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Abstract: Under classical statistics, research typically relies on precise data to estimate the population
mean when auxiliary information is available. Outliers can pose a significant challenge in this
process. The ultimate goal is to determine the most accurate estimates of the population mean
while minimizing variance. Neutrosophic statistics is a generalization of classical statistics that
deals with imprecise, uncertain data. Our research introduces the neutrosophic Hartley–Ross-type
ratio estimators for estimating the population mean of neutrosophic data, even in the presence of
outliers. We also incorporate neutrosophic versions of several robust regression methods, including
LAD, Huber-M, Hampel-M, and Tukey-M. Our approach assumes that the study variable is both
non-sensitive and sensitive, meaning that it can cause discomfort to participants during personal
interviews, and measurement errors can occur due to dishonest responses. To address potential
measurement errors, we propose the use of neutrosophic scrambling response models. Our proposed
neutrosophic robust estimators are more effective than existing classical estimators, as confirmed by
a computer-based numerical study using real data and simulation.

Keywords: neutrosophic statistics; OLS regression; robust regression; sensitive variables; mean
estimation

MSC: 62D05

1. Introduction

Precise numerical data are at the heart of classical statistics, and various researchers
have developed estimators to calculate the mean of a finite population using auxiliary
information. When there is high correlation between the study variable and auxiliary
variable, using a ratio estimation method instead of only considering the study variable can
significantly reduce the sampling error. This results in a smaller required sample size while
maintaining precision, as noted by Cochran [1]. Ratio estimation techniques have been
extensively researched, with different types and uses developed over time. Researchers
have explored various transformations of known parameters and statistics as auxiliary
variables. Recent studies have shown that utilizing diverse types of auxiliary information
can improve the performance of ratio-type estimators. For example, some scholars have
suggested using exponential-type ratio estimators and refining their performance. Others
have investigated the estimation of the mean through exponential ratio-type estimators
in the presence of non-response. One study proposed an estimator that utilizes complete
information, which outperforms exponential ratio-type estimators. Additionally, a study
has examined the implementation of a ratio-type estimator for multivariate k-statistics and
explored the use of auxiliary information with the coefficient of variation. These advance-
ments were discussed by Robson [2] in his research. Tahir et al. [3] developed neutrosophic
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ratio estimators in simple random sampling. Vishwakarma and Singh [4] extended their
work in ranked set sampling scheme. Yadav and Smarandache [5] and Kumar et al. [6]
defined generalized families of neutrosophic ratio and exponential estimators.

While classical statistics assumes precise data, fuzzy logic provides a solution for data
that may not have exact measurements. Fuzzy statistics is a useful tool for analyzing data
with fuzzy, ambiguous, uncertain, or imprecise parameters or observations. However,
it does not account for the degree of indeterminacy in the data. Neutrosophic logic is
an extension of fuzzy logic that enables the measurement of both the determinate and
indeterminate parts of the observations. It is used to analyze data with vague or uncertain
observations, as noted by Smarandache [7].

When data have some degree of indeterminacy, neutrosophic statistics are used. This
statistical methodology goes beyond the traditional approach and is employed in situations
where the sample or data contains neutrosophy. Neutrosophic statistics are particularly
useful when observations within the population or sample are ambiguous, uncertain,
and indefinite, as explained by Smarandache [7].

1.1. Neutrosophic Statistics and Hartley–Ross-Type Estimators

Neutrosophic statistical methods are utilized to examine datasets that contain some
level of uncertainty, also known as neutrosophic data. In this type of statistics, the sample
size may not be accurately determined, as explained by Smarandache [8]. Smarandache’s
research [8] has shown that neutrosophic statistics are highly effective in analyzing systems
of uncertainty. In the field of rock engineering, neutrosophic numbers have been used to
investigate the scale effect and anisotropy of joint roughness coefficient. This has led to a
more efficient method for overcoming information loss and generating adequately fitted
functions, as demonstrated by Chen et al. [9]. Additionally, a new technique called neutro-
sophic analysis of variance has been introduced for analyzing neutrosophic data. The field
of neutrosophic statistics is currently being advanced by exploring new areas such as neu-
trosophic interval statistics (NIS), neutrosophic applied statistics (NAS), and neutrosophic
statistical quality control (NSQC).

Hartley and Ross [10], Robson [2], Murty [11], and Smoo et al. [12] have studied
various unbiased estimators for population mean. Hartley and Ross [10] have devised
new ratio-type estimators for estimating the population mean, and their work has been
further enhanced by other survey statisticians. When the variables have a negative cor-
relation, Singh and Singh [13] have proposed unbiased Hartley–Ross estimators for the
population mean. Additionally, Singh et al. [14] have developed modified ratio-type esti-
mators based on Hartley and Ross estimators, incorporating additional information such as
coefficient of variation, correlation, and more. Kadilar and Cekim [15] have drawn inspira-
tion from Hartley–Ross’s work and developed the Hartley–Ross-type regression estimator
that utilizes auxiliary information. In this article, we will investigate the application of
neutrosophic OLS and robust regression coefficients in Hartley–Ross-type neutrosophic
mean estimators.

1.2. Research Gap

Previous research in survey sampling has primarily focused on data that are precise,
certain, and unambiguous. However, such methods may generate a single, clear-cut result
that could be inaccurate, overestimated, or underestimated, which poses a limitation in cer-
tain cases. Conversely, there are situations where data are of a neutrosophic nature, and in
such cases, classical statistical methods are inadequate. Data with a neutrosophic nature
are often characterized by uncertain and ambiguous observations, non-clear arguments,
and vague interval values. Therefore, data collected from experiments or populations can
be expressed as interval-valued neutrosophic numbers (INN), where the observation is
assumed to fall within the boundaries of the given interval. In reality, indeterminate data is
more common than determinate data, making it necessary to develop more neutrosophic
statistical techniques to analyze such data.
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Gathering data on numerous variables throughout life can be a costly endeavor,
especially when the data are uncertain. Therefore, relying on traditional classical methods to
determine the unknown true value of the population for ambiguous data can be both risky
and expensive. Furthermore, if both the primary study variable and auxiliary variables
have a neutrosophic nature, conventional Hartley–Ross-type estimation is inadequate. As a
result, this study suggests the use of neutrosophic Hartley–Ross-type regression estimators.

A comprehensive examination of published studies [3–6] reveals that no research has
been conducted in the domain of survey sampling to estimate an unknown population
mean using Hartley–Ross-type regression estimation methods while auxiliary variables are
present under neutrosophic data containing both sensitive and non-sensitive observations.
This specific field of statistics necessitates further investigation and study. The present
research serves as an introductory step in this area.

1.3. Scope of the Study

Neutrosophic statistical analysis is an approach that is capable of handling data with
incomplete or indeterminate information, while also accommodating inconsistent beliefs.
In some instances, when data are gathered using certain instruments, observations may
exist within an uncertain range, with the possibility that the true measurement lies within
that interval. In such cases of indeterminacy, classical statistical methods may not be
adequate for analyzing the data. As an alternative, the method of neutrosophic statistics
is utilized as a more flexible and general version of classical statistics. While numerous
studies in the domain of survey sampling have been conducted under the framework
of neutrosophy, the area of Hartley–Ross-type estimation remains a relatively new and
underexplored field that warrants further attention.

To start, we assume that the neutrosophic study variable is non-sensitive, which makes
the conventional estimation method appropriate. However, we also recognize the existence
of sensitive variables that are highly personal, stigmatizing, or threatening, and they are
likely to be observed in sampled units using non-standard survey techniques to enhance
respondent cooperation. These techniques have been derived from the randomized re-
sponse theory introduced by Warner [16] and have been extensively discussed in the works
of Fox and Tracy [17], Chaudhuri and Mukerjee [18], and Chaudhuri [19]. Furthermore,
we perform a numerical investigation on the sensitive variable to assess the performance
of the proposed method by manipulating the values of the study variable using various
randomized response models.

This article presents a fresh perspective on mean estimation in the context of neu-
trosophic data, which incorporates uncertainty not only in the form of imprecision and
vagueness but also indeterminacy. The remaining sections of the article are organized as
follows: Section 2 introduces the neutrosophic versions of the OLS-based and regression-
based Hartley–Ross-type mean estimators. In Section 3, a new class of Hartley–Ross-type
neutrosophic robust regression estimators is proposed. The usefulness of these methods in
sensitive research is discussed in Section 4. A numerical example is provided in Section 5
to demonstrate the effectiveness of the proposed estimators. Finally, in Section 6, the arti-
cle concludes by highlighting the potential of neutrosophic robust regression methods in
addressing the challenges posed by the complex and uncertain nature of real-world data.

2. Adapted OLS Based Neutrosophic Hartley–Ross Type Estimators

Parametric regression methods are widely used in statistics, with ordinary least squares
(OLS) being one of the most commonly used techniques. OLS aims to estimate the model’s
parameters while minimizing the sum of residual squares (ri), and is known for its mathe-
matical simplicity and elegance. The Gauss–Markov theorem requires several assumptions
that must be satisfied for OLS to be considered the most suitable estimator for linear re-
gression coefficients. OLS estimators are the best linear unbiased estimator (BLUE) because
they have the smallest variance among all unbiased estimators. Readers who are interested
in this topic can refer to the work of Al-Noor and Mohammad [20].
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We consider a neutrosophic variable, denoted by Ye1,e2 ε [Ye1 , Ye2 ], on a finite population
Ue1,e2 consisting of N identifiable units. To estimate the unknown mean of Ye1,e2 , denoted
by Ȳe1,e2 ε [Ȳe1, Ȳe2], a neutrosophic auxiliary variable Xe1,e2 ε [Xe1 , Xe2 ] is used. Note that
additional information may be available for the entire population through knowledge
of Xe1,e2 or X̄e1,e2 ε [X̄e1 , X̄e2 ], or on a sample from Ue1,e2 in the absence of population
information related to study variable. By adapting Hartley and Ross [10] , Singh and
Singh [13], and Kadilar and Cekim [15], the class of OLS regression coefficient (bxye1,e2

)
based neutrosophic Hartley–Ross-type sample mean estimators for the study variable:

Tje1,e2
= X̄je1,e2

[
r̄xyje1,e2

+
bxye1,e2

(X̄e1,e2 − x̄e1,e2)

x̄je1,e2

]
; For j = 1, 2, ..., 8. (1)

where

r̄xyje1,e2
=

∑n
k=1 rk.xyje1,e2

n , rk.xyje1,e2
=

∑n
k=1 ykje1,e2
xkje1,e2

xk1e1,e2
= xke1,e2

+ Cxe1,e2
and X̄1e1,e2

= X̄e1,e2 + Cxe1,e2

xk2e1,e2
= xke1,e2

+ β2xe1,e2
and X̄2e1,e2

= X̄e1,e2 + β2xe1,e2

xk3e1,e2
= xke1,e2

β2xe1,e2
+ Cxe1,e2

and X̄3e1,e2
= X̄e1,e2 β2xe1,e2

+ Cxe1,e2

xk4e1,e2
= xke1,e2

Cxe1,e2
+ β2xe1,e2

and X̄4e1,e2
= X̄e1,e2 Cxe1,e2

+ β2xe1,e2

xk5e1,e2
= xke1,e2

Cxe1,e2
+ ρe1,e2 and X̄5e1,e2

= X̄e1,e2 Cxe1,e2
+ ρe1,e2

xk6e1,e2
= xke1,e2

ρe1,e2 + Cxe1,e2
and X̄6e1,e2

= X̄e1,e2 ρe1,e2 + Cxe1,e2

xk7e1,e2
= xke1,e2

β2xe1,e2
+ ρe1,e2 and X̄7e1,e2

= X̄e1,e2 β2xe1,e2
+ ρe1,e2

xk8e1,e2
= xke1,e2

ρe1,e2 + β2xe1,e2
and X̄8e1,e2

= X̄e1,e2 ρe1,e2 + β2xe1,e2

for each estimator. Where β2xe1,e2
is neutrosophic coefficient of kurtosis, Cxe1,e2

is neutro-
sophic coefficient of variation, and ρe1,e2 is neutrosophic coefficient of correlation. Further
xke1,e2

is representing sample observations of auxiliary variable. x̄e1,e2 is the sample mean
of auxiliary variable. x̄je1,e2

is representing the mean of observations xk1e1,e2
, . . . , xk8e1,e2

,
for j = 1, . . . , 8, respectively.

The biases of these estimators are.

B(Tje1,e2
) = E

{
X̄je1,e2

[
r̄xyje1,e2

+
bxye1,e2

(X̄e1,e2 − x̄e1,e2)

x̄je1,e2

]
− Ȳe1,e2

}
(2)

= −
(

1− 1
N

)
Sxrje1 ,e2

; For j = 1, 2, ...8.

where
For j = 1, 2

Sxrje1 ,e2
=

(
1

N − 1

) N

∑
k=1

(
xke1,e2

− X̄e1,e2

)(
rk.xyje1,e2

− R̄xyje1,e2

)
For j = 3, 7

Sxrje1 ,e2
=

(
β2xe1,e2

N − 1

)
N

∑
k=1

(
xke1,e2

− X̄e1,e2

)(
rk.xyje1,e2

− R̄xyje1,e2

)
For j = 4, 5

Sxrje1 ,e2
=

(Cxe1,e2

N − 1

) N

∑
k=1

(
xke1,e2

− X̄e1,e2

)(
rk.xyje1,e2

− R̄xyje1,e2

)
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For j = 6, 8

Sxrje1 ,e2
=

(
ρe1,e2

N − 1

) N

∑
k=1

(
xke1,e2

− X̄e1,e2

)(
rk.xyje1,e2

− R̄xyje1,e2

)
With

R̄xyje1,e2
=

∑N
k=1 rk.xyje1,e2

N
.

Unbiased estimator of Sxrje1 ,e2
are :

sxrje1 ,e2
=

(
n

n− 1

)(
ȳe1,e2 − x̄je1,e2

r̄xyje1,e2

)
; For j = 1, 2, . . . , 8. (3)

Substituting sxrje1 ,e2
instead of Sxrje1 ,e2

in B(Tje1,e2
), we have

B(Tje1,e2
) = −

(
1− 1

N

)(
n

n− 1

)(
ȳe1,e2 − x̄je1,e2

r̄xyje1,e2

)
; For j = 1, 2, . . . , 8. (4)

Using the expressions of B(Tje1,e2
), unbiased version of Tje1,e2

is :

Tu
je1,e2

= X̄je1,e2

[
r̄xyje1,e2

+
bxye1,e2

(X̄e1,e2 − x̄e1,e2)

x̄je1,e2

]
+

(
1− 1

N

)(
n

n− 1

)(
ȳe1,e2 − x̄je1,e2

r̄xyje1,e2

)
; (5)

For j = 1, 2, . . . , 8.

The variance of Tu
je1,e2

is as follows:

V(Tu
je1,e2

) = θ
[
S2

ye1,e2
+ B2

e1,e2
S2

xe1,e2
+ R̄2

je1,e2
S2

xje1,e2
− 2Be1,e2 Syx + 2Be1,e2 R̄je1,e2

Sxxje1,e2
− 2R̄je1,e2

Syxje1,e2

]
; (6)

For j = 1, 2, . . . , 8.

where S2
ye1,e2

, S2
xe1,e2

is the neutrosophic variance of study and auxiliary variables. Be1,e2 is
the OLS regression coefficient. Further

θ =

(
1− f

n

)

S2
ye1,e2

=

(
1

N − 1

) N

∑
k=1

(
yke1,e2

− Ȳe1,e2

)2

S2
xe1,e2

=

(
1

N − 1

) N

∑
k=1

(
xke1,e2

− X̄e1,e2

)2

Syxe1,e2
=

(
1

N − 1

) N

∑
k=1

(
yke1,e2

− Ȳe1,e2

)(
xke1,e2

− X̄e1,e2

)

S2
xje1,e2

=

(
1

N − 1

) N

∑
k=1

(
xkje1,e2

− X̄je1,e2

)2
; f or j = 1, 2, . . . , 8.

Sxxje1,e2
=

(
1

N − 1

) N

∑
k=1

(
xke1,e2

− X̄e1,e2

)(
xkje1,e2

− X̄je1,e2

)
; f or j = 1, 2, . . . , 8.

Syxje1,e2
=

(
1

N − 1

) N

∑
k=1

(
yke1,e2

− Ȳe1,e2

)(
xkje1,e2

− X̄je1,e2

)
; f or j = 1, 2, . . . , 8.
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Note that all the notations are used in neutrosophic form where X̄je1,e2
ε [X̄je1

, X̄je2
], ratio

R̄je1,e2
ε [R̄je1

, R̄je2
], Cxe1,e2

ε [Cxe1
, Cxe2

], β2xe1,e2
ε [β2xe1

, β2xe2
], ρe1,e2 ε [ρe1 , ρe2 ], Be1,e2 ε [Be1 , Be2 ],

S2
ye1,e2

ε [S2
ye1

, S2
ye2

], S2
xe1,e2

ε [S2
xe1

, S2
xe2

], Syxe1,e2
ε [Syxe1

, Syxe2
], S2

xje1,e2
ε [S2

xje1
, S2

xje2
], Sxxje1,e2

ε [Sxxje1
, Sxxje2

] and Syxje1,e2
ε [Syxje1

, Syxje2
]. yke1,e2

is representing observations of study vari-
able. The estimators Tu

je1,e2
∈ [Tu

je1
, Tu

je2
], are only using neutrosophic OLS regression coefficient.

3. Proposed Robust Regression Based Neutrosophic Hartley–Ross Type Estimators

When a dataset contains outliers or anomalous data points, the efficiency of ordinary
least squares (OLS) estimates can be compromised. The breakdown value of OLS fitting
is 1/n or 0%, indicating that it can be easily influenced by a single outlier, as pointed out
by Hampel et al. [21] and Rousseeuw and Leroy [22]. According to Seber and Lee [23],
the OLS method’s susceptibility to outliers in data can be attributed to two main factors:

• When using the squared residual to estimate the residual size, any residual with a
greater magnitude will have a disproportionately larger effect on the overall size
compared to the other residuals.

• Using a conventional location measure, such as the arithmetic mean, which is not resis-
tant to outliers, may result in a significant impact on the criterion due to a large squared
value, which in turn can lead to a disproportionate effect on the regression results.

To reduce the influence of outliers on regression results, one may opt for alternative
regression methods that are less sensitive or affected by outliers, such as robust regression.
To gain a better understanding of these robust regression techniques, readers can consult
the research conducted by Yu and Yao [24].

Ordinary least squares (OLS) regression is a widely used method for estimating the
parameters of a linear regression model. It works by minimizing the sum of squared
residuals, which represent the difference between the observed and predicted values of
the dependent variable. The objective is to identify the best-fit line that can explain the
relationship between the independent and dependent variables while minimizing the
error in the model. However, the OLS method relies on the assumption that the residuals
are normally distributed and have constant variance, which is not always the case in
real-world data.

OLS regression is highly sensitive to outliers, which are observations that significantly
deviate from other data points. Outliers can occur naturally or due to measurement or data
entry errors. The impact of outliers can be significant, as they can affect the estimates of
regression coefficients and lead to inaccurate predictions. In contrast, robust regression is
a technique specifically designed to handle outliers more effectively, and is therefore less
sensitive to their presence in the data.

Robust regression is one class of robust statistical methods that aims to minimize the
sum of the absolute residuals rather than the sum of the squared residuals. By focusing
on the absolute values of the residuals, this approach is less susceptible to the influence
of outliers, as extreme values do not disproportionately impact the results. Rather than
assigning equal weight to all observations, robust regression assigns lower weights to
outliers, which reduces their impact on the regression coefficient estimates. In cases where
outliers are prevalent, robust regression is often a more appropriate approach than OLS
regression, as it is less affected by extreme values.

OLS regression assumes that the variance of the residuals is constant across all levels of
the independent variable, which is known as homoscedasticity. However, this assumption
may not hold in real-world data, particularly when the dependent variable is not normally
distributed. Biased estimates of the regression coefficients and unreliable predictions may
result from this inconsistency. Another possible limitation of OLS regression is its sensitivity
to outliers or unusual data points, which can impact the estimates and decrease efficiency.
However, the weighted least squares method employed by robust regression can address
this problem by assigning higher weights to observations with smaller variances and lower
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weights to those with larger variances. This technique allows for more precise estimation
of the coefficients, even when outliers or influential points are present.

Robust regression outperforms OLS regression when dealing with non-normal data,
which violates the normality assumption. OLS regression assumes that the dependent
variable is normally distributed, which is not always true in real-world data. Consequently,
the regression coefficients obtained from OLS regression may be biased, and the predictions
may be inaccurate. Robust regression, on the other hand, does not make the assumption
of normality and can handle non-normal data more effectively. We are using four robust
regression methods (p = 1, 2, . . . , 4), least absolute deviations (LAD) for p = 1, Huber-M
(H) for p = 2, Hampel-M (H-M) for p = 3, and Tukey-M (T-M) for p = 4. For further details,
please refer to Zaman and Bulut’s work [25,26].

The proposed neutrosophic robust regression Hartley–Ross-type mean estimators are

Tu
pje1,e2

= X̄je1,e2

[
r̄xyje1,e2

+
bp.xye1,e2

(X̄e1,e2 − x̄e1,e2)

x̄je1,e2

]
+

(
1− 1

N

)(
n

n− 1

)(
ȳe1,e2 − x̄je1,e2

r̄xyje1,e2

)
; (7)

For j = 1, 2, . . . , 8 and p = 1, 2, . . . , 4.

The variance of Tu
pje1,e2

is as follows:

V(Tu
pje1,e2

) = θ
[
S2

ye1,e2
+ B2

pe1,e2
S2

xe1,e2
+ R̄2

je1,e2
S2

xje1,e2
− 2Bpe1,e2

Syx + 2Bpe1,e2
R̄je1,e2

Sxxje1,e2
− 2R̄je1,e2

Syxje1,e2

]
. (8)

4. Neutrosophic Robust Estimation in Sensitive Research

Sensitive topics, such as abortion, xenophobia, tax evasion, drug use, alcoholism,
gambling, reckless driving, and sexual behavior, are regarded as intrusive as they violate the
privacy of the respondents. When conducting research on sensitive issues, direct inquiries
on personal or stigmatizing matters can lead to respondents either refusing to respond
or providing inaccurate information, leading to non-sampling errors that significantly
undermine the data’s quality and subsequent analyses’ relevance. Survey statisticians
have developed various strategies to encourage respondent participation while respecting
their privacy to minimize such socially desirable biases. One way to improve the accuracy
of responses on sensitive topics is to reduce interviewer influence. Self-administered
questionnaires, computer-assisted telephone interviews, computer-assisted self-interviews,
and web surveys are commonly employed for this purpose. To avoid socially desirable bias
in data collection on sensitive topics due to non-sampling errors, one solution is to utilize
indirect questioning methods rather than direct questions.

Chaudhuri and Christofides [27] suggest various techniques for gathering sensitive
information while circumventing direct questioning of survey participants. Among these
methods is the randomized response technique, which was initially developed by Warner [16]
as a way to estimate the population mean of a sensitive variable in a study while minimizing
interviewer influence. While originally designed for binary variables to assess the prevalence
of stigmatizing attributes, it has since been adapted to evaluate sensitive quantitative vari-
ables concerning diverse aspects of life, such as personal income level (Barabesi et al. [28]),
extramarital relationships, induced abortions and unwanted pregnancies, tax evasion, weekly
hours of undeclared work (Trappmann et al. [29]), the number of cannabis cigarettes smoked
(Cobo et al. [30]), and the frequency of deviant sexual behaviors that students struggle to
control (Perri et al. [31]). Academic literature proposes multiple methods to safeguard the con-
fidentiality of respondents when gathering data on sensitive variables. These techniques aim
to modify responses in a way that conceals the actual values of the variables, using one or more
random variables to alter them. The pioneering works in this area were by Greenberg et al. [32],
Eriksson [33], and Pollock and Beck [34]. Other researchers have since developed their own
distortion techniques, including Eichhorn and Hayre [35], Bar-Lev et al. [36], and Diana
and Perri [37,38]. These random variables must be statistically independent of the sensitive
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variable and of each other, and the researcher must possess a thorough understanding of their
probability distributions.

The present study explores the use of two neutrosophic scrambling variables, re-
ferred to as Ue1,e2 and Ve1,e2 . To elicit the responses, each participant is instructed to
generate a neutrosophic value, ue1,e2 i , from Ue1,e2 , and another neutrosophic value, ve1,e2 i ,
from Ve1,e2 . They are then requested to disclose the neutrosophic scrambled value zie1,e2

=

ϕe1,e2(ye1,e2 i , ue1,e2 i , ve1,e2 i ), where ϕe1,e2 is the neutrosophic scrambling function that enables
respondents to conceal their true sensitive value. The scrambling function’s particular
configuration is established by the chosen scrambling technique, which may be one of the
two neutrosophic models elaborated in the subsequent sections.

It is assumed that the values generated by the respondent, ue1,e2 i and ve1,e2 i , are not
disclosed to anyone, ensuring the researcher’s uncertainty about the true value of ye1,e2 i
and protecting respondent privacy. While it may not be possible to determine individual
values of ye1,e2 i , it is still possible to obtain accurate estimates of certain characteristics of
the sensitive variable Ye1, e2 by taking a sample of n units and using the shuffled responses
of all units in the sample, denoted by (z1e1,e2

, . . . , zne1,e2
).

This paper considers two neutrosophic versions of scrambling models: (i) the additive
model Ze1,e2 = Ye1,e2 + Ue1,e2 (Pollock and Beck, [34]) and (ii) the mixed model Ze1,e2 =
(Ye1,e2 + Ue1,e2)Ve1,e2 (Saha, [39]). Using the scrambling models previously discussed, it
is possible to obtain an unbiased estimate of the unknown mean Ȳe1,e2 of the sensitive
variable by employing the scrambled values zie1,e2

and computing the estimator’s variance.
As an example, assume that we use the additive model to distort the true responses and
intend to estimate the mean of Ye1, e2 using a simple random sample without replacement
(SRSWOR) of n units taken from the population. With this approach, the estimation process
becomes straightforward. Let Ue1,e2 > 0 be a scrambling variable with a mean of Ūe1,e2

and a variance of S2
ue1,e2

. As the distribution of Ue1,e2 is known, Ūe1,e2 and S2
ue1,e2

will also be
known beforehand. To obtain an estimate of the unknown sensitive mean Ȳe1,e2 using the
additive model, each selected respondent is directed to generate a number ue1,e2 i from Ue1,e2

using a computer or smartphone application, and add this number to their true value ye1,e2 i .
The respondent is then instructed to release the scrambled response zie1,e2

= ye1,e2 i + ue1,e2 i ,
while keeping the generated value ue1,e2 i confidential. The estimator ŷe1,e2 i = zie1,e2

˘ue1,e2 i is
an unbiased estimator of the unknown ye1,e2 i , and its unbiasedness is assessed with respect
to the scrambling device. This can be expressed using the expectation operator E, such that:

E(ŷe1,e2 i ) = E(zie1,e2
)− Ūe1,e2 = (ye1,e2 i + Ūe1,e2)− Ūe1,e2 = ye1,e2 i ,

Using the notation introduced in previous sections, it becomes evident that for i = 1, . . . , n:

ˆ̄ye1,e2 = z̄e1,e2 − µue1,e2 i
,

with z̄e1,e2 = ∑n
i zie1,e2

/n, is a design-unbiased estimator of Ȳe1,e2 with variance Var( ˆ̄ye1,e2) =

γ(S2
ye1,e2

+ S2
ue1,e2

).
The mixed model can also be treated using the same method. However, to maintain

brevity, we have excluded the specifics from this explanation. Readers who want to know
more can consult Shahzad et al. [40].

Proposed Neutrosophic Hartley–Ross Type Estimators for Scrambled Responses

Building on the concepts mentioned above, we adapt the suggested class to han-
dle cases where the objective variable is sensitive, and information is obtained utilizing
the four scrambling methods described earlier. Let (z1e1,e2

, . . . , zne1,e2
) denote the neutro-

sophic responses observed on a sample selected from the population under study using

SRSWOR. Let r̄xzje1,e2
=

∑n
k=1 rk.xzje1,e2

n . We can obtain the class of neutrosophic estimators
with scrambled responses by replacing y in Tu

pje1,e2
with z
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Tu′
pje1,e2

= X̄je1,e2

[
r̄xzje1,e2

+
bp.xze1,e2

(X̄e1,e2 − x̄e1,e2)

x̄je1,e2

]
+

(
1− 1

N

)(
n

n− 1

)(
z̄e1,e2 − x̄je1,e2

r̄xzje1,e2

)
; (9)

For j = 1, 2, . . . , 8 and p = 1, 2, . . . , 4.

To obtain the variance equations, we can substitute the population parameter for Ye1, e2
with the relevant population parameters for Ze1,e2 in Equation (8). However, to maintain
brevity, we abstain from presenting the altered formulas, as they can be effortlessly derived.
The identical approach can be utilized to extend all the estimators discussed in the previous
Sections 3 and 4 to the sensitive setting, which will be explored in the following section.

5. Numerical Illustration

As the idea of neutrosophic Hartley–Ross-type estimators is relatively novel and no
prior research is available on the topic to the authors’ understanding, a study is conducted
to compare the variance performance of different neutrosophic estimators. Specifically,
we compared the proposed neutrosophic robust regression Hartley–Ross-type estimators
(Section 3) and the adapted neutrosophic estimators (Section 2) to determine which per-
formed better. Typically, selecting the best estimator from a set of estimators is based on
the one that results in the lowest variance.

We conducted a numerical analysis using interval data with indeterminate values
from the Islamabad Stock Market, specifically the United Bank Limited (UBL). The data
consist of neutrosophic values that are uncertain and fall within a certain range. We
chose UBL’s stock market share price data because the price values fluctuate within a
range, with the recorded share price for the day potentially being the highest, lowest,
or any value in between. The data were obtained from the publicly available website
(https://pkfinance.info, accessed on 14 September 2021), and approval was not needed.
Tables 1 and 2 present the neutrosophic features of the data, which were obtained using the
share price index values for 2019 and 2020 denoted as Xe1,e2 and Ye1,e2 , respectively. It is
worth mentioning that N = 239 and n = 30.

Table 1. Neutrosophic characteristics of Population.

Sye1,e2
= [54.5609, 54.6335] βe1,e2 = [0.850813, 0.8378018]

Sxe1,e2
= [55.7757, 56.2250] βe1,e2(1) = [0.7242686, 0.7075029]

S2
ye1,e2

= [2976.893, 2984.826] βe1,e2(4) = [0.8390644, 0.8217442]
S2

xe1,e2
= [3110.931, 3161.251] βe1,e2(5) = [0.8386558, 0.8201294]

Sxye1,e2
= [2646.821, 2648.501] βe1,e2(6) = [0.682883, 0.6580855]

Table 2. Neutrosophic Specified Characteristics of Population

J R̄(j) S2
x(j) Sxx(j) Sxy(j)

1 [0.8751, 0.8795] [15,110.2372, 15,354.6461] [15,110.2372, 15,354.6461] [12,855.9868, 12,864.1495]
2 [0.7823, 0.7889] [15,110.2372, 15,354.6461] [15,110.2372, 15,354.6461] [12,855.9868, 12,864.1495]
3 [0.0504, 0.0509] [4,586,469.0853, 4,611,343.7986] [263,253.9374, 266,093.1264] [223,979.8819, 222,933.2903]
4 [1.7761, 1.8239] [2099.7334, 2057.3919] [5632.7143, 5620.5448] [4792.3868, 4708.9024]
5 [2.316, 2.3707] [2099.733, 2057.3919] [5632.714, 5620.5448] [4792.387, 4708.9024 ]
6 [1.0058, 1.0197] [11,430.5413, 11,414.6395] [13,142.2293, 13,238.8727] [11,181.5800, 11,091.5509]
7 [0.0503, 0.0509] [4,586,469.0853, 4,611,343.7986] [263,253.9374, 266,093.1264] [223,979.8819, 222,933.2903]
8 [0.8852, 0.8999] [11,430.5413, 11,414.6395] [13,142.2293, 13,238.8727] [11,181.5800, 11,091.5509]

For the sensitive scenario described in Section 4, two neutrosophic scrambling tech-
niques are used to perturb the target variable values. These techniques, proposed by
[Shahzad perri hanif], involve the use of scrambling variables Ue1,e2 and Ve1,e2 , which are
assumed to follow a normal distribution. The neutrosophic mean of these variables is

https://pkfinance.info
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[0, 0], and their neutrosophic standard deviation is 10% of the standard deviation of the
auxiliary variable.

5.1. Simulation Study

For simulation study, we generate neutrosophic population of size 1000. Taking
motivation from Aslam et al. [41] and Shahzad et al. [42], neutrosophic random variables
Xe1,e2 and Ye1,e2 generated as follows:

Ye1,e2 = δe1,e2 + Ke1,e2 Xe1,e2 + εe1,e2 X
qe1,e2
e1,e2

where Xe1,e2 follows neutrosophic Gamma distribution i.e., Gamma(Ae1,e2 , Be1,e2). Ae1,e2 =
[2.0, 2.0] and Be1,e2 = [3.1, 3.8]. εe1,e2 follows neutrosophic standard normal. Further,
δe1,e2 = [5, 5], qe1,e2 = [1.6, 1.6] and Ke1,e2 = [2, 2].

By adapting Shahzad et al. [42], h = 5000 samples of sizes 100 were chosen inde-
pendently under the simple random sampling design, and for the hth sample, the mean
estimate (φ̂

(h1)
e1,e2 , φ̂

(h2)
e1,e2) of study variable was calculated. Note that φ̂

(h1)
e1,e2 is representing

adapted estimators and φ̂
(h2)
e1,e2 is representing proposed estimators.

The variances were calculated from the formula given below

Var(φ̂(h1)
e1,e2) =

h

∑
h1=1

(φ̂
(h1)
e1,e2 − Ȳe1,e2)

2/h.

Var(φ̂(h2)
e1,e2) =

h

∑
h2=1

(φ̂
(h2)
e1,e2 − Ȳe1,e2)

2/h.

The calculated variances and percentage relative efficiencies (PREs) are presented in
Tables 3–14. Where

PRE =
Var(φ̂(h1)

e1,e2)

Var(φ̂(h2)
e1,e2)

× 100

5.2. Remarks

We explore the following points from numerical investigation:

• Tables 3 and 4 present the results of the numerical study in terms of the variance and PRE.
For the non-sensitive case, it is noteworthy that all of the estimators belonging to the
proposed class Tu

1je1,e2
, Tu

2je1,e2
, Tu

3je1,e2
, Tu

4je1,e2
perform better than the adapted estimators.

• The results displayed in Tables 5–8 also support the excellent performance of the esti-
mators from the proposed class Tu

1je1,e2
, Tu

2je1,e2
, Tu

3je1,e2
, Tu

4je1,e2
when estimating scram-

bled responses. Regardless of the specific scrambling device utilized, all the estimators
from the proposed class consistently outperform the adapted estimators.

• The results of simulation study in Tables 9–14, also show same behavior i.e., superior-
ity of proposed class Tu

1je1,e2
, Tu

2je1,e2
, Tu

3je1,e2
, Tu

4je1,e2
.
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Table 3. Variance of estimators using UBL data for nonsensitive case.

j OLS LAD Huber Hampel Tukey

1 [368.91, 379.29] [269.99, 275.33] [359.59, 366.31] [359.27, 365.01] [238.30, 236.74]
2 [299.20, 309.66] [210.94, 216.57] [290.88, 298.01] [290.59, 296.84] [182.72, 182.10]
3 [370.61, 380.97] [271.45, 276.75] [361.27, 367.95] [360.95, 366.64] [239.68, 238.07]
4 [220.46, 228.29] [145.99, 149.76] [213.42, 218.44] [213.18, 217.45] [122.29, 120.81]
5 [359.61, 369.87] [262.06, 267.31] [350.43, 357.06] [350.11, 355.77] [230.80, 229.26]
6 [368.63, 379.01] [269.76, 275.09] [359.33, 366.03] [359.0071, 364.73] [238.08, 236.51]
7 [370.47, 380.83] [271.34, 276.63] [361.14, 367.81] [360.81, 366.51] [239.56, 237.96]
8 [290.43, 300.27] [203.59, 208.74] [282.24, 288.81] [281.95, 287.66] [175.84, 174.87]

Table 4. PRE of estimators using UBL data for nonsensitive case.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[136.6316, 137.7609] [102.5886, 103.5452] [102.6809, 103.9149] [154.8056, 160.2158]

T2e1,e2
[141.8419, 142.9838] [102.8604, 103.9079] [102.9626, 104.3169] [163.7456, 170.0431]

T3e1,e2
[136.5254, 137.6559] [102.5828, 103.5377] [102.6749, 103.9066] [154.6267, 160.0225]

T4e1,e2
[151.0041, 152.4383] [103.2983, 104.5101] [103.4167, 104.9850] [180.2740, 188.9546]

T5e1,e2
[137.2249, 138.3676] [102.6204, 103.5885] [102.7139, 103.9629] [155.8076, 161.3358]

T6e1,e2
[136.6484, 137.7787] [102.5895, 103.5465] [102.6818, 103.9163] [154.8340, 160.2486]

T7e1,e2
[136.5340, 137.6646] [102.5833, 103.5383] [102.6754, 103.9073] [154.6412, 160.0385]

T8e1,e2
[142.6484, 143.8463] [102.9009, 103.9656] [103.0046, 104.3809] [165.1583, 171.7071]

Table 5. Variance of estimators using UBL data for sensitive case using additive model.

j OLS LAD Huber Hampel Tukey

1 [586.40, 630.84] [456.33, 483.00] [560.47, 622.87] [566.96, 623.27] [453.69, 428.25]
2 [472.94, 512.02] [356.85, 379.64] [449.76, 504.88] [455.56, 505.23] [354.50, 330.71]
3 [589.18, 633.69] [458.78, 485.51] [563.18, 625.71] [569.69, 626.10] [456.14, 430.62]
4 [344.82, 373.24] [246.85, 261.53] [325.23, 367.20] [330.13, 367.49] [244.87, 220.41]
5 [571.36, 614.80] [443.05, 468.96] [545.77, 606.95] [552.17, 607.33] [440.45, 414.96]
6 [585.94, 630.35] [455.92, 482.57] [560.02, 622.39] [566.51, 622.78] [453.29, 427.85]
7 [588.95, 633.45] [458.58, 485.30] [562.96, 625.47] [569.47, 625.87] [455.94, 430.43]
8 [458.18, 495.74] [344.03, 365.61] [435.39, 488.72] [441.09, 489.06] [341.72, 317.54]

Table 6. PRE of estimators using UBL data for sensitive case using additive model.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[128.5044, 130.6071] [104.6270, 101.2784] [103.4291, 101.2149] [129.2511, 147.3048]

T2e1,e2
[132.5325, 134.8704] [105.1521, 101.4143] [103.8136, 101.3439] [133.4108, 154.8228]

T3e1,e2
[128.4225, 130.5217] [104.6161, 101.2756] [103.4211, 101.2122] [129.1666, 147.1569]

T4e1,e2
[139.6876, 142.7103] [106.0248, 101.6449] [104.4506, 101.5629] [140.8156, 169.3403]

T5e1,e2
[128.9597, 131.0990] [104.6877, 101.2945] [103.4736, 101.2301] [129.7209, 148.1594]

T6e1,e2
[128.5178, 130.6218] [104.6288, 101.2789] [103.4305, 101.2153] [129.2650, 147.3303]

T7e1,e2
[128.4291, 130.5288] [104.6170, 101.2758] [103.4218, 101.2124] [129.1734, 147.1691]

T8e1,e2
[133.1796, 135.5902] [105.2341, 101.4365] [103.8735, 101.3650] [134.0797, 156.1176]
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Table 7. Variance of estimators using UBL data for sensitive case using mixed model.

j OLS LAD Huber Hampel Tukey

1 [15,912.6, 15,988.9] [15,169.6, 15,245.9] [14,087.1, 14,163.3] [15,121.8, 15,198.1] [13,694.8, 13,771.1]
2 [13,992.0, 14,068.3] [13,328.0, 13,404.3] [12,361.6, 12,437.9] [13,285.3, 13,361.6] [12,011.9, 12,088.2]
3 [15,959.6, 16,035.9] [15,214.8, 15,291.1] [14,129.5, 14,205.8] [15,166.9, 15,243.2] [13,736.3, 13,812.6]
4 [11,820.2, 11,896.5] [11,258.7, 11,335.0] [10,443.2, 10,519.5] [11,222.6, 11,298.9] [10,148.6, 10,224.9]
5 [15,864.1, 15,940.4] [15,122.9, 15,199.2] [14,043.1, 14,119.4] [15,075.3, 15,151.6] [13,651.9, 13,728.2]
6 [15,783.4, 15,859.7] [15,045.4, 15,121.7] [13,970.2, 14,046.5] [14,998.0, 15,074.3] [13,580.7, 13,657.0]
7 [15,960.4, 16,036.7] [15,215.5, 15,291.8] [14,130.1, 14,206.4] [15,167.6, 15,243.9] [13,736.9, 13,813.2]
8 [10,983.2, 11,059.5] [10,466.6, 10,542.9] [97,17.1, 9793.4] [10,433.5, 10,509.8] [9446.601, 9522.9]

Table 8. PRE of estimators using UBL data for sensitive case using mixed model.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[101.8748, 104.8735] [109.8912, 112.8899] [102.2043, 105.2030] [113.1064, 116.1051]

T2e1,e2
[101.9550, 104.9537] [110.1092, 113.1079] [102.2900, 105.2887] [113.3817, 116.3804]

T3e1,e2
[101.8724, 104.8711] [109.8845, 112.8832] [102.2017, 105.2004] [113.0978, 116.0965]

T4e1,e2
[101.8550, 104.9537] [109.9912, 113.0899] [102.1897, 105.2884] [113.2499, 116.3486]

T5e1,e2
[101.7773, 104.8760] [109.7981, 112.8968] [102.1070, 105.2057] [113.0151, 116.1138]

T6e1,e2
[101.7814, 104.8801] [109.8094, 112.9081] [102.1114, 105.2101] [113.0295, 116.1282]

T7e1,e2
[101.7723, 104.8710] [109.7844, 112.8831] [102.1016, 105.2003] [112.9977, 116.0964]

T8e1,e2
[101.8015, 104.9002] [109.8290, 112.9277] [102.1323, 105.2310] [113.0369, 116.1356]

Table 9. Variance of estimators using simulation study for nonsensitive case.

j OLS LAD Huber Hampel Tukey

1 [307.3, 317.7] [208.4, 213.7] [298.0, 304.7] [297.7, 303.4] [175.1, 176.7]
2 [237.6, 248.0] [149.3, 155.0] [229.3, 236.4] [229.0, 235.2] [120.5, 121.1]
3 [309.0, 319.4] [209.8, 215.1] [299.7, 306.3] [299.3, 305.0] [176.5, 178.1]
4 [158.8, 166.7] [84.4, 88.1] [151.8, 156.8] [151.6, 155.8] [59.2, 60.7]
5 [298.0, 308.3] [200.4, 205.7] [288.8, 295.4] [288.5, 294.2] [167.6, 169.2]
6 [307.0, 317.4] [208.2, 213.5] [297.7, 304.4] [297.4, 303.1] [174.9, 176.5]
7 [308.9, 319.2] [209.7, 215.0] [299.5, 306.2] [299.2, 304.9] [176.3, 178.0]
8 [228.8, 238.7] [142.0, 147.1] [220.6, 227.2] [220.3, 226.1] [113.3, 114.2]

Table 10. PRE of estimators using simulation study for nonsensitive case.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[176.9907, 177.4387] [123.7817, 124.4646] [123.9161, 124.9992] [208.7344, 216.5262]

T2e1,e2
[199.7772, 200.3055] [130.4769, 130.9640] [130.6415, 131.6144] [246.9560, 256.8951]

T3e1,e2
[177.0409, 176.5727] [123.6558, 124.3434] [123.7897, 124.8759] [208.0762, 215.8408]

T4e1,e2
[258.8548, 261.1166] [145.1785, 145.5268] [145.4125, 146.4492] [363.0446, 385.2948]

T5e1,e2
[179.7725, 179.3638] [125.1716, 124.4926] [125.7186, 124.6302] [212.4889, 220.5698]

T6e1,e2
[177.0573, 177.5064] [123.8018, 124.4852] [125.0201, 123.9363] [208.8393, 216.6429]

T7e1,e2
[176.6066, 177.0739] [123.6660, 124.3535] [123.7999, 124.8861] [208.1295, 215.8975]

T8e1,e2
[204.0212, 204.4839] [131.6100, 132.1326] [131.7798, 132.8042] [254.1353, 265.0087]
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Table 11. Variance of estimators using simulation study for sensitive case using additive model.

j OLS LAD Huber Hampel Tukey

1 [527.89, 530.46] [411.27, 415.07] [508.18, 519.83] [519.52, 522.20] [398.93, 400.89]
2 [414.00, 415.72] [309.32, 313.29] [396.38, 406.21] [406.52, 408.33] [298.89, 300.06 ]
3 [530.68, 533.27] [413.78, 417.58] [510.92, 522.61] [522.29, 524.99] [401.39, 403.37]
4 [285.40, 286.14] [196.32, 200.38] [270.50, 278.10] [279.07, 279.89] [188.25, 188.52]
5 [512.83, 515.12] [397.55, 401.54] [493.39, 504.63] [504.58, 506.96] [385.62, 387.32]
6 [527.43, 530.03] [410.88, 414.66] [507.72, 519.40] [519.06, 521.77] [398.51, 400.50]
7 [530.45, 533.04] [413.57, 417.38] [510.70, 522.38] [522.07, 524.76] [401.19, 403.17]
8 [398.91, 401.60] [296.8875, 299.92] [381.60, 392.25] [391.56, 394.33] [285.77, 287.78]

Table 12. PRE of estimators using simulation study for sensitive case using additive model.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[142.0121, 143.9523] [113.8895, 115.9938] [113.3728, 113.4615] [147.6794, 147.7610]

T2e1,e2
[151.7972, 154.3029] [117.4960, 119.9756] [116.8868, 116.9846] [159.0606, 159.1080]

T3e1,e2
[141.8270, 143.7570] [113.8206, 115.9175] [113.3057, 113.3941] [147.4654, 147.5474]

T4e1,e2
[173.1540, 177.1131] [125.0296, 128.2668] [124.2297, 124.3282] [184.3034, 184.4321]

T5e1,e2
[143.0478, 145.0583] [114.2794, 116.4197] [113.7526, 113.8379] [148.8918, 148.9565]

T6e1,e2
[142.0432, 143.9826] [113.9002, 116.0066] [113.3833, 113.4728] [147.7127, 147.7968]

T7e1,e2
[141.8418, 143.7729] [113.8262, 115.9236] [113.3112, 113.3995] [147.4829, 147.5645]

T8e1,e2
[153.5353, 156.0112] [118.0811, 120.6719] [117.4570, 117.6013] [160.9467, 161.1360]

Table 13. Variance of estimators using simulation study for sensitive case using mixed model.

j OLS LAD Huber Hampel Tukey

1 [18,164.0, 49,793.8] [14,605.3, 44,856.9] [14,853.5, 51,189.0] [14,577.7, 50,701.9] [13,595.1, 51,319.2]
2 [16,434.7, 44,514.0] [13,262.6, 40,095.4] [13,483.3, 45,764.6] [13,238.1, 45,327.9] [12,365.5, 45,881.3]
3 [18,206.4, 49,920.7] [14,638.7, 44,972.1] [14,887.5, 51,319.2] [14,611.0, 50,831.0] [13,625.9, 51,449.8]
4 [14,482.8, 47,100.7] [11,811.8, 38,360.7] [11,996.8, 34,634.8] [11,791.2, 39,417.9] [11,061.0 39,516.7]
5 [18,135.5, 49,833.9] [14,582.8, 44,893.3] [14,830.6, 51,230.1] [14,555.3, 50,742.7] [13,574.4, 51,360.5]
6 [18,014.3, 48,545.8] [14,487.4, 43,726.5] [14,733.3, 49,908.3] [14,460.0, 49,432.6] [13,486.5, 50,035.4]
7 [18,207.4, 49,926.5] [14,639.4, 44,977.3] [14,888.3, 51,325.2] [14,611.8, 50,836.9] [13,626.6, 51,455.7]
8 [13,247.1, 28,291.3] [10,947.2, 26,125.3] [11,105.7, 28,913.0] [10,929.5, 28,695.5] [10,304.9, 28,971.2]

Table 14. PRE of estimators using simulation study for sensitive case using mixed model.

Tu
1je1,e2

Tu
2je1,e2

Tu
3je1,e2

Tu
4je1,e2

T1e1,e2
[110.98664, 124.28688] [101.25764, 122.20978] [103.19194, 124.52223] [101.01085, 133.52196]

T2e1,e2
[110.99896, 123.82998] [101.24869, 121.80316] [103.18551, 124.05948] [101.00121, 132.81429]

T3e1,e2
[110.98474, 124.29265] [101.25818, 122.21488] [103.19232, 124.52807] [101.01144, 133.53117]

T4e1,e2
[110.73314, 122.51557] [101.29626, 120.62621] [103.21635, 122.72920] [101.05309, 130.83091]

T5e1,e2
[110.98605, 124.28288] [101.25781, 122.20624] [103.19206, 124.51817] [101.01103, 133.51557]

T6e1,e2
[111.00195, 124.26474] [101.25299, 122.19019] [103.18875, 124.49978] [101.00581, 133.48676]

T7e1,e2
[110.98466, 124.29279] [101.25821, 122.21500] [103.19233, 124.52821] [101.01146, 133.53138]

T8e1,e2
[108.25793, 120.90389] [101.82011, 119.17755] [103.56156, 121.09875] [101.62347, 128.43940]

6. Conclusions

The point estimate in survey sampling has a drawback of fluctuating across different
samples due to sampling error, as it provides only a single value for the parameter being
discussed. However, the neutrosophic approach, introduced by Florentin Smarandache,
offers a valuable solution for estimating parameters in sampling theory. It provides interval
estimates that have a high probability of containing the parameter. Consequently, the neu-
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trosophic technique, which extends the classical approach, is employed to handle data
that are ambiguous, indeterminate, or uncertain. In this paper, a novel class of Hartley–
Ross-type estimators is proposed for estimating the population mean using neutrosophic
robust regression. The proposed estimators are shown to outperform several other adapted
estimators. The approach is based on recent advancements in neutrosophic statistics and is
applied to both standard and sensitive settings where the target variable is protected using
scrambling techniques. The performance of the proposed estimators is evaluated using
UBL data and simulation. It is demonstrated that they outperform other estimators in both
settings. In future studies, the work can be extended for other sampling designs.
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