Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling
Abstract
:1. Introduction
2. Sampling Methodology and Notations
Notations
3. Review of Imputation Methods under RSS
3.1. Mean Imputation Method
3.2. The Al-Omari and Bouza Imputation Method
3.3. The Sohail, Shabbir and Ahmed Imputation Methods
4. The Proposed Imputation Methods
- To provide efficient imputation methods for mean estimation.
- To access the impact of the skewness and kurtosis coefficients on the choice of imputation procedures.
5. Efficiency Conditions
- (i).
- From (31) and (A1)
- (ii).
- From (32) and (A1)
- (iii).
- From (31) and (A2)
- (iv).
- From (32) and (A2)
- (v).
- From (31) and (A3)
- (vi).
- From (32) and (A3)
- (vii).
- From (31) and (A4)
- (viii).
- From (32) and (A4)
- (ix).
- From (31) and (A8)
- (x).
- From (32) and (A8)
- (xi).
- From (31) and (A9)
- (xii).
- From (32) and (A9)
6. Computational Study
6.1. Numerical Study
6.2. Simulation Analysis
6.3. Discussion of Computational Findings
- (i).
- From the findings of Table 2, the proposed imputation methods , outperform the mean imputation methods, ref. [21] imputation methods and ref. [22] imputation methods in each real population. Furthermore, the proposed imputation methods , were superior among the proposed imputation methods in population 1, whereas the proposed imputation methods , were superior among the proposed imputation methods in populations 2–4. This is easily observed in Figure 1.
- (ii).
- From the findings of Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9, the proposed imputation methods , are also better than the mean imputation, ref. [21] imputation methods and ref. [22] imputation methods under both the symmetric and asymmetric populations for different correlation coefficients , coefficients of skewness and coefficients of kurtosis
- (iii).
- When the parent population was normal (symmetric) and Weibull (asymmetric), the proposed ratio-type imputation methods , always performed better than the competitors as well as within the proposed class of imputation methods under strategies I, II and III.
- (iv).
- When the parent population was Gamma (asymmetric), the proposed difference- and ratio-type imputation methods , were equally efficient and outperformed the conventional methods and performed better in comparison with the proposed imputation methods under strategies I, II and III.
- (v).
- The suggested imputation methods performed better in strategy II compared to strategies I and III in the real and artificially generated populations.
- (vi).
- It can be easily seen that the PRE decreases with the increase in asymmetry and peakedness for asymmetric distributions such as Gamma and Weibull.
- (vii).
- Moreover, the numerical analysis is summarized in Table 2 and Figure 1 under strategies I, II, and III for real populations 1–4. The PRE of the consequent estimators for the remaining simulation results in Table 3, Table 4, Table 5, Table 6 and Table 7 exhibit the same pattern and can be easily presented as line diagrams, if required.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Rubin, R.B. Inference and missing data. Biometrika 1976, 63, 581–592. [Google Scholar] [CrossRef]
- Lee, H.; Rancourt, E.; Sarndal, C.E. Experiments with variance estimation from survey data with imputed values. J. Off. Stat. 1994, 10, 231–243. [Google Scholar]
- Singh, S.; Horn, S. Compromised imputation in survey sampling. Metrika 2000, 51, 267–276. [Google Scholar] [CrossRef]
- Singh, S.; Deo, B. Imputation by power transformation. Stat. Pap. 2003, 44, 555–579. [Google Scholar] [CrossRef]
- Singh, S. A new method of imputation in survey sampling. Stat. A J. Theor. Appl. Stat. 2009, 43, 499–511. [Google Scholar] [CrossRef]
- Singh, S.; Valdes, S.R. Optimal method of imputation in survey sampling. Appl. Math. Sci. 2009, 3, 1727–1737. [Google Scholar]
- Heitjan, D.F.; Basu, S. Distinguishing ‘Missing at Random’ and ‘Missing Completely at Random’. Am. Stat. 1996, 50, 207–213. [Google Scholar]
- Ahmed, M.S.; Al-Titi, O.; Al-Rawi, Z.; Abu-Dayyeh, W. Estimation of a population mean using different imputation methods. Stat. Transit. 2006, 7, 1247–1264. [Google Scholar]
- Kadilar, C.; Cingi, H. Estimators for the population mean in the case of missing data. Commun. Stat. Theory Methods 2008, 37, 2226–2236. [Google Scholar] [CrossRef]
- Diana, G.; Perri, P.F. Improved estimators of the population mean for missing data. Commun. Stat. Theory Methods 2010, 39, 3245–3251. [Google Scholar] [CrossRef]
- Bhushan, S.; Pandey, A.P. Optimal imputation of missing data for estimation of population mean. J. Stat. Manag. Syst. 2016, 19, 755–769. [Google Scholar] [CrossRef]
- Bhushan, S.; Pandey, A.P. Optimality of ratio type estimation methods for population mean in presence of missing data. Commun. Stat. Theory Methods 2018, 47, 2576–2589. [Google Scholar] [CrossRef]
- Bhushan, S.; Pandey, A.P.; Pandey, A. On optimality of imputation methods for estimation of population mean using higher order moments of an auxiliary variable. Commun. Stat. Simul. Comput. 2018, 49, 1–15. [Google Scholar] [CrossRef]
- Mohamed, C.; Sedory, S.A.; Singh, S. Imputation using higher order moments of an auxiliary variable. Commun. Stat. Simul. Comput. 2016, 46, 6588–6617. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Pandey, A.P.; Singh, S. Estimation of population mean in presence of missing data under simple random sampling. Commun. Stat. Simul. Comput. 2022, 1–22. [Google Scholar] [CrossRef]
- Anas, M.M.; Huang, Z.; Shahzad, U.; Zaman, T.; Shahzadi, S. Compromised imputation based mean estimators using robust quantile regression. Commun. Stat. Theory Methods 2022, 1–16. [Google Scholar] [CrossRef]
- McIntyre, G.A. A method of unbiased selective sampling using ranked set. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Takahasi, K.; Wakimoto, K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 1968, 20, 1–31. [Google Scholar] [CrossRef]
- Bouza Herrera, C.N.; Al-Omari, A.I. Ranked set estimation with imputation of the missing observations: The median estimator. Rev. Investig. Oper. 2011, 32, 30–37. [Google Scholar]
- Bouza, C.N. Handling Missing Data in Ranked Set Sampling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Al-Omari, A.; Bouza, C. Ratio estimators of the population mean with missing values using ranked set sampling. Environmetrics 2014, 26, 67–76. [Google Scholar] [CrossRef]
- Sohail, M.U.; Shabbir, J.; Ahmed, S. A class of ratio type estimators for imputing the missing values under rank set sampling. J. Stat. Theory Pract. 2018, 12, 704–717. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Kadilar, C.; Cingi, H. Ratio estimators in stratified random sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
- Sarndal, C.E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: New York, NY, USA, 2003. [Google Scholar]
- Singh, S. Advanced Sampling Theory with Applications: How Michael Selected Amy; Kluwer: Amsterdam, The Netherlands, 2003; Volumes 1 and 2. [Google Scholar]
- Singh, S.; Horn, S. An alternative survey in multi-character survey. Metrika 1998, 48, 99–107. [Google Scholar] [CrossRef]
- Dell, T.R.; Clutter, J.L. Ranked set sampling theory with order statistics background. Biometrics 1972, 28, 545–555. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. Novel log type class of estimators under ranked set sampling. Sankhya B 2022, 84, 421–447. [Google Scholar] [CrossRef]
Parameters | Population 1 | Population 2 | Population 3 | Population 4 |
---|---|---|---|---|
N | 69 | 124 | 50 | 284 |
n | 12 | 12 | 12 | 12 |
m | 3 | 3 | 3 | 3 |
r | 4 | 4 | 4 | 4 |
P | 0.5 | 0.3 | 0.7 | 0.6 |
71.34 | 36.65 | 555.43 | 47.50 | |
3165.02 | 14276.03 | 878.16 | 9.05 | |
110.85 | 116.80 | 584.82 | 11.06 | |
3965.24 | 31431.81 | 1084677 | 4.95 | |
0.91 | 0.23 | 0.80 | 0.66 |
Estimators | Population 1 | Population 2 | Population 3 | Population 4 |
---|---|---|---|---|
100.00 | 100.00 | 100.00 | 100.00 | |
Strategy I | ||||
200.23 | 379.07 | 213.14 | 266.61 | |
198.93 | 388.40 | 216.47 | 276.07 | |
200.23 | 379.07 | 213.14 | 266.61 | |
, i = 1, 4 | 169.41 | 102.59 | 199.16 | 233.60 |
111.93 | 89.60 | 72.25 | 78.77 | |
Strategy II | ||||
584.83 | 385.66 | 360.33 | 2169.67 | |
576.85 | 421.37 | 369.29 | 2459.06 | |
584.83 | 385.66 | 360.33 | 2169.67 | |
, i = 2, 5 | 554.02 | 109.18 | 346.35 | 2136.65 |
118.15 | 72.99 | 68.44 | 69.78 | |
Strategy III | ||||
220.06 | 380.63 | 126.93 | 167.17 | |
218.39 | 395.85 | 127.34 | 169.46 | |
223.56 | 368.69 | 125.09 | 160.86 | |
, i = 3, 6 | 189.24 | 104.14 | 112.94 | 134.15 |
98.91 | 79.99 | 89.12 | 72.58 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
108.2314 | 110.1882 | 113.1969 | 118.9193 | |
108.9253 | 110.9860 | 114.1003 | 119.9397 | |
, i = 1, 4 | 102.4440 | 102.7442 | 102.8370 | 102.7567 |
56.3365 | 62.5280 | 70.0558 | 78.6946 | |
Strategy II | ||||
, i = 2, 8 | 119.3313 | 122.8567 | 126.3605 | 131.6545 |
123.7161 | 127.9222 | 132.0179 | 137.8729 | |
, i = 2, 5 | 113.5438 | 115.4126 | 116.0005 | 115.492 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
116.3368 | 119.4054 | 122.7634 | 128.1837 | |
119.6366 | 123.2108 | 127.0276 | 132.9048 | |
, i = 3, 6 | 110.5493 | 111.9614 | 112.4035 | 112.0212 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 104.1361 | 104.0201 | 103.8752 | 103.7148 |
103.9699 | 103.8591 | 103.7210 | 103.5712 | |
, i = 1, 4 | 102.2484 | 102.1062 | 101.8782 | 101.5178 |
84.4838 | 84.5867 | 85.0399 | 86.0938 | |
Strategy II | ||||
, i = 2, 8 | 114.2407 | 113.4139 | 112.1508 | 110.2765 |
113.4229 | 112.6215 | 111.3919 | 109.5685 | |
, i = 2, 5 | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
111.5319 | 110.9071 | 109.9584 | 108.5579 | |
110.8735 | 110.2693 | 109.3479 | 107.9888 | |
, i = 3, 6 | 109.6442 | 108.9931 | 107.9614 | 106.3608 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, i = 1, 7 | 107.3833 | 107.2255 | 107.1537 | 107.1449 |
107.5074 | 107.3496 | 107.2772 | 107.2674 | |
, i = 1, 4 | 105.6587 | 105.0803 | 104.5253 | 103.9469 |
80.5933 | 83.9483 | 86.6202 | 88.7951 | |
Strategy II | ||||
, i = 2, 8 | 138.2957 | 134.0250 | 130.2555 | 126.6323 |
139.1752 | 134.8628 | 131.0549 | 127.3948 | |
, i = b2, 5 | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
128.9875 | 126.1204 | 123.5728 | 121.1061 | |
129.6256 | 126.7374 | 124.1689 | 121.6812 | |
, i = 3, 6 | 127.2628 | 123.9752 | 120.9444 | 117.9082 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, i = 1, 7 | 107.5696 | 109.1362 | 111.2233 | 114.9679 |
108.2824 | 109.9559 | 112.1497 | 116.0109 | |
, i = 1, 4 | 103.7113 | 104.1735 | 104.3167 | 104.1929 |
46.2412 | 52.6613 | 60.9329 | 71.1186 | |
Strategy II | ||||
, i = 2, 8 | 117.4021 | 120.3753 | 122.9071 | 126.2670 |
120.3133 | 123.7369 | 126.6603 | 130.3914 | |
, i = 2, 5 | 113.5438 | 115.4126 | 116.0005 | 115.4920 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
112.9688 | 115.2747 | 117.5940 | 121.1378 | |
114.8323 | 117.4214 | 120.0030 | 123.8138 | |
, i = 3, 6 | 109.1105 | 110.3120 | 110.6873 | 110.3628 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, i = 1, 7 | 104.6694 | 104.4689 | 104.1753 | 103.7588 |
104.5033 | 104.3080 | 104.0213 | 103.6153 | |
, i = 1, 4 | 103.4110 | 103.1930 | 102.8440 | 102.2941 |
78.4014 | 78.5344 | 79.1216 | 80.4968 | |
Strategy II | ||||
, i = 2, 8 | 113.6115 | 112.7759 | 111.4852 | 109.5442 |
113.0660 | 112.2474 | 110.9790 | 109.0720 | |
, i = 2, 5 | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
109.5966 | 109.0575 | 108.2289 | 106.9865 | |
109.2114 | 108.6844 | 107.8719 | 106.6538 | |
, i = 3, 6 | 108.3381 | 107.7815 | 106.8976 | 105.5218 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, i = 1, 7 | 109.8849 | 109.2492 | 108.6973 | 108.1715 |
110.0138 | 109.3775 | 108.8245 | 108.2972 | |
, i = 1, 4 | 108.7352 | 107.8191 | 106.9450 | 106.0396 |
73.4648 | 77.7113 | 81.1888 | 84.0843 | |
Strategy II | ||||
, i = 2, 8 | 137.7209 | 133.3100 | 129.3794 | 125.5664 |
138.3068 | 133.8682 | 129.9120 | 126.0744 | |
, i = 2, 5 | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
124.2186 | 121.7980 | 119.6111 | 117.4585 | |
124.574 | 122.1439 | 119.9472 | 117.7845 | |
, i = 3, 6 | 123.0688 | 120.3679 | 117.8588 | 115.3266 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, | 107.9041 | 109.3652 | 111.0196 | 113.7510 |
108.6366 | 110.2077 | 111.9699 | 114.8175 | |
, | 105.0104 | 105.6432 | 105.8396 | 105.6698 |
39.2142 | 45.4841 | 53.9122 | 64.8732 | |
Strategy II | ||||
, | 116.4375 | 119.1347 | 121.1805 | 123.5733 |
118.6164 | 121.6501 | 123.9885 | 126.6586 | |
, | 113.5438 | 115.4126 | 116.0005 | 115.4920 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
110.6024 | 112.4326 | 114.2028 | 116.8341 | |
111.7649 | 113.7708 | 115.7070 | 118.5106 | |
, | 107.7087 | 108.7106 | 109.0228 | 108.7528 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 105.5441 | 105.2600 | 104.8268 | 104.1809 |
105.3782 | 105.0993 | 104.6730 | 104.0376 | |
, | 104.6003 | 104.3031 | 103.8283 | 103.0824 |
73.1359 | 73.2903 | 73.9734 | 75.5831 | |
Strategy II | ||||
, | 113.2969 | 112.4569 | 111.1524 | 109.1780 |
112.8877 | 112.0605 | 110.7727 | 108.8238 | |
, | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
108.0067 | 107.5535 | 106.8530 | 105.7945 | |
107.7585 | 107.3131 | 106.6230 | 105.5802 | |
, | 107.0628 | 106.5965 | 105.8546 | 104.6959 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, | 112.8585 | 111.7770 | 110.7937 | 109.8172 |
112.9926 | 111.9098 | 110.9247 | 109.9461 | |
, | 111.9962 | 110.7044 | 109.4795 | 108.2182 |
67.4948 | 72.3369 | 76.3983 | 79.8482 | |
Strategy II | ||||
, | 137.4334 | 132.9525 | 128.9413 | 125.0334 |
137.8727 | 133.3710 | 129.3406 | 125.4143 | |
, | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
120.0047 | 118.0372 | 116.2409 | 114.4546 | |
120.2233 | 118.2512 | 116.4501 | 114.6584 | |
, | 119.1424 | 116.9646 | 114.9267 | 112.8556 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, | 108.6574 | 110.1325 | 111.5516 | 113.6541 |
109.4103 | 110.9988 | 112.5270 | 114.7449 | |
, | 106.3424 | 107.1549 | 107.4076 | 107.1891 |
34.0412 | 40.0286 | 48.3422 | 59.6361 | |
Strategy II | ||||
, | 115.8588 | 118.3903 | 120.1445 | 121.9570 |
117.5997 | 120.3998 | 122.3876 | 124.4215 | |
, | 113.5438 | 115.4126 | 116.0005 | 115.4920 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
108.6574 | 110.1325 | 111.5516 | 113.6541 | |
109.4103 | 110.9988 | 112.5270 | 114.7449 | |
, | 106.3424 | 107.1549 | 107.4076 | 107.1891 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 106.5723 | 106.2029 | 105.6304 | 104.7617 |
106.4066 | 106.0424 | 105.4768 | 104.6186 | |
, | 105.8172 | 105.4373 | 104.8316 | 103.8829 |
68.5332 | 68.7027 | 69.4543 | 71.2347 | |
Strategy II | ||||
, | 113.1081 | 112.2655 | 110.9527 | 108.9583 |
112.7807 | 111.9483 | 110.6489 | 108.6749 | |
, | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
106.5723 | 106.2029 | 105.6304 | 104.7617 | |
106.4066 | 106.0424 | 105.4768 | 104.6186 | |
, | 105.8172 | 105.4373 | 104.8316 | 103.8829 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, | 116.1487 | 114.6065 | 113.1884 | 113.1884 |
116.2883 | 114.7441 | 113.3234 | 113.3234 | |
, | 115.4588 | 113.7484 | 112.1370 | 112.1370 |
62.4222 | 67.6579 | 72.1416 | 72.1416 | |
Strategy II | ||||
, | 137.2610 | 132.7379 | 128.6785 | 128.6785 |
137.6123 | 133.0727 | 128.9979 | 128.9979 | |
, | 136.5711 | 131.8799 | 127.6271 | 127.6271 |
46.4315 | 52.3644 | 57.8042 | 57.8042 | |
Strategy III | ||||
116.1487 | 114.6065 | 113.1884 | 111.7674 | |
116.2883 | 114.7441 | 113.3234 | 111.8997 | |
, | 115.4588 | 113.7484 | 112.137 | 110.4883 |
55.5027 | 62.5806 | 68.7953 | 68.7953 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, | 109.6378 | 111.1919 | 112.4761 | 114.1403 |
110.4120 | 112.0830 | 113.4776 | 115.2564 | |
, | 107.7087 | 108.7106 | 109.0228 | 108.7528 |
30.0739 | 35.7417 | 43.8154 | 55.1814 | |
Strategy II | ||||
, | 115.4729 | 117.8940 | 119.4538 | 120.8795 |
116.9226 | 119.5671 | 121.3212 | 122.9311 | |
, | 113.5438 | 115.4126 | 116.0005 | 115.4920 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
106.9395 | 108.1245 | 109.2929 | 111.0573 | |
107.4275 | 108.6858 | 109.926 | 111.7676 | |
, | 105.0104 | 105.6432 | 105.8396 | 105.6698 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 107.6921 | 107.2345 | 106.5202 | 105.4283 |
107.5266 | 107.0743 | 106.3668 | 105.2854 | |
, | 107.0628 | 106.5965 | 105.8546 | 104.6959 |
64.4756 | 64.6556 | 65.4555 | 67.3595 | |
Strategy II | ||||
, | 112.9823 | 112.1380 | 110.8195 | 108.8119 |
112.7094 | 111.8736 | 110.5664 | 108.5756 | |
, | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
105.2295 | 104.9411 | 104.4940 | 103.8147 | |
105.1188 | 104.8339 | 104.3914 | 103.7192 | |
, | 104.6003 | 104.3031 | 103.8283 | 103.0824 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, | 119.7173 | 117.6797 | 115.8029 | 113.9216 |
119.8630 | 117.8223 | 115.9423 | 114.0574 | |
, | 119.1424 | 116.9646 | 114.9267 | 112.8556 |
58.0588 | 63.5474 | 68.3343 | 72.5392 | |
Strategy II | ||||
, | 137.1460 | 132.5949 | 128.5032 | 124.5004 |
137.4387 | 132.8739 | 128.7694 | 124.7542 | |
, | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
112.571 | 111.4195 | 110.3556 | 109.2842 | |
112.6604 | 111.5080 | 110.4430 | 109.3701 | |
, | 111.9962 | 110.7044 | 109.4795 | 108.2182 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, | 110.7640 | 112.4389 | 113.6473 | 114.9807 |
111.5604 | 113.3559 | 114.6761 | 116.1231 | |
, | 109.1105 | 110.3120 | 110.6873 | 110.3628 |
26.9348 | 32.2841 | 40.0638 | 51.3460 | |
Strategy II | ||||
, | 115.1973 | 117.5395 | 118.9605 | 120.1099 |
116.4391 | 118.9727 | 120.5600 | 121.8671 | |
, | 113.5438 | 115.4126 | 116.0005 | 115.4929 |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
105.3648 | 106.3004 | 107.2767 | 108.8108 | |
105.6700 | 106.6513 | 107.6731 | 109.2571 | |
, | 103.7113 | 104.1735 | 104.3167 | 104.1929 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 108.8775 | 108.3284 | 107.4682 | 106.1495 |
108.7123 | 108.1684 | 107.3151 | 106.0069 | |
, | 108.3381 | 107.7815 | 106.8976 | 105.5218 |
60.8715 | 61.0588 | 61.8921 | 63.8842 | |
Strategy II | ||||
, | 112.8924 | 112.0468 | 110.7245 | 108.7072 |
112.6585 | 111.8202 | 110.5074 | 108.5048 | |
, | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
103.9503 | 103.7398 | 103.4146 | 102.9218 | |
103.8791 | 103.6708 | 103.3486 | 102.8603 | |
, | 103.4110 | 103.1930 | 102.844 | 102.2941 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, | 123.5616 | 120.9808 | 118.6098 | 116.2403 |
123.7138 | 121.1290 | 118.7538 | 116.3799 | |
123.0688 | 120.3679 | 117.8588 | 115.3266 | |
54.2655 | 59.9077 | 64.9087 | 69.3645 | |
Strategy II | ||||
, | 137.0639 | 132.4928 | 128.3781 | 124.3481 |
137.3148 | 132.7318 | 128.6062 | 124.5657 | |
, | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
109.2279 | 108.432 | 107.696 | 106.9533 | |
109.2831 | 108.4869 | 107.7505 | 107.0071 | |
, | 108.7352 | 107.8191 | 106.945 | 106.0396 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|
100 | 100 | 100 | 100 | |
Strategy I | ||||
, | 111.9961 | 113.8224 | 114.9935 | 116.0618 |
112.8155 | 114.7665 | 116.0507 | 117.2317 | |
110.5493 | 111.9614 | 112.4035 | 112.0212 | |
24.3891 | 29.4365 | 36.9040 | 48.0091 | |
Strategy II | ||||
, | 114.9907 | 117.2736 | 118.5905 | 119.5327 |
116.0767 | 118.5271 | 119.9893 | 121.0694 | |
113.5438 | 115.4126 | 116.0005 | 115.4920 | |
20.5860 | 25.1720 | 32.1576 | 43.0168 | |
Strategy III | ||||
103.8908 | 104.6052 | 105.427 | 106.7974 | |
104.0641 | 104.8043 | 105.6524 | 107.052 | |
, | 102.444 | 102.7442 | 102.8370 | 102.7567 |
21.7699 | 27.3798 | 35.9864 | 49.5031 | |
Skewness of Y | 0.6046 | 0.6134 | 0.6571 | 0.7487 |
Kurtosis of Y | 3.4184 | 3.4308 | 3.5393 | 3.7750 |
Strategy I | ||||
, | 110.1161 | 109.4716 | 108.4607 | 106.9101 |
109.9513 | 109.3120 | 108.3079 | 106.7677 | |
, | 109.6442 | 108.9931 | 107.9614 | 106.3608 |
57.6491 | 57.8411 | 58.6967 | 60.7498 | |
Strategy II | ||||
, | 112.8250 | 111.9785 | 110.6531 | 108.6288 |
112.6203 | 111.7802 | 110.4632 | 108.4516 | |
, | 112.3531 | 111.5000 | 110.1539 | 108.0795 |
52.5444 | 52.7365 | 53.6026 | 55.6966 | |
Strategy III | ||||
102.7203 | 102.5847 | 102.3774 | 102.0671 | |
102.6788 | 102.5444 | 102.3389 | 102.0311 | |
, | 102.2484 | 102.1062 | 101.8782 | 101.5178 |
50.0729 | 50.1878 | 50.9778 | 52.9983 | |
Skewness of Y | 1.3561 | 1.3526 | 1.4714 | 1.7607 |
Kurtosis of Y | 5.2276 | 5.2844 | 6.0535 | 7.8079 |
Strategy I | ||||
, | 127.6940 | 124.5115 | 121.6015 | 118.7077 |
127.8533 | 124.6656 | 121.7504 | 118.8513 | |
, | 127.2628 | 123.9752 | 120.9444 | 117.9082 |
50.9375 | 56.6624 | 61.8101 | 66.4561 | |
Strategy II | ||||
, | 137.0023 | 132.4162 | 128.2842 | 124.2339 |
137.2218 | 132.6253 | 128.4838 | 124.4243 | |
, | 136.5711 | 131.8799 | 127.6271 | 123.4344 |
46.4315 | 52.3644 | 57.8042 | 62.7748 | |
Strategy III | ||||
106.0898 | 105.6166 | 105.1824 | 104.7464 | |
106.1208 | 105.6476 | 105.2132 | 104.777 | |
, | 105.6587 | 105.0803 | 104.5253 | 103.9469 |
55.5027 | 62.5806 | 68.7953 | 74.1058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; Kumar, A.; Zaman, T.; Al Mutairi, A. Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling. Axioms 2023, 12, 558. https://doi.org/10.3390/axioms12060558
Bhushan S, Kumar A, Zaman T, Al Mutairi A. Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling. Axioms. 2023; 12(6):558. https://doi.org/10.3390/axioms12060558
Chicago/Turabian StyleBhushan, Shashi, Anoop Kumar, Tolga Zaman, and Aned Al Mutairi. 2023. "Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling" Axioms 12, no. 6: 558. https://doi.org/10.3390/axioms12060558
APA StyleBhushan, S., Kumar, A., Zaman, T., & Al Mutairi, A. (2023). Efficient Difference and Ratio-Type Imputation Methods under Ranked Set Sampling. Axioms, 12(6), 558. https://doi.org/10.3390/axioms12060558