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1. Introduction

A Faber polynomial is a sequence of polynomials used to approximate an analytic
function on a compact set. It is named after the German mathematician Georg Faber, who
introduced the Faber polynomials in 1903 [1]. The Faber polynomial of degree n for a given
analytic function f is defined as the unique polynomial Pn(z) of degree n that interpolates
f at its first n + 1 distinct zeros, counting multiplicities, on the compact set. The sequence
of Faber polynomials is known to converge uniformly to f on the compact set, and the
convergence rate is related to the smoothness of f . Faber polynomial expansions are often
used to obtain upper bounds on the Taylor–Maclaurin coefficients of analytic functions.

Q-calculus is a branch of mathematics that generalizes and extends calculus by intro-
ducing a new parameter q, which is a complex number or a variable. Jackson [2] pioneered
and systematically developed the application of q-calculus. It has applications in various
fields of mathematics and physics, such as number theory, combinatorics, quantum mechan-
ics, and statistical mechanics. In q-calculus, basic concepts, such as derivatives, integrals,
and functions, are modified to incorporate the parameter q. For instance, the q-derivative is
defined as the difference quotient involving q-analogs of the usual derivatives. Similarly,
the q-integral is defined as the q-analog of the Riemann integral. Q-calculus also includes
q-special functions, such as q-binomial coefficients, q-factorials, and q-hypergeometric func-
tions, which play significant roles in various areas of mathematics and physics. Overall,
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q-calculus provides a powerful tool for studying and solving problems involving discrete
and quantum systems.

Fractional calculus operators have found extensive use in the description and reso-
lution of problems in applied sciences, as well as in geometric functions, as noted in [3].
Fractional q-calculus is an extension of ordinary fractional calculus and has been applied in
a range of areas, including optimal control problems, solving q-difference and q-integral
equations, and ordinary fractional calculus. To learn more about this topic, one can refer
to [4] and recent papers, such as [5–7].

2. Preliminaries

Let A denote the set of analytic functions that can be expressed in the following form

Φ(η) = η +
∞

∑
k=2

$kηk, ($k ∈ C), (1)

and are defined in the open unit disk ∇ = {η ∈ C : |η| < 1}. Within A , there is
a subfamily S that consists of univalent functions in ∇. Additionally, let P denote the
subclass of analytic functions in ∇ that satisfy the inequality Re(ϕ(η)) > 0 and are of
the form

ϕ(η) = 1 +
∞

∑
k=1

ϕkηk, (2)

where |ϕk| < 2. Caratheodory’s Lemma (refer to [8]).
In the context of analytic functions defined in the open unit disk ∇, we can define

a relationship between two of such functions, Φ1 and Φ2, known as “subordination”.
We note that Φ1 is subordinate to Φ2, denoted by Φ1 ≺ Φ2 (η ∈ ∇), if there exists a
Schwarz function:

ψ(η) =
∞

∑
k=1

mkηk, with ψ(0) = 0 and ψ(1) = 1,

such that
Φ1(η) = Φ2(ψ(η)), for (η ∈ ∇).

In other words, Φ1 can be expressed as a composition of Φ2 with a certain conformal
mapping ψ(η), where ψ(η) maps the unit disk to itself and satisfies certain conditions. This
notion of subordination is described in [9].

Koebe’s one-quarter theorem, named after Paul Koebe, is a result of the complex
analysis, which states that if a biholomorphic mapping f maps the unit disk ∇ onto a
domain D in the complex plane, then the image of each tangent disk to ∇ under f contains
a disk of radius 1

4 of the radius of the tangent disk. In other words, if z0 ∈ ∇ and r > 0 is
such that the disk B(z0, r) is tangent to ∇ at some point, then f (B(z0, r)) contains a disk of
radius 1

4 r.
It is a well-known fact that, as per Koebe’s theorem, for any Φ ∈ S , the image of the

open unit disk under Φ satisfies Φ(∇) ≥ 1
4 . Moreover, every univalent function Φ has an

inverse function Φ−1, which is defined by the following properties:

1. For η ∈ ∇, Φ−1(Φ(η)) = η.

2. For ρ ∈ D(0, r0), where r0 ≥ 1
4 is a positive constant. Then, Φ(Φ−1(ρ)) = ρ. Here,

D(0, r0) denotes the open disk centered at the origin with radius r0.

The inverse function Φ−1 can be expressed as a power series of the form:

h(ρ) = Φ−1(ρ) = ρ− $2ρ2 + (2$2
2 − $3)ρ

3 − (5$3
2 − 5$2$3 + $4)ρ

4 + . . . . (3)
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Here, $k’s are the Taylor coefficients of Φ in the power series expansion of Φ(η), which
is given by (1), and h(ρ) is the inverse function evaluated at ρ.

Netanyahu [10] improved this bound to |$2| ≤ 4
3 . On the other hand, Brannan and

Clunie [11] improved Lewin’s [12] result and they showed that |$2| ≤
√

2.
Some examples of functions in the class Σ are

Φ1($) =
η

1− η
, Φ2($) = − log(1− η) and Φ3($) =

1
2

log
(

1 + η

1− η

)
.

The inverse functions that correspond to these:

Φ−1
1 (ρ) =

ρ

1 + ρ
, Φ−1

2 (ρ) =
e2ρ − 1
e2ρ + 1

and Φ−1
3 (ρ) =

eρ − 1
eρ .

are also univalent functions. Thus, the functions Φ1($), Φ2($), and Φ3($) are bi-univalent
functions.

However, it is well-known that the Koebe function of the form

Φ(η) =
$

(1− $)2 ,

is not in the class Σ. For more details, we refer to [13].
We emphasize that, as in the class S of normalized univalent functions, the convex

combination of two functions of class Σ need not be bi-univalent. For example, the functions

ϕ1(η) =
η

1− η
and ϕ2(η) =

η

1 + iη

are bi-univalent but their sum ϕ1 + ϕ2 is not even univalent, as its derivative vanishes at
1
2 (1 + i). However, the class Σ is preserved under a number of elementary transformations.

Several subclasses of bi-univalent functions have been investigated and introduced by
various authors, including Srivastava [13]. The class of bi-univalent functions in ∇ given
by (1) is denoted by Σ. Other different subclasses of Σ have also been studied by many
authors (see, for example, [14–35].

The significance of Faber polynomials in geometric function theory was demonstrated
by Schiffer [36]. However, there are only a few articles in the literature that use the Faber
polynomial expansion to determine the early and general coefficient bounds |$k| for bi-
univalent functions. Consequently, very little is known about the general coefficient bounds
$k for k ≥ 4, due to the unpredictable nature of the coefficients of both Φ and Φ−1 when
bi-univalency is required (see, for instance, [37–44]).

The coefficient of h(ρ) = Φ−1(ρ) of the form (3), can be expressed using the Faber
polynomial expansion as:

h(ρ) = Φ−1(ρ) = ρ +
∞

∑
£=2

1
£

K−£
£−1($2, $3, $4, . . .)ρ£,

where

K−£
£−1 =

(−£)!
(−2£ + 1)!(£− 1)!

$£−1
2 +

(−£)!
[2(−£ + 1)]!(£− 3)!

$£−3
2 $3

+
(−£)!

(−2£ + 3)!(£− 4)!
$£−4

2 $4 +
(−£)!

[2(−£ + 2)]!(£− 5)!
$£−5

2 [$5 + (−£ + 2)$2
3]

+
(−£)!

(−2£ + 5)!(£− 6)!
$£−6

2 [$6 + (−2£ + 5)$3$4] +
∞

∑
ℵ≥7

$£−ℵ
2 Vℵ,

(4)
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where Vℵ denotes a function such that 7 ≤ ℵ ≤ £. It can be expressed as a homogeneous
polynomial of degree ℵ in the variables $2, $3, . . . , $£. All of the pertinent details can be
found in [41].

In particular, the first three terms of K−£
£−1 are given below:

1
2

K−2
1 = −$2

1
3

K−3
2 = 2$2

2 − $3

1
4

K−4
3 = −(5$3

2 − 5$2$3 + $4).

In general, for any £ ∈ N, an expansion of the Faber polynomial is given by [45],

K£
κ−1 = £$κ +

£(£− 1)
2

E2
κ +

£!
(£− 3)!(3)!

E3
κ + . . . +

£!
(£− κ + 1)!(κ − 1)!

Eκ−1
κ−1 (5)

where E£
κ−1 = E£

κ−1($2, $3, . . .), and by [45],

E£
κ−1($2, $3, . . . , $κ) =

∞

∑
κ=2

m!($2)
µ2($3)

µ3 . . . ($κ)µκ−1

µ1! µ2! . . . µκ−1!
, (£ ≤ κ),

while $1 = 1, the sum is taken over all nonnegative integers µ1 µ2 . . . µκ , satisfying

µ1 + µ2 + . . . + µκ = m

µ1 + 2µ2 + . . . + (κ − 1)µκ−1 = κ − 1.

Evidently,
Eκ−1

κ−1($2, $3, . . . , $κ) = $κ−1
2 ,

or, equivalently, by [46]

E£
κ($2, $3, . . . , $κ) =

∞

∑
κ=2

m!($2)
µ2($3)

µ3 . . . ($κ)µκ

µ1! µ2! . . . µκ !
, (£ ≤ κ),

while $1 = 1, the sum is taken over all nonnegative integers µ1 µ2 . . . µκ , satisfying

µ1 + µ2 + . . . + µκ = m

µ1 + 2µ2 + . . . + (κ − 1)µκ−1 + (κ)µκ = κ.

It is clear that
Eκ

κ($2, $3, . . . , $κ) = Eκ
1

where the first and last polynomials are

Eκ
κ = $κ

1 and E1
κ = $κ .

The concept of q-calculus was first introduced by Jackson in a systematic way, and
it has since been studied by many mathematicians [47–50]. In this article, we introduce
some key concepts and definitions of q-calculus, assuming 0 < q < 1. Some of these
concepts include:
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Definition 1. The [κ]q denotes the basic (or q−) number, where 0 < q < 1 is defined as follows:

[κ]q =



(1− qκ)(1− q)−1 , κ ∈ C\{0}

0 , κ = 0

qk−1 + qk−2 + · · ·+ q2 + q + 1 =
k−1
∑

i=0
qi , κ = k ∈ N.

It is obvious from Definition 1 that lim
q→1−

[k]q = lim
q→1−

1−qk
1−q = k.

Definition 2 ([51]). The q-difference operator (or q-derivative) of a function f is defined by

∂q(Φ(η)) =


Φ(η)−Φ(qη)

η−qη η ∈ C\{0}

1 η = 0.

We note that lim
q→1−

∂qΦ(η) = Φ′(η) if Φ is differentiable for all η ∈ C.

One can easily see that

∂q

{
∞

∑
k=2

$kηk
}

=
∞

∑
k=2

[k]q$kηk−1, (k ∈ N, η ∈ ∇), (6)

and

∂κ
q

{
∞

∑
k=2

$kηk
}

= ∂q

(
∂κ−1

q

{
∞

∑
k=2

$kηk
})

= $k[k]q!, (k ∈ N). (7)

In 2019, Alsoboh and Darus [48] introduced the q-derivative operator
Υ(`)

q,µ,β,γ,δ : A→ A, as:

Υ(`)
q,µ,β,γ,δΦ(η) = z +

∞

∑
k=2

Ω`
k$kηk, (8)

where

Ω`
k =

[
(γ− δ)(β− µ)([k]q − 1) + 1

]`
, (9)

and (µ, β, γ, δ ≥ 0, γ > δ, β > µ, ` ∈ N0, η ∈ ∇).

Lemma 1 ([52]). Let the Schwarz function ω(η) be given by

ω(η) = ω1η + ω2η2 + ω3η3 + . . . + ωkηk + . . . (η ∈ ∇);

then

|ω1| ≤ 1,

|ω2| ≤ 1− |ω1|2,

|ω2 − tω2
1 | ≤ 1 + (|t| − 1)|ω1|2.

(10)
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3. Class D`
Σq
(χ, δ, γ, µ;ϕ)

In this section, we define and study a new subclass of bi-univalent functions in an open
unit disk that has symmetry, using the derivative operator Υ(`)

q,µ,β,γ,δΦ(η) of the form (8)
and the principle of subordination, as follows:

Definition 3. For µ, β, γ, δ ≥ 0, γ > δ, β > µ and k ∈ N0, a bi-univalent function Φ of the
form (1) is in the class D`

Σq
(χ, δ, γ, µ; ϕ) if it satisfies the following subordination conditions:

(1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χ∂qΥ(`)

q,µ,β,γ,δΦ(η) ≺ ϕ(η), (η ∈ ∇; χ ≥ 1), (11)

and

(1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χ∂qΥ(`)

q,µ,β,γ,δh(ρ) ≺ ϕ(ρ), (ρ ∈ ∇; χ ≥ 1), (12)

where h(ρ) and Υ(`)
q,µ,β,γ,δΦ(η) are defined by (3) and (8), respectively.

Example 1. A bi-univalent function f of the form (1) is referred to as being in the class
D0

Σq
(χ, δ, γ, µ; ϕ)= DΣ(q; χ, ϕ), if the following conditions of subordination are met:

(1− χ)
Φ(η)

η
+ χ∂qΦ(η) ≺ ϕ(η), (η ∈ ∇),

and

(1− χ)
h(ρ)

ρ
+ χ∂qh(ρ) ≺ ϕ(ρ), (ρ ∈ ∇),

where h(ρ) is defined by (3). This class was introduced by Altınkaya and Yalçın [37].

Example 2. A bi-univalent function f of the form (1) is referred to as being in the class lim
q→1−

D0
Σq

(χ, δ, γ, µ; ϕ) = Rσ(χ, ϕ), if the following conditions of subordination are met:

(1− χ)
Φ(η)

η
+ χ(Φ(η))′ ≺ ϕ(η), (η ∈ ∇),

and

(1− χ)
h(ρ)

ρ
+ χ(h(ρ))′ ≺ ϕ(ρ), (ρ ∈ ∇),

where h(ρ) is defined by (3). This class was introduced by Kumar et al. [53].

4. Coefficient Bounds of the Class D`
Σq
(χ, δ, γ, µ;ϕ)

The following theorem provides an estimate of the bounds of the coefficients for
functions of class D`

Σq
(χ, δ, γ, µ; ϕ). The theorem provides an estimate of the coefficients

$k for k ≥ ` + 2 in terms of the parameters χ, δ, γ, µ, and ϕ, as well as the maximum
value of |ϕ′(t)| on the interval [0, 1]. The proof of the theorem uses a method similar
to those employed by various authors, including Hussien et al. [54] and Altınkaya and
Yalçın ([55,56]).

Theorem 1. Let Φ be given by (1). For χ ≥ 1, 0 ≤ α < 1, (µ, β, γ, δ ≥ 0), γ > δ, β > µ and
k ∈ N0. If Φ ∈ D`

Σq
(χ, δ, γ, µ; ϕ) and $m = 0; m = 2, . . . ,k− 1, then

|$k| ≤
2(1− q)∣∣∣1 + (q− qk)χ

∣∣∣∣∣∣Ω`
k

∣∣∣ ; (k = 4, 5, 6, . . .). (13)



Axioms 2023, 12, 512 7 of 12

Proof. Since Φ ∈ D`
Σq
(χ, δ, γ, µ; ϕ) of form (1), we have:

(1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χDqΥ(`)

q,µ,β,γ,δΦ(η) = 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

k$kηk−1 (14)

and for h = Φ−1, we have

(1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χDqΥ(`)

q,µ,β,γ,δh(ρ) = 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

kbkρk−1

= 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

k

(
1
kK−kk−1($2, $3, . . . , $k)

)
ρk−1,

(15)

where Ω`
k and K−kk−1 are given by (4) and (9), respectively.

Since Φ, Φ−1 ∈ D`
Σq
(χ, δ, γ, µ; ϕ). Then, by using the definition of subordination, two

Schwartz functions exist,

u(η) =
∞

∑
k=1

kηkג and v(ρ) =
∞

∑
k=1

kkρk,

which are analytic in ∇, such that

ϕ(u(η)) = (1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χDqΥ(`)

q,µ,β,γ,δΦ(η), (η ∈ ∇) (16)

ϕ(v(ρ)) = (1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χDqΥ(`)

q,µ,β,γ,δh(ρ), (ρ ∈ ∇), (17)

where

ϕ(u(η)) = 1 +
∞

∑
k=1

k
∑
`=1

ϕkE`
k(1ג, ,2ג . . . , .k)ηkג (18)

and

ϕ(v(ρ)) = 1 +
∞

∑
k=1

k
∑
`=1

ϕkE`
k(k1,k2, . . . ,kk)ρ

k. (19)

From (14), (16), and (18), we have

(
1− χ(1− [k]q)

)
Ω`

k$k =
k−1

∑
`=1

ϕkE`
n−1(1ג, ,2ג . . . , (n−1ג (n ≥ 2), (20)

Similarly, from (15), (17), and (19), we have

(
1− χ(1− [k]q)

)
Ω`

kbk =
k−1

∑
`=1

ϕkE`
k−1(k1,k2, . . . ,kk−1) (k ≥ 2), (21)

by the given assumption
$m = 0, (2 ≤ m ≤ k− 1),

which is equivalent to
mג = km = 0; (1 ≤ m ≤ k− 2),
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and from Equations (20) and (21), we have bk = −$k and so
(

1− χ(1− [k]q)
)

Ω`
k$k = ϕ1גk−1,

(
1− χ(1− [k]q)

)
Ω`

k$k = −ϕ1kk−1.

(22)

Taking the absolute value for Equation (22), we obtain

|$k| ≤
|ϕ1||גk−1|(

1− χ(1− [k]q)
)

Ω`
k

=
|ϕ1||kk−1|(

1− χ(1− [k]q)
)

Ω`
k

, (n ≥ 4).
(23)

Using Caratheodory’s Lemma, we obtain

|$k| ≤
2(1− q)∣∣∣1− q + (q− qk)χ

∣∣∣∣∣∣Ω`
k

∣∣∣ .
This completes the proof of the theorem.

In the next theorem, we estimate the initial coefficients of the functions from the
indicated class D`

Σq
(χ, δ, γ, µ; ϕ).

Theorem 2. For χ ≥ 1, 0 ≤ α < 1, (µ, β, γ, δ ≥ 0), γ > δ, β > µ and k ∈ k0, if
Φ ∈ D`

Σq
(χ, δ, γ, µ; ϕ) where Φ(η) is given by (1), then we have the following consequence

|$2| ≤ min

 2
(1 + χq)Ω`

2
,

2√
(1 + χ(q2 + q))Ω`

3

,

|$3| ≤ min

{
4(

1 + χ(2 + q)Ω`
2
)2 +

2
(1 + χ(q2 + q))Ω`

3
,

6
(1 + χ(q2 + q))Ω`

3

}
,

and

|2$2
2 − $3| ≤

4∣∣(1 + χ([3]q − 1)
)
Ω`

3

∣∣ .
Proof. Replacing k by 2 and 3 in (20) and (21), respectively, we obtain:(

1− χ(1− [2]q)
)
Ω`

2$2 = ϕ11ג, (24)

(
1− χ(1− [3]q)

)
Ω`

3$3 = ϕ12ג + ϕ2c2
1, (25)

(
1− χ(1− [2]q)

)
Ω`

2$2 = −ϕ1k1, (26)

and (
1− χ(1− [3]q)

)
Ω`

3(2$2
2 − $3) = ϕ1k2 + ϕ2d2

1. (27)
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From (24) and (26), we have k1 = 1ג− and

|$2| =
|ϕ11∣∣∣|1ג− χ(1− [2]q)

∣∣∣Ω`
2

=
|ϕ1k1|∣∣∣1− χ(1− [2]q)

∣∣∣Ω`
2

≤ 2
1 + χ(1 + [2]q)Ω`

2
. (28)

Now, by adding (25) and (27)

2
(

1− χ(1− [3]q)
)

Ω`
3$2

2 = ϕ1(2ג +k1) + ϕ2(c2
1 + d2

1),

or, equivalently,

|$2| ≤
2√(

1 + χ(q2 + q)
)

Ω`
3

. (29)

Next, in order to find the bounds of |$3|, subtract (25) from (27), we have

2
(

1 + χ([3]q − 1)
)

Ω`
3($3 − $2

2) = ϕ1(2ג −k2) + ϕ2(c2
1 − d2

1), (30)

or
2
(

1 + χ([3]q − 1)
)

Ω`
3($3 − $2

2) ≤ ϕ2(2ג −k2),

|$3| ≤ $2
2 +

|ϕ2(2ג −k2)|
2
∣∣∣(1 + χ([3]q − 1)

)
Ω`

3

∣∣∣ . (31)

Equivalent to

|$3| ≤ $2
2 +

|ϕ2(2ג −k2)|
2
∣∣∣(1 + χ(q2 + q)

)
Ω`

3

∣∣∣ ,
Substituting the value $2 from (29) and (30) into (31), one obtains

|$3| ≤
4(

1 + χ(2 + q)Ω`
2
)2 +

2(
1 + χ(q2 + q)

)
Ω`

3

,

and
|$3| ≤

6(
1 + χ(q2 + q)

)
Ω`

3

.

Finally, from (30), by applying the Caratheodory Lemma, we obtain

|2$2
2 − $3| =

|ϕ1k2 + ϕ2d2
1|∣∣∣(1− χ(1− [3]q)
)
Ω`

3

∣∣∣ ≤ 4∣∣∣(1 + χ([3]q − 1)
)
Ω`

3

∣∣∣ . (32)

This completes the proof of Theorem 2.

5. Corollaries

The following corollaries, which roughly match Examples 1 and 2, are produced by
Theorems 1 and 2.

By putting ` = 0 in Theorem 1, we obtain the following corollary.

Corollary 1 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
DΣ(q, χ; ϕ) (χ ≥ 1). If $m = 0; m = 2, . . . ,k− 1. Then

|$k| ≤
2(1− q)

1− q + (q− qk)χ
(n ≥ 4).
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Applying the limit q → 1− in Theorem 1 and considering the case when ` = 0, we
obtain the following corollary.

Corollary 2 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
Rσ(χ, ϕ)(χ ≥ 1). If $m = 0; m = 2, . . . ,k− 1. Then

|$k| ≤
2

1 + χ(k− 1)
(n ≥ 4).

For k = 0 in Theorem 2, we obtain the following corollary.

Corollary 3 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
DΣ(q; χ, ϕ). Then

(1) |$2| ≤ 2
1+qχ ,

(2) |$3| ≤ 4
(1+qχ)2 +

2
1+(q2+q)χ ,

(3) |2$2
2 − $3| ≤ 4

1+(q2+q)χ .

For k = 0 and q→ 1− in Theorem 2, we obtain the following corollary.

Corollary 4. A bi-univalent function Φ given by (1) belongs to the class Rσ(χ, ϕ)(χ ≥ 1). Then

(1) |$2| ≤ 2
1+χ ,

(2) |$3| ≤ 4
(1+3χ)2 +

2
1+2χ .

6. Conclusions

This article investigated a novel subclass of bi-univalent functions, D`Σq(χ, δ, γ, µ; ϕ),
on the symmetry disk ∇. For functions belonging to each of these three classes of bi-
univalent functions, we calculated estimates for the upper bound of the Taylor–Maclaurin
coefficients of these functions in the aforementioned subset. By concentrating on the
variables employed in our primary findings, several additional novel findings were made.

The study of bi-univalent functions is an important and active area of research in
complex analysis and its applications. The investigation of this subclass provides deeper
insights into the theory and applications of bi-univalent functions. The results obtained in
this article can be generalized in the future using post-quantum calculus and other q-analogs
of the fractional derivative operator. Additionally, further analysis can be conducted to
explore additional subclasses and their characteristics.

Overall, this article contributes to the ongoing research in the field of complex analysis
by providing a detailed study of three important subclasses of bi-univalent functions.
Further research can be conducted to investigate more subclasses and their properties to
enhance our understanding of the theory and applications of bi-univalent functions.
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