An Efficient Class of Estimators in Stratified Random Sampling with an Application to Real Data
Abstract
:1. Introduction
2. Existing Estimators
2.1. Separate Estimators
2.2. Combined Estimators
3. Suggested Class of Estimators
3.1. Separate Estimators
3.2. Combined Estimators
4. Efficiency Conditions
4.1. Separate Estimators
- 1.
- The proposed separate estimators dominate the conventional mean estimator if
- 2.
- The proposed separate estimators dominate the separate ratio estimator if
- 3.
- The proposed separate estimators dominate the separate regression estimator if
- 4.
- The proposed separate estimators dominate the separate form of [4] estimator if
- 5.
- The proposed separate estimators dominate the separate form of [6] estimator if
- 6.
- The proposed separate estimators dominate the separate form of [7] estimator if
- 7.
- The proposed separate estimators dominate the separate form of [10] estimator if
- 8.
- The proposed separate estimators dominate the separate form of [12] estimator if
- 9.
- The proposed separate estimators dominate the separate form of [14] estimator if
- 10.
- The proposed separate estimators dominate the separate form of [15] estimator if
- 11.
- The proposed separate estimators dominate the separate form of [24] estimator if
- 12.
- The proposed separate estimators dominate the separate form of [31] estimator if
4.2. Combined Estimators
- 1.
- The proposed combined estimators dominate the mean per unit estimator if
- 2.
- The proposed combined estimators dominate the combined form of ratio estimator if
- 3.
- The proposed combined estimators dominate the combined form of regression estimator if
- 4.
- The proposed combined estimators dominate the combined form [4] estimator if
- 5.
- The proposed combined estimators dominate the combined form [6] estimator if
- 6.
- The proposed combined estimators dominate the combined form [7] estimator if
- 7.
- The proposed combined estimators dominate the combined form [10] estimator if
- 8.
- The proposed combined estimators dominate the combined form [12] estimator if
- 9.
- The proposed combined estimators dominate the combined form [14] estimator if
- 10.
- The proposed combined estimators dominate the combined form [15] estimator if
- 11.
- The proposed combined estimators dominate the combined form [31] estimator if
- 12.
- The proposed combined estimators dominate the combined form [24] estimator if
4.3. Comparison of Suggested Separate and Combined Estimators
5. Empirical Study
5.1. Simulation Study
- Table 1 consisting of the simulation outcomes of the separate estimators for normal population demonstrates the dominance of the suggested separate estimator over the usual mean per unit estimator , separate classical ratio and regression estimators , , ref. [4,6] estimators , , ref. [7] estimator , ref. [10,12] estimators , , ref. [14] estimator , ref. [15] estimator , ref. [31] , ref. [24] estimator and [20] estimators by lesser and greater for several values of correlation coefficient.
- Table 2 based on the simulation outcomes of the separate estimators for population shows the similar inclination.
- The findings of the simulation study presented in Table 3 show the dominance of the suggested combined class of estimators over the conventional mean estimator , the combined form of conventional ratio and regression estimators , , ref. [4,6] estimators , , ref. [7] estimator , [10,12] estimators , , ref. [14] estimator , ref. [15] estimators , ref. [31] estimator , ref. [24] estimator , and [20] estimators by minimum and maximum for different values of correlation coefficients.
- Table 4 based on the simulation outcomes of the combined estimators exhibits the similar proclivity when the nature of population is .
- The findings of Table 1, Table 2, Table 3 and Table 4 show that when the correlation coefficient varies from 0.1 to 0.9 with increment 0.4, the and of the proposed separate and combined estimators decreases and increases, respectively. Apart from this, the gain in the efficiency of the proposed separate and combined estimators is more in most of the cases in asymmetric () population as compare to symmetric (normal) population.
5.2. Real Data Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Sisodia, B.V.S.; Dwivedi, V.K. A modified ratio estimator using coefficient of variation of auxiliary variable. J. Ind. Soc. Agric. Stat. 1981, 33, 13–18. [Google Scholar]
- Upadhyaya, L.N.; Singh, H.P. Use of transformed auxiliary variable in estimating the finite population mean. Biom. J. 1999, 41, 627–636. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. Ratio estimator in stratified sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
- Prasad, B. Some improved ratio type estimators of population mean and ratio in finite population sample surveys. Commun. Stat. Theory Methods 1989, 18, 379–392. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. A new estimator in stratified random sampling. Commun. Stat. Theory Methods 2005, 34, 597–602. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. A new estimator of population mean in stratified sampling. Commun. Stat. Theory Methods 2006, 35, 1201–1209. [Google Scholar] [CrossRef]
- Ray, S.K.; Singh, R.K. Difference cum product type estimators. J. Ind. Stat. Asso. 1981, 19, 147–151. [Google Scholar]
- Bedi, P.K. Efficient utilization of auxiliary information at estimation stage. Biom. J. 1996, 38, 973–976. [Google Scholar] [CrossRef]
- Koyuncu, N.; Kadilar, C. Ratio and product estimators in stratified random sampling. J. Stat. Plan. Inference 2009, 139, 2552–2558. [Google Scholar] [CrossRef]
- Khoshnevisan, M.; Sing, R.; Chauhan, P.; Sawan, N.; Smarandache, F. A general family of estimators for estimating population mean using known value of some population parameters. Far East J. Theor. Stat. 2007, 22, 181–191. [Google Scholar]
- Koyuncu, N.; Kadilar, C. On improvement in estimating population mean in stratified random sampling. J. Appl. Stat. 2010, 37, 999–1013. [Google Scholar] [CrossRef]
- Gupta, S.; Shabbir, J. On improvement in estimating the population mean in simple random sampling. J. Appl. Stat. 2008, 35, 559–566. [Google Scholar] [CrossRef]
- Singh, H.P.; Vishwakarma, G.K. A general procedure for estimating the population mean in stratified sampling using auxiliary information. Metron 2010, 68, 47–65. [Google Scholar] [CrossRef]
- Singh, H.P.; Solanki, R.S. Efficient ratio and product estimators in stratified random sampling. Commun. Stat. Theory Methods 2013, 42, 1008–1023. [Google Scholar] [CrossRef]
- Tailor, R.; Mishra, A. Ratio and ratio type separate estimator for population mean when coefficient of variation is known. J. Reliab. Stat. Stud. 2018, 11, 45–50. [Google Scholar]
- Zaman, T.; Bulut, H. Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Commun. Stat. Theory Methods 2020, 49, 3407–3420. [Google Scholar] [CrossRef]
- Aslam, I.; Noor-ul-Amin, M.; Yasmeen, U.; Hanif, M. Memory type ratio and product estimators in stratified sampling. J. Reliab. Stat. Stud. 2020, 13, 1–20. [Google Scholar] [CrossRef]
- Tiwari, K.K.; Bhougal, S.; Kumar, S. A general class of estimators in stratified random sampling. Commun. Stat. B Simul. Comput. 2020, 52, 442–452. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Singh, S. Some efficient classes of estimators under stratified sampling. Commun. Stat. Theory Methods 2023, 52, 1767–1796. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Tyagi, D.; Singh, S. On some improved classes of estimators under stratified sampling using attribute. J. Reliab. Stat. Stud. 2022, 15, 187–210. [Google Scholar] [CrossRef]
- Kaur, P. On the estimation of population mean in stratified sampling. Biom. J. 1985, 27, 101–105. [Google Scholar] [CrossRef]
- Diana, G. A study of kth order approximation of some ratio type strategies. Metron 1992, 1, 19–32. [Google Scholar]
- Solanki, R.S.; Singh, H.P. An improved estimation in stratified random sampling. Commun. Stat. Theory Methods 2016, 45, 2056–2070. [Google Scholar] [CrossRef]
- Kumar, S.; Trehan, M.; Joorel, J.S. A simulation study: Estimation of population mean using two auxiliary variables in stratified random sampling. J. Stat. Comput. Simul. 2018, 88, 3694–3707. [Google Scholar] [CrossRef]
- Saini, M.; Kumar, A. Ratio estimators using stratified random sampling and stratified ranked set sampling. Life Cycle Reliab. Saf. Eng. 2019, 8, 85–89. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, S. Simulation study of ratio type estimators in stratified random sampling using multi-auxiliary information. Thail. Stat. 2020, 18, 281–289. [Google Scholar]
- Muneer, S.; Khalil, A.; Shabbir, J. A parent-generalized family of chain ratio exponential estimators in stratified random sampling using supplementary variables. Commun. Stat. B Simul. Comput. 2020, 51, 4727–4748. [Google Scholar] [CrossRef]
- Hansen, M.H.; Hurwitz, W.N.; Gurney, M. Problems and methods of the sample survey of business. J. Am. Stat. Assoc. 1946, 41, 173–189. [Google Scholar] [CrossRef]
- Searls, D.T. The utilization of a known coefficient of variation in the estimation procedure. J. Am. Stat. Assoc. 1964, 59, 1225–1226. [Google Scholar] [CrossRef]
- Yadav, R.; Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S. Improved ratio and product exponential type estimators for finite population mean in stratified random sampling. Commun. Stat. Theory Meth. 2014, 43, 3269–3285. [Google Scholar] [CrossRef]
- Singh, H.P.; Tailor, R.; Tailor, R.; Kakran, M.S. An improved estimator of population mean using power transformation. J. Ind. Soc. Agric. Stat. 2004, 58, 223–230. [Google Scholar]
- Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S.; Yadav, R. Improved ratio and product exponential type estimators. J. Stat. Theor. Pract. 2011, 5, 285–302. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Kumar, S.; Singh, S. An improved class of estimators of population mean under simple random sampling. Philipp. Stat. 2021, 70, 33–47. [Google Scholar]
- Singh, H.P.; Horn, S. An alternative estimator for multi-character surveys. Metrika 1998, 48, 99–107. [Google Scholar] [CrossRef]
- Murthy, M.N. Sampling Theory and Methods; Statistical Publishing Society: Calcutta, India, 1967. [Google Scholar]
Stratum | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 0.9 | 0.1 | 0.5 | 0.9 | ||||||||
Estimators | |||||||||||||
300 | 0.3367 | 100.00 | 0.3367 | 100.00 | 0.3367 | 100.00 | 0.0562 | 100.00 | 0.0562 | 100.00 | 0.0562 | 100.00 | |
0.4584 | 73.44 | 0.2508 | 134.25 | 0.1015 | 331.61 | 0.0873 | 64.37 | 0.0489 | 114.82 | 0.0107 | 521.08 | ||
/ | 0.3232 | 104.16 | 0.2456 | 137.06 | 0.0627 | 536.49 | 0.0521 | 107.86 | 0.0392 | 143.36 | 0.0104 | 540.38 | |
0.3539 | 95.14 | 0.2516 | 133.79 | 0.1422 | 236.80 | 0.0558 | 100.57 | 0.0403 | 139.17 | 0.0215 | 260.68 | ||
0.3522 | 95.61 | 0.2516 | 133.79 | 0.1503 | 224.00 | 0.0736 | 76.28 | 0.0436 | 128.65 | 0.0124 | 452.17 | ||
0.3979 | 84.62 | 0.2492 | 135.09 | 0.1177 | 285.87 | 0.0635 | 88.42 | 0.0411 | 136.47 | 0.0145 | 386.01 | ||
0.4014 | 83.87 | 0.2474 | 136.07 | 0.1248 | 269.72 | 0.0860 | 65.31 | 0.0483 | 116.20 | 0.0108 | 519.15 | ||
0.4552 | 73.96 | 0.2611 | 128.93 | 0.1128 | 298.45 | 0.0854 | 65.78 | 0.0487 | 115.28 | 0.0110 | 507.88 | ||
0.3004 | 112.07 | 0.2321 | 145.07 | 0.0621 | 541.76 | 0.0492 | 114.20 | 0.0375 | 149.57 | 0.0103 | 545.63 | ||
0.3888 | 86.61 | 0.2354 | 143.02 | 0.0996 | 338.04 | 0.0722 | 77.83 | 0.0444 | 126.56 | 0.0106 | 525.81 | ||
0.2984 | 112.83 | 0.2314 | 145.50 | 0.0616 | 546.05 | 0.0488 | 114.97 | 0.0373 | 150.36 | 0.0103 | 545.07 | ||
0.3005 | 112.05 | 0.2317 | 145.33 | 0.0614 | 547.83 | 0.0498 | 112.69 | 0.0379 | 148.12 | 0.0101 | 554.14 | ||
0.2939 | 114.56 | 0.2315 | 145.43 | 0.0622 | 541.05 | 0.0477 | 117.71 | 0.0364 | 154.00 | 0.0103 | 542.12 | ||
0.2894 | 116.32 | 0.2312 | 145.63 | 0.0616 | 545.87 | 0.0510 | 110.19 | 0.0382 | 147.12 | 0.0099 | 567.67 | ||
0.2944 | 114.36 | 0.2265 | 148.63 | 0.0612 | 550.22 | 0.0476 | 117.87 | 0.0356 | 157.72 | 0.0098 | 573.46 | ||
0.2987 | 112.73 | 0.2356 | 142.90 | 0.0698 | 482.22 | 0.0488 | 115.17 | 0.0377 | 148.91 | 0.0103 | 544.29 | ||
0.3003 | 112.12 | 0.2318 | 145.23 | 0.0617 | 545.73 | 0.0491 | 114.29 | 0.0375 | 149.85 | 0.0103 | 544.52 | ||
0.2978 | 113.04 | 0.2316 | 145.38 | 0.0626 | 537.52 | 0.0485 | 115.70 | 0.0370 | 151.72 | 0.0103 | 545.93 | ||
0.3003 | 112.12 | 0.2318 | 145.23 | 0.0617 | 545.73 | 0.0491 | 114.29 | 0.0375 | 149.85 | 0.0103 | 544.52 | ||
0.2801 | 120.20 | 0.2240 | 150.31 | 0.0601 | 560.23 | 0.0462 | 121.64 | 0.0350 | 160.57 | 0.0094 | 592.05 | ||
400 | 0.2559 | 100.00 | 0.2559 | 100.00 | 0.2559 | 100.00 | 0.0420 | 100.00 | 0.0420 | 100.00 | 0.0420 | 100.00 | |
0.2992 | 85.53 | 0.1789 | 143.04 | 0.0755 | 338.90 | 0.0585 | 71.76 | 0.0348 | 120.64 | 0.0076 | 550.14 | ||
/ | 0.2373 | 107.86 | 0.1771 | 144.51 | 0.0472 | 541.73 | 0.0374 | 112.22 | 0.0283 | 148.12 | 0.0075 | 558.14 | |
0.2503 | 102.24 | 0.1826 | 140.15 | 0.1063 | 240.70 | 0.0392 | 107.13 | 0.0291 | 144.18 | 0.0155 | 269.93 | ||
0.2475 | 103.38 | 0.1836 | 139.35 | 0.1137 | 225.00 | 0.0500 | 84.07 | 0.0311 | 134.87 | 0.0089 | 471.77 | ||
0.2724 | 93.94 | 0.1791 | 142.91 | 0.0872 | 293.22 | 0.0439 | 95.60 | 0.0295 | 142.33 | 0.0102 | 411.11 | ||
0.2691 | 95.10 | 0.1787 | 143.17 | 0.0939 | 272.59 | 0.0577 | 72.78 | 0.0344 | 122.08 | 0.0076 | 547.57 | ||
0.3004 | 85.19 | 0.1846 | 138.59 | 0.0814 | 314.30 | 0.0578 | 72.72 | 0.0347 | 121.03 | 0.0077 | 541.38 | ||
0.2261 | 113.16 | 0.1709 | 149.76 | 0.0471 | 543.38 | 0.0360 | 116.49 | 0.0276 | 152.21 | 0.0075 | 556.03 | ||
0.2726 | 93.89 | 0.1722 | 148.63 | 0.0750 | 341.23 | 0.0518 | 81.10 | 0.0326 | 128.92 | 0.0076 | 553.21 | ||
0.2256 | 113.45 | 0.1705 | 150.07 | 0.0467 | 547.57 | 0.0359 | 116.87 | 0.0275 | 152.75 | 0.0074 | 562.81 | ||
0.2261 | 113.19 | 0.1705 | 150.06 | 0.0466 | 549.23 | 0.0364 | 115.34 | 0.0275 | 152.56 | 0.0072 | 583.33 | ||
0.2230 | 114.77 | 0.1708 | 149.84 | 0.0468 | 546.61 | 0.0352 | 119.18 | 0.0270 | 155.50 | 0.0074 | 561.05 | ||
0.2210 | 115.82 | 0.1707 | 149.92 | 0.0474 | 539.00 | 0.0370 | 113.42 | 0.0283 | 148.16 | 0.0073 | 575.34 | ||
0.2223 | 115.14 | 0.1699 | 150.54 | 0.0463 | 552.58 | 0.0351 | 119.70 | 0.0265 | 158.45 | 0.0070 | 600.01 | ||
0.2255 | 113.50 | 0.1730 | 147.92 | 0.0464 | 551.08 | 0.0358 | 117.16 | 0.0277 | 151.74 | 0.0074 | 567.94 | ||
0.2260 | 113.22 | 0.1707 | 149.94 | 0.0467 | 547.45 | 0.0360 | 116.61 | 0.0275 | 152.53 | 0.0074 | 562.60 | ||
0.2246 | 113.93 | 0.1707 | 149.94 | 0.0472 | 542.07 | 0.0357 | 117.74 | 0.0273 | 153.89 | 0.0074 | 561.68 | ||
0.2260 | 113.22 | 0.1707 | 149.94 | 0.0467 | 547.45 | 0.0360 | 116.61 | 0.0275 | 152.53 | 0.0074 | 562.60 | ||
0.2092 | 122.32 | 0.1676 | 152.71 | 0.0453 | 564.90 | 0.0341 | 123.16 | 0.0259 | 162.16 | 0.0069 | 608.69 |
Stratum | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 0.9 | 0.1 | 0.5 | 0.9 | ||||||||
Estimators | |||||||||||||
300 | 0.3367 | 100.00 | 0.3367 | 100.00 | 0.3367 | 100.00 | 0.0562 | 100.00 | 0.0562 | 100.00 | 0.0562 | 100.00 | |
0.6019 | 55.93 | 0.2595 | 129.74 | 0.1024 | 328.64 | 0.0955 | 58.85 | 0.0513 | 109.39 | 0.0108 | 516.77 | ||
/ | 0.3332 | 101.01 | 0.2525 | 133.33 | 0.0639 | 526.31 | 0.0534 | 105.08 | 0.0404 | 139.06 | 0.0106 | 526.31 | |
0.3882 | 86.73 | 0.2575 | 130.73 | 0.1428 | 235.76 | 0.0585 | 95.95 | 0.0415 | 135.43 | 0.0216 | 260.16 | ||
0.3962 | 84.99 | 0.2571 | 130.96 | 0.1509 | 223.12 | 0.0796 | 70.55 | 0.0456 | 123.09 | 0.0125 | 449.57 | ||
0.4668 | 72.13 | 0.2565 | 131.24 | 0.1185 | 283.94 | 0.0677 | 82.95 | 0.0427 | 131.53 | 0.0146 | 384.24 | ||
0.5044 | 66.75 | 0.2543 | 132.40 | 0.1256 | 268.05 | 0.0940 | 59.74 | 0.0507 | 110.73 | 0.0109 | 514.95 | ||
0.5829 | 57.76 | 0.2695 | 124.91 | 0.1137 | 295.97 | 0.0930 | 60.38 | 0.0511 | 109.96 | 0.0111 | 503.76 | ||
0.3091 | 108.91 | 0.2382 | 141.33 | 0.0633 | 531.72 | 0.0504 | 111.43 | 0.0386 | 145.28 | 0.0106 | 527.20 | ||
0.4671 | 72.08 | 0.2427 | 138.69 | 0.1005 | 335.05 | 0.0773 | 72.64 | 0.0463 | 121.27 | 0.0107 | 521.55 | ||
0.3069 | 109.71 | 0.2375 | 141.76 | 0.0628 | 535.85 | 0.0500 | 112.29 | 0.0384 | 146.06 | 0.0105 | 533.54 | ||
0.3093 | 108.86 | 0.2378 | 141.57 | 0.0626 | 537.59 | 0.0509 | 110.34 | 0.0387 | 145.01 | 0.0102 | 548.10 | ||
0.2972 | 113.28 | 0.2376 | 141.69 | 0.0640 | 525.65 | 0.0490 | 114.62 | 0.0375 | 149.69 | 0.0105 | 530.64 | ||
0.2945 | 114.34 | 0.2374 | 141.79 | 0.0984 | 342.19 | 0.0522 | 107.64 | 0.0398 | 141.06 | 0.0106 | 530.11 | ||
0.3050 | 110.37 | 0.2380 | 141.48 | 0.0623 | 539.92 | 0.0498 | 112.87 | 0.0369 | 152.30 | 0.0098 | 573.42 | ||
0.3074 | 109.53 | 0.2414 | 139.48 | 0.0625 | 538.73 | 0.0500 | 112.39 | 0.0388 | 144.85 | 0.0104 | 539.20 | ||
0.3091 | 108.94 | 0.2380 | 141.48 | 0.0628 | 535.54 | 0.0504 | 111.51 | 0.0386 | 145.54 | 0.0105 | 532.99 | ||
0.3072 | 109.60 | 0.2375 | 141.76 | 0.0638 | 527.12 | 0.0498 | 112.73 | 0.0381 | 147.41 | 0.0106 | 531.44 | ||
0.3091 | 108.94 | 0.2380 | 141.48 | 0.0628 | 535.54 | 0.0504 | 111.51 | 0.0386 | 145.54 | 0.0105 | 532.99 | ||
0.2851 | 118.09 | 0.2318 | 145.22 | 0.0617 | 545.70 | 0.0486 | 115.45 | 0.0360 | 156.12 | 0.0095 | 586.82 | ||
400 | 0.2559 | 100.00 | 0.2559 | 100.00 | 0.2559 | 100.00 | 0.0420 | 100.00 | 0.0420 | 100.00 | 0.0420 | 100.00 | |
0.3332 | 76.81 | 0.1805 | 141.79 | 0.0758 | 337.32 | 0.0631 | 66.62 | 0.0357 | 117.62 | 0.0077 | 539.59 | ||
/ | 0.2435 | 105.08 | 0.1785 | 143.36 | 0.0477 | 536.49 | 0.0385 | 109.18 | 0.0288 | 145.68 | 0.0076 | 547.09 | |
0.2633 | 97.21 | 0.1837 | 139.30 | 0.1065 | 240.16 | 0.0409 | 102.79 | 0.0295 | 142.12 | 0.0156 | 268.66 | ||
0.2611 | 98.03 | 0.1847 | 138.58 | 0.1139 | 224.57 | 0.0534 | 78.68 | 0.0319 | 131.78 | 0.0090 | 465.57 | ||
0.2943 | 86.95 | 0.1804 | 141.84 | 0.0876 | 292.18 | 0.0464 | 90.45 | 0.0301 | 139.57 | 0.0103 | 406.58 | ||
0.2934 | 87.23 | 0.1800 | 142.18 | 0.0941 | 271.73 | 0.0622 | 67.59 | 0.0353 | 119.04 | 0.0078 | 537.31 | ||
0.3324 | 77.00 | 0.1862 | 137.44 | 0.0818 | 312.90 | 0.0621 | 67.63 | 0.0356 | 118.05 | 0.0079 | 531.15 | ||
0.2318 | 110.39 | 0.1722 | 148.61 | 0.0475 | 538.22 | 0.0370 | 113.47 | 0.0280 | 149.79 | 0.0077 | 545.25 | ||
0.2980 | 85.87 | 0.1736 | 147.43 | 0.0753 | 339.66 | 0.0552 | 76.11 | 0.0333 | 125.95 | 0.0077 | 542.75 | ||
0.2311 | 110.72 | 0.1718 | 148.92 | 0.0471 | 542.32 | 0.0369 | 113.84 | 0.0279 | 150.31 | 0.0076 | 551.76 | ||
0.2318 | 110.39 | 0.1718 | 148.91 | 0.0470 | 543.96 | 0.0373 | 112.50 | 0.0281 | 149.38 | 0.0073 | 572.57 | ||
0.2285 | 112.01 | 0.1721 | 148.72 | 0.0473 | 540.14 | 0.0362 | 115.98 | 0.0274 | 153.07 | 0.0076 | 550.09 | ||
0.2257 | 113.36 | 0.1719 | 148.82 | 0.0490 | 521.59 | 0.0380 | 110.57 | 0.0288 | 145.74 | 0.0077 | 545.87 | ||
0.2282 | 112.15 | 0.1712 | 149.47 | 0.0467 | 547.27 | 0.0361 | 116.29 | 0.0269 | 155.85 | 0.0073 | 575.33 | ||
0.2309 | 110.85 | 0.1743 | 146.83 | 0.0468 | 546.78 | 0.0368 | 114.18 | 0.0281 | 149.40 | 0.0075 | 556.02 | ||
0.2317 | 110.44 | 0.1720 | 148.80 | 0.0472 | 542.20 | 0.0370 | 113.57 | 0.0280 | 150.09 | 0.0076 | 551.54 | ||
0.2303 | 111.13 | 0.1719 | 148.82 | 0.0476 | 536.82 | 0.0366 | 114.62 | 0.0277 | 151.45 | 0.0076 | 550.68 | ||
0.2317 | 110.44 | 0.1720 | 148.80 | 0.0472 | 542.20 | 0.0370 | 113.57 | 0.0280 | 150.09 | 0.0076 | 551.54 | ||
0.2241 | 114.19 | 0.1688 | 151.55 | 0.0465 | 550.32 | 0.0352 | 119.61 | 0.0261 | 160.92 | 0.0071 | 590.66 |
Stratum | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 0.9 | 0.1 | 0.5 | 0.9 | ||||||||
Estimators | |||||||||||||
300 | 0.1963 | 100.00 | 0.1963 | 100.00 | 0.1963 | 100.00 | 0.0121 | 100.00 | 0.0121 | 100.00 | 0.0121 | 100.00 | |
0.2226 | 88.15 | 0.1448 | 135.48 | 0.0543 | 361.01 | 0.0133 | 91.49 | 0.0086 | 141.37 | 0.0032 | 376.50 | ||
/ | 0.1786 | 109.91 | 0.1390 | 141.16 | 0.0516 | 380.42 | 0.0108 | 112.22 | 0.0082 | 147.13 | 0.0030 | 394.47 | |
0.2213 | 109.89 | 0.1445 | 135.83 | 0.0546 | 358.96 | 0.0127 | 95.60 | 0.0084 | 144.02 | 0.0033 | 358.56 | ||
0.2111 | 88.69 | 0.1418 | 138.40 | 0.0576 | 340.81 | 0.0126 | 96.19 | 0.0084 | 144.29 | 0.0034 | 357.07 | ||
0.2222 | 92.97 | 0.1447 | 135.60 | 0.0544 | 360.29 | 0.0131 | 93.025 | 0.0085 | 142.50 | 0.0032 | 369.92 | ||
0.1964 | 88.33 | 0.1392 | 140.99 | 0.0661 | 296.55 | 0.0130 | 93.46 | 0.0085 | 142.77 | 0.0033 | 369.16 | ||
0.2226 | 99.92 | 0.1449 | 135.45 | 0.0544 | 360.83 | 0.0133 | 91.48 | 0.0086 | 141.24 | 0.0032 | 375.72 | ||
0.1786 | 88.15 | 0.1392 | 141.02 | 0.0514 | 381.63 | 0.0108 | 112.44 | 0.0082 | 147.20 | 0.0031 | 392.09 | ||
0.2223 | 109.87 | 0.1448 | 135.57 | 0.0543 | 361.04 | 0.0132 | 92.03 | 0.0085 | 141.79 | 0.0032 | 376.65 | ||
0.1785 | 88.27 | 0.1390 | 141.22 | 0.0511 | 384.08 | 0.0108 | 112.53 | 0.0082 | 147.44 | 0.0030 | 394.78 | ||
0.1785 | 109.95 | 0.1390 | 141.22 | 0.0511 | 384.10 | 0.0113 | 107.68 | 0.0082 | 146.98 | 0.0030 | 394.91 | ||
0.1785 | 109.94 | 0.1389 | 141.24 | 0.0511 | 384.04 | 0.0108 | 112.64 | 0.0082 | 147.53 | 0.0031 | 394.59 | ||
0.1784 | 109.97 | 0.1389 | 141.25 | 0.0511 | 384.03 | 0.0108 | 112.34 | 0.0083 | 147.14 | 0.0030 | 397.61 | ||
0.1784 | 109.99 | 0.1390 | 141.27 | 0.0510 | 384.27 | 0.0108 | 112.68 | 0.0082 | 147.72 | 0.0030 | 395.84 | ||
0.1785 | 109.98 | 0.1390 | 141.21 | 0.0511 | 384.05 | 0.0108 | 112.54 | 0.0083 | 147.35 | 0.0030 | 394.60 | ||
0.1785 | 109.95 | 0.1390 | 141.22 | 0.0511 | 384.08 | 0.0108 | 112.53 | 0.0082 | 147.44 | 0.0030 | 394.78 | ||
0.1785 | 109.96 | 0.1389 | 141.23 | 0.0511 | 384.06 | 0.0108 | 112.58 | 0.0082 | 147.49 | 0.0030 | 394.67 | ||
0.1785 | 109.95 | 0.1390 | 141.22 | 0.0511 | 384.08 | 0.0108 | 112.53 | 0.0082 | 147.44 | 0.0030 | 394.78 | ||
0.1681 | 116.77 | 0.1301 | 150.88 | 0.0499 | 393.38 | 0.0019 | 119.80 | 0.0077 | 157.11 | 0.0029 | 404.68 | ||
400 | 0.0409 | 100.00 | 0.0409 | 100.00 | 0.0409 | 100.00 | 0.0119 | 100.00 | 0.0119 | 100.00 | 0.0119 | 100.00 | |
0.0434 | 94.23 | 0.0281 | 145.45 | 0.0112 | 363.29 | 0.0125 | 95.51 | 0.0078 | 152.34 | 0.0031 | 385.22 | ||
/ | 0.0359 | 113.96 | 0.0271 | 150.69 | 0.0101 | 402.72 | 0.0104 | 114.88 | 0.0076 | 155.95 | 0.0029 | 411.35 | |
0.0432 | 94.63 | 0.0281 | 145.73 | 0.0113 | 361.55 | 0.0120 | 99.41 | 0.0077 | 154.32 | 0.0032 | 366.70 | ||
0.0415 | 98.72 | 0.0276 | 148.29 | 0.0120 | 338.72 | 0.0119 | 100.41 | 0.0077 | 154.70 | 0.0032 | 364.23 | ||
0.0434 | 94.39 | 0.0281 | 145.57 | 0.0112 | 362.61 | 0.0123 | 96.86 | 0.0078 | 153.15 | 0.0031 | 378.20 | ||
0.0376 | 108.79 | 0.0273 | 149.97 | 0.0160 | 255.98 | 0.0122 | 97.65 | 0.0078 | 153.57 | 0.0031 | 376.52 | ||
0.0434 | 94.23 | 0.0281 | 145.45 | 0.0112 | 363.23 | 0.0125 | 95.50 | 0.0078 | 152.24 | 0.0031 | 384.63 | ||
0.0359 | 113.88 | 0.0272 | 150.45 | 0.0102 | 400.12 | 0.0104 | 115.00 | 0.0076 | 155.88 | 0.0029 | 408.66 | ||
0.0434 | 94.27 | 0.0281 | 150.45 | 0.0112 | 363.30 | 0.0124 | 95.87 | 0.0078 | 152.61 | 0.0031 | 385.31 | ||
0.0359 | 113.97 | 0.0271 | 145.48 | 0.0102 | 402.74 | 0.0104 | 115.09 | 0.0076 | 156.16 | 0.0029 | 411.56 | ||
0.0359 | 113.97 | 0.0271 | 150.71 | 0.0101 | 403.31 | 0.0108 | 110.77 | 0.0077 | 155.61 | 0.0029 | 408.91 | ||
0.0359 | 113.98 | 0.0271 | 150.70 | 0.0102 | 402.72 | 0.0104 | 115.17 | 0.0076 | 156.21 | 0.0029 | 411.41 | ||
0.0359 | 113.98 | 0.0271 | 150.73 | 0.0101 | 402.72 | 0.0104 | 114.96 | 0.0076 | 155.95 | 0.0028 | 413.72 | ||
0.0359 | 113.97 | 0.0271 | 150.70 | 0.0102 | 402.79 | 0.0103 | 115.21 | 0.0076 | 156.36 | 0.0029 | 412.27 | ||
0.0359 | 113.97 | 0.0271 | 150.71 | 0.0102 | 402.73 | 0.0104 | 115.10 | 0.0076 | 156.08 | 0.0029 | 411.48 | ||
0.0359 | 113.98 | 0.0271 | 150.71 | 0.0102 | 402.74 | 0.0104 | 115.09 | 0.0076 | 156.16 | 0.0029 | 411.56 | ||
0.0359 | 113.97 | 0.0271 | 150.71 | 0.0102 | 402.73 | 0.0104 | 115.10 | 0.0076 | 156.08 | 0.0029 | 411.48 | ||
0.0339 | 120.64 | 0.0264 | 154.92 | 0.0099 | 413.11 | 0.0098 | 121.42 | 0.0072 | 165.22 | 0.0028 | 425.07 |
Stratum | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 0.9 | 0.1 | 0.5 | 0.9 | ||||||||
Estimators | |||||||||||||
300 | 0.1963 | 100.00 | 0.1963 | 100.00 | 0.1963 | 100.00 | 0.0121 | 100.00 | 0.0121 | 100.00 | 0.0121 | 100.00 | |
0.2631 | 74.60 | 0.1566 | 125.33 | 0.0574 | 341.85 | 0.0158 | 76.58 | 0.0094 | 128.70 | 0.0034 | 361.38 | ||
/ | 0.1884 | 104.16 | 0.1472 | 133.33 | 0.0544 | 360.36 | 0.0115 | 105.21 | 0.0089 | 137.06 | 0.0032 | 376.57 | |
0.2610 | 75.18 | 0.1561 | 125.73 | 0.0577 | 340.12 | 0.0150 | 80.83 | 0.0092 | 131.78 | 0.0035 | 345.50 | ||
0.2460 | 79.78 | 0.1524 | 128.73 | 0.0604 | 324.55 | 0.0149 | 81.41 | 0.0092 | 132.14 | 0.0035 | 344.15 | ||
0.2624 | 74.78 | 0.1564 | 125.47 | 0.0575 | 341.25 | 0.0156 | 77.93 | 0.0094 | 129.97 | 0.0034 | 355.57 | ||
0.2252 | 87.16 | 0.1481 | 132.54 | 0.0688 | 285.29 | 0.0156 | 78.33 | 0.0093 | 130.29 | 0.0034 | 354.89 | ||
0.2631 | 74.60 | 0.1566 | 125.31 | 0.0574 | 341.69 | 0.0160 | 76.34 | 0.0095 | 128.61 | 0.0034 | 360.64 | ||
0.1884 | 104.18 | 0.1473 | 133.22 | 0.0547 | 358.29 | 0.0116 | 105.34 | 0.0089 | 137.18 | 0.0032 | 374.46 | ||
0.2627 | 74.72 | 0.1565 | 125.42 | 0.0574 | 341.88 | 0.0158 | 76.90 | 0.0094 | 129.15 | 0.0034 | 361.54 | ||
0.1883 | 104.23 | 0.1471 | 133.39 | 0.0545 | 360.42 | 0.0116 | 105.39 | 0.0089 | 137.37 | 0.0032 | 376.88 | ||
0.1883 | 104.22 | 0.1471 | 133.39 | 0.0545 | 360.43 | 0.0122 | 100.22 | 0.0152 | 80.05 | 0.0032 | 376.90 | ||
0.1883 | 104.24 | 0.1471 | 133.41 | 0.0545 | 360.38 | 0.0116 | 105.48 | 0.0089 | 137.47 | 0.0032 | 376.71 | ||
0.1882 | 104.26 | 0.1471 | 133.42 | 0.0545 | 360.37 | 0.0116 | 105.25 | 0.0089 | 137.47 | 0.0032 | 379.24 | ||
0.1883 | 104.55 | 0.1471 | 133.44 | 0.0544 | 360.59 | 0.0116 | 105.50 | 0.0088 | 137.09 | 0.0032 | 377.87 | ||
0.1883 | 104.53 | 0.1471 | 133.38 | 0.0545 | 360.37 | 0.0116 | 105.42 | 0.0089 | 137.61 | 0.0032 | 376.67 | ||
0.1883 | 104.53 | 0.1471 | 133.39 | 0.0545 | 360.42 | 0.0116 | 105.39 | 0.0089 | 137.30 | 0.0032 | 376.88 | ||
0.1882 | 104.53 | 0.1471 | 133.40 | 0.0544 | 360.40 | 0.0116 | 105.44 | 0.0088 | 137.37 | 0.0032 | 376.79 | ||
0.1883 | 104.53 | 0.1471 | 133.39 | 0.0545 | 360.42 | 0.0116 | 105.39 | 0.0089 | 137.30 | 0.0032 | 376.88 | ||
0.1776 | 110.52 | 0.1358 | 144.55 | 0.0530 | 370.37 | 0.0109 | 111.00 | 0.0083 | 145.78 | 0.0031 | 384.12 | ||
400 | 0.0409 | 100.00 | 0.0409 | 100.00 | 0.0409 | 100.00 | 0.0119 | 100.00 | 0.0119 | 100.00 | 0.0119 | 100.00 | |
0.0506 | 80.89 | 0.0318 | 128.82 | 0.0119 | 341.57 | 0.0139 | 85.87 | 0.0087 | 137.06 | 0.0032 | 363.14 | ||
/ | 0.0382 | 107.25 | 0.0298 | 137.45 | 0.0110 | 371.78 | 0.0109 | 109.89 | 0.0083 | 143.36 | 0.0031 | 384.02 | |
0.0503 | 81.31 | 0.0317 | 129.14 | 0.0120 | 340.13 | 0.0133 | 90.06 | 0.0086 | 139.63 | 0.0034 | 347.51 | ||
0.0478 | 85.62 | 0.0309 | 132.33 | 0.0127 | 321.01 | 0.0131 | 91.06 | 0.0085 | 140.21 | 0.0035 | 345.31 | ||
0.0505 | 81.06 | 0.0317 | 128.95 | 0.0120 | 341.01 | 0.0137 | 87.29 | 0.0087 | 138.05 | 0.0033 | 357.25 | ||
0.0422 | 96.90 | 0.0298 | 137.29 | 0.0165 | 248.02 | 0.0136 | 88.06 | 0.0086 | 138.62 | 0.0034 | 355.76 | ||
0.0506 | 80.89 | 0.0318 | 128.82 | 0.0119 | 341.51 | 0.0139 | 85.88 | 0.0087 | 136.98 | 0.0033 | 362.59 | ||
0.0382 | 107.20 | 0.0298 | 137.27 | 0.0110 | 369.60 | 0.0109 | 110.02 | 0.0083 | 143.35 | 0.0031 | 381.75 | ||
0.0506 | 80.92 | 0.0318 | 128.85 | 0.0119 | 341.58 | 0.0108 | 110.15 | 0.0087 | 137.36 | 0.0033 | 363.24 | ||
0.0382 | 107.26 | 0.0298 | 137.47 | 0.0110 | 371.80 | 0.0109 | 110.09 | 0.0083 | 143.57 | 0.0031 | 384.23 | ||
0.0383 | 106.76 | 0.0298 | 136.88 | 0.0110 | 372.27 | 0.0109 | 109.16 | 0.0089 | 134.61 | 0.0047 | 254.06 | ||
0.0382 | 107.06 | 0.0299 | 136.83 | 0.0109 | 375.22 | 0.0108 | 110.17 | 0.0083 | 143.64 | 0.0031 | 384.09 | ||
0.0383 | 106.83 | 0.0296 | 138.17 | 0.0110 | 371.78 | 0.0108 | 109.98 | 0.0083 | 143.38 | 0.0031 | 385.89 | ||
0.0381 | 107.36 | 0.0294 | 139.11 | 0.0108 | 376.26 | 0.0108 | 110.19 | 0.0083 | 143.75 | 0.0031 | 384.87 | ||
0.0382 | 107.12 | 0.0295 | 138.64 | 0.0110 | 371.48 | 0.0108 | 110.11 | 0.0083 | 143.52 | 0.0031 | 384.10 | ||
0.0383 | 107.23 | 0.0297 | 137.71 | 0.0110 | 371.81 | 0.0108 | 110.09 | 0.0083 | 143.57 | 0.0031 | 384.23 | ||
0.0382 | 107.44 | 0.0296 | 138.13 | 0.0109 | 374.88 | 0.0108 | 110.13 | 0.0083 | 143.60 | 0.0031 | 384.15 | ||
0.0383 | 107.23 | 0.0297 | 137.71 | 0.0110 | 371.81 | 0.0108 | 110.09 | 0.0083 | 143.57 | 0.0031 | 384.23 | ||
0.0358 | 114.29 | 0.0278 | 147.23 | 0.0657 | 389.47 | 0.0101 | 117.82 | 0.0078 | 152.56 | 0.0029 | 400.66 |
Total | Symbol for Stratum h | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
Population size | N = 80 | 19 | 32 | 14 | 15 | |
Sample size | n = 45 | 11 | 18 | 8 | 8 | |
Population mean | = 1126.46 | 349.68 | 706.59 | 1539.57 | 2620.53 | |
Population mean | = 5182.64 | 2967.95 | 4657.63 | 6537.21 | 7843.67 | |
Kurtosis coefficient | = 12.18 | 4.59 | 18.54 | 15.44 | 10.16 | |
Correlation coefficient | = 0.94 | 0.93 | 0.92 | 0.98 | 0.96 | |
Standard deviation | = 845.61 | 109.44 | 109.22 | 277.18 | 370.97 | |
Standard deviation | = 1835.66 | 757.08 | 669.12 | 416.11 | 645.68 |
Combined Estimators | Separate Estimators | ||||
---|---|---|---|---|---|
46,819.71 | 100.00 | 85,499.73 | 100.00 | ||
29,209.75 | 160.28 | 53,341.34 | 160.28 | ||
/ | 2839.67 | 1648.76 | / | 5185.67 | 1648.76 |
29,203.22 | 160.32 | 53,329.42 | 160.32 | ||
28,744.99 | 162.87 | 52,492.61 | 162.87 | ||
29,209.11 | 160.29 | 53,340.17 | 160.29 | ||
26,086.00 | 179.48 | 47,636.91 | 179.48 | ||
29,350.51 | 159.51 | 53,414.51 | 160.06 | ||
21,359.16 | 256.00 | 41,791.27 | 204.58 | ||
24,646.96 | 189.96 | 53,217.62 | 160.66 | ||
2839.43 | 1648.90 | 5185.55 | 1648.80 | ||
2814.58 | 1663.46 | 5159.55 | 1657.11 | ||
2817.14 | 1661.36 | 5164.69 | 1655.46 | ||
2824.60 | 1657.56 | 5144.01 | 1662.12 | ||
2737.10 | 1710.55 | 5132.26 | 1665.92 | ||
2839.54 | 1648.84 | 5185.60 | 1648.79 | ||
2839.43 | 1648.90 | 5185.55 | 1648.80 | ||
2827.97 | 1655.59 | 5179.59 | 1650.70 | ||
2839.43 | 1648.90 | 5185.55 | 1648.80 | ||
2735.18 | 1711.75 | 5118.07 | 1670.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; Kumar, A.; Lone, S.A.; Anwar, S.; Gunaime, N.M. An Efficient Class of Estimators in Stratified Random Sampling with an Application to Real Data. Axioms 2023, 12, 576. https://doi.org/10.3390/axioms12060576
Bhushan S, Kumar A, Lone SA, Anwar S, Gunaime NM. An Efficient Class of Estimators in Stratified Random Sampling with an Application to Real Data. Axioms. 2023; 12(6):576. https://doi.org/10.3390/axioms12060576
Chicago/Turabian StyleBhushan, Shashi, Anoop Kumar, Showkat Ahmad Lone, Sadia Anwar, and Nevine M. Gunaime. 2023. "An Efficient Class of Estimators in Stratified Random Sampling with an Application to Real Data" Axioms 12, no. 6: 576. https://doi.org/10.3390/axioms12060576
APA StyleBhushan, S., Kumar, A., Lone, S. A., Anwar, S., & Gunaime, N. M. (2023). An Efficient Class of Estimators in Stratified Random Sampling with an Application to Real Data. Axioms, 12(6), 576. https://doi.org/10.3390/axioms12060576