3 3 3 3 3 3 2

Lemma 2. Before assigning a new xi to vi, for each vertex vi ∈ V, we can obtain

a(vi) ≤ ∆
m+1

k .

Proof of Lemma 2. We also prove it by using induction.
Firstly, when m = k− 1, ∆

m+1
k = ∆. According to the definitions of a(vi) and ∆, it is

clear that a(vi) ≤ ∆.
Secondly, when m 6= k− 1, we need to prove that all vertices vi with a(vi) > ∆

m
k are

colored black when the inner loop iteration ends. We apply the induction hypothesis to the
other inner loop iterations, so we can obtain a(vi) ≤ ∆

m+1
k for each vertex vi. Hence, the xj

of each active vertex vj is assigned in line 17 as

xj ≥ a(1)(vj)
− m

m+1 ≥ 1

∆
m+1

k ·
m

m+1
=

1

∆
m
k

.

If each vertex vi has more than ∆
m
k active vertices in N(vi), vi will be covered. So, the

conclusion holds.
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Then, we analyze all the increased xi in the inner loop iterations. It is difficult to
directly compute the sum of all the increased xi. Therefore, for each vertex vi, we introduce
a new variable zi. All xi is initialized as 0 in line 4 of Algorithm 1. When the vertex vi
increases the xi over time, the increased xi is equally distributed to the zj of the vertices in
{vj ∈ N(vi) | vj which is colored white before the increment of xi at line 17}. Hence, we can
obtain that ∑ zj is equal to the sum of all the increased xi in each outer loop iteration. So,
we only need to show that all zi are bounded, as then all the increased xi are also bounded.

Lemma 3. For each vertex vi ∈ V, we can obtain zi ≤ 1+∆1/k

τ(1)(vi)
h̄

h̄+1
when each outer loop itera-

tion ends.

Proof of Lemma 3. Due to all zi = 0 in line 4, we only need to analyze a single outer loop
iteration h̄. From the execution of the algorithm, we know that all xi are increased in line 17.
Therefore, zi can only be increased there if the vertex vi is white. For each white vertex vi,
we need to discuss two cases during the current outer loop h̄. The first case is that, when
all inner loop iterations end, vi is still white. The second case is that, when the remaining
inner loop iterations end, the vertex vi is or becomes black.

For the first case, we can easily obtain ∑vj∈N(vi)
xj ≤ 1. Since all the increased x are

distributed among at least τ(2)(vj)
h̄

h̄+1 zi, we can obtain

zi ≤ ∑
vj∈N(vi)

xj

τ(2)(vj)
h̄

h̄+1

≤ 1

τ(1)(vi)
h̄

h̄+1
, (1)

where the second inequality holds because τ(1)(vi) and τ(2)(vj) denote the maximum
dynamic degree δ̃(vi) in N(vi) and the second neighborhood of vi, respectively, so we have
τ(2)(vj) ≥ τ(1)(vi).

In the second case, we can see that only white vertices can increase their z. Since the
δ̃(vi) will become smaller over time, these active vertices vj ∈ N(vi) become active in the
previous iterations. Hence, we can see that each active vertex xj contributes to the zi at most

xj

δ̃(vi)
≤ 1

τ(1)(vi)
h̄

h̄+1
· a(1)(vj)

− m
m+1 .

Due to vi having a(vi) active vertices in N(vi), the upper bound of the increased zi is

1

τ(1)(vi)
h̄

h̄+1
· 1

a(1)(vj)
m

m+1
· a(vi) ≤

1

τ(1)(vi)
h̄

h̄+1
· 1

a(vi)
m

m+1
· a(vi)

=
a(vi)

1
m+1

τ(1)(vi)
h̄

h̄+1
, (2)

where the first inequality follows from a(vi) ≤ a(1)(vj).
Combining these results with Lemma 2, by adding (1) and (2), we can obtain
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zi ≤
1

τ(1)(vi)
h̄

h̄+1
+

a(vi)
1

m+1

τ(1)(vi)
h̄

h̄+1

≤ 1 + (∆
m+1

k )
1

m+1

τ(1)(vi)
h̄

h̄+1

=
1 + ∆1/k

τ(1)(vi)
h̄

h̄+1
.

We complete the proof.

Based on the two lemmas, we will analyze the correctness, approximation ratio, and
time complexity of Algorithm 1 in the following. Firstly, we show that the algorithm
outputs a feasible solution to the linear programming relaxation of the minimum total
dominating set problem.

Theorem 1. The output result x̄ of Algorithm 1 is a feasible solution to linear programming
relaxation of minimum total dominating set problem LPMTDS.

Proof of Theorem 1. According to the execution of Algorithm 1, vi will be colored ‘black’
only when the vertex vi satifies ∑vj∈N(vi)

xj ≥ 1, i.e., xi belongs to the feasible solution of

LPMTDS. For each vertex vi, we can obtain δ̃(vi) = 0 and τ(2)(vi) = 0 at the end of the
iteration (h̄ = 0, m = 0), so the algorithm will terminate and all vertices are colored ‘black’.
Hence, the output result x̄ of Algorithm 1 is a feasible solution for LPMTDS.

Secondly, we analyze the approximation ratio of Algorithm 1.

Theorem 2. For a given network graph G and a positive integer k, Algorithm 1 is a k(1 + ∆
1
k )∆

1
k -

approximation for the minimum total dominating set problem in G.

Proof of Theorem 2. According to the above description of zj, ∑ zj is equal to the sum of
all the increased xi in each outer loop iteration of Algorithm 1. From Lemma 3, we know
that the zj of all vertices satisfy zj ≤ 1+∆1/k

τ(1)(vj)
h̄

h̄+1
when each outer loop iteration ends. So,

for each vertex vi, the sum of the zj in N(vi) of the vertex vi in the outer loop iteration is
at most

∑
vj∈N(vi)

zj ≤
1 + ∆1/k

τ(1)(vj)
h̄

h̄+1
· δ̃(vi)

≤ 1 + ∆1/k

δ̃(vi)
h̄

h̄+1
· δ̃(vi)

= (1 + ∆1/k) · δ̃(vi)
1

h̄+1

≤ (1 + ∆
1
k ) · ∆

1
k ,

where the second inequality holds because τ(1)(vj) is the maximum dynamic degree δ̃(vi)

in N(vj), vi ∈ N(vj), hence τ(1)(vj) ≥ δ̃(vi). The fourth inequality follows from Lemma 1,

δ̃(vi) ≤ ∆
h̄+1

k .
Next, for each vertex vj, if we let yj :=

zj

(1+∆
1
k )∆

1
k

, then we can see that ∑vj∈N(vi)
yj ≤ 1

holds for each vertex vi ∈ V; hence, the ȳ is a feasible solution of DLPMTDS. According to
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the weak duality theorem of linear programming, we can see that ∑ yj is a lower bound of
an optimal TDS (TDSOPT). Therefore, for each outer loop iteration, we can obtain

n

∑
j=1

zj ≤ (1 + ∆
1
k ) · ∆

1
k · |TDSOPT |.

On the other hand, there are k iterations in the outer loop. So, we can obtain

n

∑
i=1

xi ≤ k(1 + ∆
1
k ) · ∆

1
k · |TDSOPT |.

We complete the proof.

Finally, we analyze the running time of Algorithm 1.

Theorem 3. The number of communication rounds for Algorithm 1 is 4k2 + O(k).

Proof of Theorem 3. Firstly, it can be seen from the execution of the algorithm that every
inner loop iteration needs to send four messages to all its neighbors in the algorithm,
and there are k inner loop iterations, so it takes 4k communication rounds. Secondly, every
outer loop iteration needs to send two messages to all neighbors in the algorithm; hence, it
takes 4k + 2 communication rounds for each outer loop iteration. There are k outer loop
iterations, so it takes k(4k + 2) communication rounds for all outer loop iterations. Finally,
we need to calculate some values before the outer loop iteration starts, which takes O(k)
communication rounds. Hence, we can see that the number of communication rounds in
the algorithm is k(4k + 2) + O(k) = 4k2 + O(k).

5. Conclusions

In this paper, we present a distributed approximation algorithm for the total dominat-
ing set problem by using the maximum dynamic degree in the second neighborhood of
the vertex and LP relaxation techniques. Our algorithm obtained only a relaxed solution;
further considerations can be given on how to design a random rounding algorithm to
obtain an integer TDS from the relaxed solution. It is interesting to consider this problem
in wireless networks so that we can take advantage of the specificity of wireless networks
to improve the performance of the algorithm. In practical applications, if the vertices in a
graph are weighted, additional considerations could include how to design an approxima-
tion algorithm to solve the minimum total dominating set problem.

Author Contributions: Conceptualization, L.W.; methodology, L.W.; validation, L.W. and W.W.; for-
mal analysis, L.W. and W.W.; investigation, L.W. and W.W.; writing—review and editing, L.W.; project
administration, L.W. All authors have read and agreed to the published version of the manuscript.

Funding: The first author is supported by NSFC (No. 62272215).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: This manuscript has no associated data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:



Axioms 2023, 12, 506 11 of 12

LP Linear programming
TDS Total dominating set
MTDS Minimum total dominating set
ILPMTDS Integer linear programming of minimum total dominating set problem
LPMTDS Linear programming relaxation of minimum total dominating set problem
DLPMTDS Dual linear programming of minimum total dominating set problem
TDSOPT Optimal total dominating set

Appendix A

Algorithm A1 Approximating LPMTDS

Input: G = (V, E), a positive integer k and maximum degree ∆.
Output: A feasible solution x for LPMTDS.

1: initially xi := 0, δ̃(vi) := δ(vi);
2: for h̄ := k− 1 to 0 by −1 do
3: set zi := 0; a(vi) := 0
4: for m := k− 1 to 0 by −1 do
5: send the color of node vi to all nodes in N(vi);
6: update δ̃(vi) := |{vj ∈ N(vi)|the node vj is white}|;
7: if δ̃(vi) ≥ ∆

h̄
k then

8: xi := max{xi, 1
∆

m
k
};

9: end if
10: send xi to all nodes in N(vi);
11: update the color of node vi and the values zi, a(vi);
12: end for
13: end for
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