Predicting Sit-to-Stand Body Adaptation Using a Simple Model
Abstract
:1. Introduction
2. Materials and Methods
- System dynamics
- Boundary constraints
- Path constraints
3. Results
3.1. STS Speed
3.2. Reduction in Joint Strength
3.3. Seat Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Body Segment | Segment Mass as a PERCENTAGE of Body Mass | Segment Length as a Percentage of Total Body Height | Distance of Segment COM from Proximal End as a Percentage of Segment Length | Radius of Gyration of Body Segments in Frontal Plane as a Percentage of Segment Length |
---|---|---|---|---|
Head and Neck | 8.2 | 10.75 | 56.7 | 31.5 |
Trunk | 46.84 | 30.00 | 56.2 | 38.3 |
Upper arm | 3.25 | 17.20 | 43.6 | 31.0 |
Forearm | 1.8 | 15.70 | 43.0 | 28.4 |
Hand | 0.65 | 5.75 | 46.8 | 23.3 |
Thigh | 10.5 | 23.20 | 43.3 | 26.7 |
Calf | 4.75 | 24.70 | 43.4 | 27.5 |
- Mass of the head and neck segment is considered to be 8.2% of total body mass according to the data provided in Table A1, and hence, kg.
- According to Table A1, the length of the head and neck segment is 10.75% of the body height and is found to be m.
- Radius of gyration of the head and neck in the frontal axis is 31.5%, and hence, m.
- Now, the MOI of the head and neck can be determined using the following equation:
Body Segment | Segment Mass (KG) | Segment Length (m) | Distance of Segment COM from Proximal (m) | Moment of Inertia |
---|---|---|---|---|
Head & Neck | 0.18 | 5.782 | 0.10361925 | 0.019160814 |
Trunk | 0.51 | 32.788 | 0.28662 | 1.250987086 |
Upper arm | 0.29 | 2.275 | 0.1274864 | 0.018692162 |
Forearm | 0.27 | 1.309 | 0.1155677 | 0.007520963 |
Hand | 0.10 | 0.455 | 0.045747 | 0.000236024 |
Thigh | 0.39 | 7.35 | 0.1707752 | 0.081504892 |
Calf | 0.42 | 3.325 | 0.1822366 | 0.044335212 |
HAT | 0.69 | 46.648 | 0.214937 | 2.0686 |
References
- Dorn, T.W.; Wang, J.M.; Hicks, J.L.; Delp, S.L. Predictive simulation generates human adaptations during loaded and inclined walking. PLoS ONE 2015, 10, e0121407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Malek, K.; Arora, J. Human Motion Simulation: Predictive Dynamics; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Geyer, H. Simple Models of Legged Locomotion Based on Compliant Limb Behavior = Grundmodelle Pedaler Lokomotion Basierend auf Nachgiebigem Beinverhalten. Ph.D. Thesis, Friedrich-Schiller-Universitat, Jena, Germany, 2005. [Google Scholar]
- Seipel, J.; Kvalheim, M.; Revzen, S.; Sharbafi, M.A.; Seyfarth, A. Conceptual Models of Legged Locomotion, in Bioinspired Legged Locomotion; Elsevier: Amsterdam, The Netherlands, 2017; pp. 55–131. [Google Scholar]
- Khan, A.T.; Li, S.; Zhou, X. Trajectory optimization of 5-link biped robot using beetle antennae search. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3276–3280. [Google Scholar] [CrossRef]
- Xiang, Y.; Chung, H.-J.; Kim, J.H.; Bhatt, R.; Rahmatalla, S.; Yang, J.; Marler, T.; Arora, J.S.; Abdel-Malek, K. Predictive dynamics: An optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 2010, 41, 465–479. [Google Scholar] [CrossRef]
- Gross, M.; Stevenson, P.; Charette, S.; Pyka, G.; Marcus, R. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 1998, 8, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Mak, M.K.; Hui-Chan, C.W. The speed of sit-to-stand can be modulated in Parkinson’s disease. Clin. Neurophysiol. 2005, 116, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Odding, E. Locomotor Disability in the Elderly: An Epidemiological Study of Its Occurrence and Determinants in a General Population of 55 Years and Over: The Rotterdam Study; Erasmus University Rotterdam: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Janssen, W. The Sit-to-Stand Movement Recovery after Stroke and Objective Assessment; Optima Grafische Communicatie: Rotterdam, The Netherlands, 2008. [Google Scholar]
- Janssen, W.G.; Bussmann, H.B.; Stam, H.J. Determinants of the sit-to-stand movement: A review. Phys. Ther. 2002, 82, 866–879. [Google Scholar] [CrossRef]
- Anan, M.; Shinkoda, K.; Suzuki, K.; Yagi, M.; Ibara, T.; Kito, N. Do patients with knee osteoarthritis perform sit-to-stand motion efficiently? Gait Posture 2015, 41, 488–492. [Google Scholar] [CrossRef]
- Rogers, M.W.; Chan, C.W. Motor planning is impaired in Parkinson’s disease. Brain Res. 1988, 438, 271–276. [Google Scholar] [CrossRef]
- Honda, K.; Sekiguchi, Y.; Sasaki, A.; Shimazaki, S.; Suzuki, R.; Suzuki, T.; Kanetaka, H.; Izumi, S.-I. Effects of seat height on whole-body movement and lower limb muscle power during sit-to-stand movements in young and older individuals. J. Biomech. 2021, 129, 110813. [Google Scholar] [CrossRef]
- Hurley, S.T.; Rutherford, D.J.; Hubley-Kozey, C. The effect of age and seat height on sit-to-stand transfer biomechanics and muscle activation. Phys. Occup. Ther. Geriatr. 2016, 34, 169–185. [Google Scholar] [CrossRef]
- Su, F.C.; Lai, K.; Hong, W. Rising from chair after total knee arthroplasty. Clin. Biomech. 1998, 13, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Demura, S.-I. Influence of the relative difference in chair seat height according to different lower thigh length on floor reaction force and lower-limb strength during sit-to-stand movement. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, H.R.; Kambara, H.; Koike, Y. Dynamic optimization of the sit-to-stand movement. J. Appl. Biomech. 2011, 27, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Garner, B. A Dynamic Musculoskeletal Computer Model for Rising from a Squatting or Sitting Position. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 1992. [Google Scholar]
- Daigle, K.E. The Effect of Muscle Strength on the Coordination of Rising from a Chair in Minimum Time: Predictions of an Optimal Control Model. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 1994. [Google Scholar]
- Domire, Z.J. A Biomechanical Analysis of Maximum Vertical Jumps and Sit to Stand. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2004. [Google Scholar]
- Dodig, M. Models and modelling of dynamic moments of inertia of human body. Int. J. Sport. Sci. 2016, 6, 247–256. [Google Scholar]
- Erdmann, W.S. Geometry and inertia of the human body-review of research. Acta Bioeng. Biomech. 1999, 1, 23–35. [Google Scholar]
- Hall, S.J. Basic Biomechanics, 8e; McGraw-Hill: New York, NY, USA, 2019. [Google Scholar]
- Williams, R. Engineering Biomechanics of Human Motion; Supplement Notes; Mechanical/Biomedical Engineering, Ohio University: Athens, OH, USA, 2014; p. 5670. [Google Scholar]
- Ober-Blobaum, S.; Junge, O.; Marsden, J.E. Discrete mechanics and optimal control: An analysis. ESAIM Control. Optim. Calc. Var. 2011, 17, 322–352. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.; Johnson, E.; Murphey, T.D. Trajectory optimization in discrete mechanics. In Differential-Geometric Methods in Computational Multibody System Dynamics; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Inoue, Y.; Takahashi, M. Time-constrained Optimization of Sit-to-stand Movements in Contact with the Environment. IFAC-PapersOnLine 2022, 55, 358–363. [Google Scholar] [CrossRef]
- Hirschfeld, H.; Thorsteinsdottir, M.; Olsson, E. Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J. Neurophysiol. 1999, 82, 3021–3029. [Google Scholar] [CrossRef]
- Yamada, T.; Demura, S. The relationship of force output characteristics during a sit-to-stand movement with lower limb muscle mass and knee joint extension in the elderly. Arch. Gerontol. Geriatr. 2010, 50, e46–e50. [Google Scholar] [CrossRef]
- Headon, R.; Curwen, R. Recognizing movements from the ground reaction force. In Proceedings of the 2001 Workshop on Perceptive User Interfaces, Orlando, FL, USA, 15–16 November 2001. [Google Scholar]
- A Hanke, T.; Pai, Y.-C.; Rogers, M.W. Reliability of measurements of body center-of-mass momentum during sit-to-stand in healthy adults. Phys. Ther. 1995, 75, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Linden, D.W.V.; Brunt, D.; McCulloch, M.U. Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults. Arch. Phys. Med. Rehabil. 1994, 75, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Bieryla, K.A.; Anderson, D.E.; Madigan, M.L. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity. J. Electromyogr. Kinesiol. 2009, 19, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Severin, A.C.; Siddicky, S.F.; Barnes, C.L.; Mannen, E.M. Effect of movement speed on lower and upper body biomechanics during sit-to-stand-to-sit transfers: Self-selected speed vs. fast imposed speed. Hum. Mov. Sci. 2021, 77, 102797. [Google Scholar] [CrossRef]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, M539–M543. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.A.; Weiner, D.K.; Schenkman, M.L.; Long, R.M.; Studenski, S.A. Chair rise strategies in the elderly. Clin. Biomech. 1994, 9, 187–192. [Google Scholar] [CrossRef]
- Schenkman, M.; Riley, P.; Pieper, C. Sit to stand from progressively lower seat heights—Alterations in angular velocity. Clin. Biomech. 1996, 11, 153–158. [Google Scholar] [CrossRef]
- Weiner, D.K.; Long, R.; Hughes, M.A.; Chandler, J.; Studenski, S. When older adults face the chair-rise challenge: A study of chair height availability and height-modified chair-rise performance in the elderly. J. Am. Geriatr. Soc. 1993, 41, 6–10. [Google Scholar] [CrossRef]
- Munro, B.J.; Steele, J.R.; Bashford, G.M.; Ryan, M.; Britten, N. A kinematic and kinetic analysis of the sit-to-stand transfer using an ejector chair: Implications for elderly rheumatoid arthritic patients. J. Biomech. 1997, 31, 263–271. [Google Scholar] [CrossRef]
- Dempster, W.T. Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Michigan State Univ East Lansing: East Lansing, MI, USA, 1955. [Google Scholar]
Link | Body Segment | Length of Segment (m) li | Distance from Center of Mass to Next Joint (m) di | Mass of Segment (kg) mi | Moment of Inertia of Segment (kg·m2) Ii |
---|---|---|---|---|---|
1 | tibia | 0.390 | 0.182 | 6.650 | 0.088 |
2 | femur | 0.420 | 0.170 | 14.70 | 0.163 |
3 | torso | 0.690 | 0.372 | 46.60 | 2.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gismelseed, S.; Al-Yahmedi, A.; Zaier, R.; Ouakad, H.; Bahadur, I. Predicting Sit-to-Stand Body Adaptation Using a Simple Model. Axioms 2023, 12, 559. https://doi.org/10.3390/axioms12060559
Gismelseed S, Al-Yahmedi A, Zaier R, Ouakad H, Bahadur I. Predicting Sit-to-Stand Body Adaptation Using a Simple Model. Axioms. 2023; 12(6):559. https://doi.org/10.3390/axioms12060559
Chicago/Turabian StyleGismelseed, Sarra, Amur Al-Yahmedi, Riadh Zaier, Hassen Ouakad, and Issam Bahadur. 2023. "Predicting Sit-to-Stand Body Adaptation Using a Simple Model" Axioms 12, no. 6: 559. https://doi.org/10.3390/axioms12060559
APA StyleGismelseed, S., Al-Yahmedi, A., Zaier, R., Ouakad, H., & Bahadur, I. (2023). Predicting Sit-to-Stand Body Adaptation Using a Simple Model. Axioms, 12(6), 559. https://doi.org/10.3390/axioms12060559