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Abstract: Knowable moments, abbreviated as K-moments, are redefined as expectations of maxima
or minima of a number of stochastic variables that are a sample of the variable of interest. The
new definition enables applicability of the concept to any type of variable, continuous or discrete,
and generalization for transformations thereof. While K-moments share some characteristics with
classical and other moments, as well as with order statistics, they also have some unique features,
which make them useful in relevant applications. These include the fact that they are knowable, i.e.,
reliably estimated from a sample for high orders. Moreover, unlike other moment types, K-moment
values can be assigned values of distribution function by making optimal use of the entire dataset. In
addition, K-moments offer the unique advantage of considering the estimation bias when the data are
not an independent sample but a time series from a process with dependence. Both for samples and
time series, the K-moment concept offers a strategy of model fitting, including its visualization, that is
not shared with other methods. This enables utilization of the highest possible moment orders, which
are particularly useful in modelling extremes that are closely associated with high-order moments.

Keywords: knowable moments; distribution function; probability density function; stochastic variables;
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1. Introduction

Knowable moments, abbreviated as K-moments, were introduced by Koutsoyiannis
in 2019 [1] and further explored by Koutsoyiannis (2022) [2,3]. They were applied to research [4–6]
and engineering studies [7–9]. However, all these studies are authored or coauthored by Kout-
soyiannis, who introduced them. Possible explanations for the reluctance of other researchers to
use them are (a) that they are not useful or (b) they are not a new tool, as for example asserted
by an anonymous negative reviewer of an initial submission of the already mentioned study [7],
who stated that “the proposed ‘K-moments’ methods [ . . . ] is a renaming of the widely known
and widely applied ‘Probability-Weighted Moments’ (PWM) and their combinations known as
‘L-moments’” [10,11]. Another explanation (c) is that their definition and their advantages are not
paid attention to or are not well understood.

Conjecturing that the latter explanation (c) is correct, here we extend and clarify the
meaning and features of K-moments, emphasizing their advantages, particularly those that
are unique among all moment types. We also provide algorithmic details for the application
of the framework. More specifically, we provide the following information.

1. We redefine K-moments (Section 2.1) as expectations of maxima or minima of a
number of stochastic variables that are independent, identically distributed copies of
the stochastic variable of interest. The new definition is clearer, more rigorous and
more intuitive. In most cases of interest (but not in all), the new definition does not
imply changes in the computational framework (Section 2.3).

2. We provide a more intuitive explanation of the statistical estimators of K-moments, which
are adapted to the new definition, again without implying computational differences in
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most of the cases. Furthermore, we provide techniques to accelerate the calculations when
the datasets are large, e.g., with million or billion values (Section 2.2).

3. We extend the scope of K-moments from continuous stochastic variables to also
include discrete variables (Section 2.4).

4. We discuss cases of generalization where the new definition implies some differences,
notational and computational, to the existing one (Section 2.5).

5. We discuss the advantages of the K-moment framework, starting from the information
it provides about what a classical moment estimator determines, which actually is not
the true value of that classical moment (Section 3.1); this is the reason why classical
moments are unknowable from samples, for orders beyond 3–4.

6. We show that K-moments for moment orders up to 4 replace the information contained
in classical moments and L-moments, such as summary statistics (Section 3.2).

7. We show that the real power of the K-moment framework is its ability to estimate
moments reliably and unbiasedly for very high orders up to the sample size, even if
this is several million or more. We also show the ability of the framework to readily
assign, in a simple manner, a value of the distribution function to each K-moment—a
property not shared by any other type of moments (Section 3.3).

8. Exploiting the above features, we show how K-moments provide a sound and flexible
framework for model fitting, making optimal use of the entire dataset, rather than
relying on a few moments (as in classical moments and L-moments) or assigning
probabilities to single data values (order statistics). This enables utilization of the
highest possible moment orders, which are particularly useful in modelling extreme
highs or lows that are closely associated with high-order moments. The model fitting
concept with K-moments is a new strategy not shared with any other types of methods
of moments and includes visualization of the goodness of fit (Section 3.4).

9. We illustrate that K-moment estimators offer the ability to estimate the probability
density function from a sample—a unique feature of the K-moment methodology.

10. We show that K-moments offer the unique advantage of taking into account the
estimation bias when the data are not an independent sample but a time series from a
process with dependence, even of long range (Section 3.6).

11. We provide algorithmic details of the computational framework of K-moments (par-
ticularly in Sections 2.2, 3.4 and 3.6)

12. Finally, we discuss conceptual similarities and differences with other moment types
(Section 4—Discussion) and summarize the overall conclusions (Section 5).

With respect to point 8, the K-moment framework offers the possibility of modelling
extremes using merely the parent distribution, without reference to asymptotic Extreme
Value distributions. This is a more reliable choice as it has been known that the convergence
to the asymptotic Extreme Value distributions can be extraordinarily slow [2], while the
non-asymptotic distributions of extremes can be quite difficult to determine, particularly
when there is time dependence. Yet there is a theoretical connection of the K-moment
framework with the asymptotic Extreme Value theory, related to assigning values of the
distribution function to K-moments (point 7) at the distribution tails, as will be specified
in Section 3.3.

Points 1–4, 6, and 12 are the original contributions of this work, while the remaining
points provide a review of existing developments of the K-moment framework, with
appropriate adaptations to the new definitions and with the aim to highlight its advantages
and usefulness, which, as already mentioned, is the scope of the paper. In addition, all
illustrations, including graphs and tables, and the appendix are original.

2. Definitions and Main Derivations
2.1. Definition and Meaning

Let x be a stochastic variable with a distribution function F(x) and a tail function
F(x) := 1− F(x). Notice that we have adopted the Dutch (van Dantzig–Hemelrijk [12])
convention of underlining stochastic variables while common variables are not underlined.
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This convention is much clearer and more rigorous than its alternatives, which either
(a) do not distinguish the stochastic from common variables or (b) use upper-case letters
for stochastic variables and lower-case ones for common variables. Alternative (a), while
being popular, particularly in Bayesian statistics texts, is ambiguous and can be misleading
(see several examples in [2]). Alternative (b) is too restrictive (it prohibits using lower-case
letters for stochastic variables), ambiguous (when the standard notation of a physical
quantity is in upper case, it could be misinterpreted as a stochastic variable, while it is not),
or both (for example, when using Greek letters, e.g., the Latin x and the Greek χ have the
same appearance in upper case, i.e., X; see additional remarks in [2]).

If x is of continuous type, we define its probability density function as f (x) :=
dF(x)/dx. If it is of discrete type, taking on the values xj, j = 0, 1, . . . , J, where possi-
bly J = ∞, we define its probability mass function as Pj := P

{
x = xj

}
= F

(
xj
)
− F

(
xj−1

)
.

We consider a sample of x, i.e., a number p of independent copies of the stochastic
variable x, i.e., x1, x2, . . . , xp. If we arrange the variables in ascending order, the ith smallest,
denoted as x(i:p), i = 1, . . . , p is termed the ith order statistic. The largest (pth) order statistic
is:

x(p) := x(p:p) = max
(

x1, x2, . . . , xp

)
(1)

and the smallest (first) is
x(1:p) = min

(
x1, x2, . . . , xp

)
(2)

Now we define the K-moments in terms of expectations of these variables, denoted as
E[], in the following manner.

Definition 1. The expectation of the largest of the p variables x(p):

K′p := E
[

x(p)

]
= E

[
max

(
x1, x2, . . . , xp

)]
(3)

is called the upper knowable moment (K-moment) of order p.

Definition 2. The expectation of the smallest of the p variables x(1:p):
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:= E
[

x(1:p)

]
= E

[
min

(
x1, x2, . . . , xp

)]
(4)

is called the lower knowable moment (K-moment) of order p.

Furthermore, we generalize the definition to transformations g(x) of the stochastic
variable of interest x. Thus, by setting g(x) = xq, where q is an integer, we obtain:

Definition 3. The expectation:

K′pq := E
[

xq
(p)

]
= E

[
max

(
xq

1, xq
2, . . . , xq

p

)]
(5)

is called the upper K-moment of orders p,q.

Definition 4. The expectation:
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:= E
[

xq
(1:p)

]
= E

[
min

(
xq

1, xq
2, . . . , xq

p

)]
(6)

is called the lower K-moment of orders p,q.

The above notation implies that we omit the subscript q when q = 1. Likewise, we can
define central K-moments by setting g(x) =

(
x− µ)q .
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Definition 5. The expectation:

Kpq := E
[(

x(p) − µ
)q]

= E
[
max

(
(x1 − µ)q, (x2 − µ)q, . . . ,

(
xp − µ

)q)]
(7)

is called the upper central K-moment of orders p,q.

Definition 6. The expectation:
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:= E
[(

x(1:p) − µ
)q]

= E
[
min

(
(x1 − µ)q, (x2 − µ)q, . . . ,

(
xp − µ

)q)]
(8)

is called the lower central K-moment of orders p,q.

As we will see below, K-moments can alternatively be written as expectations of
products of xq (or (x− µ)q), the distribution function or tail function raised to the power
p− 1, and some adjustment factors (A(x, p) or
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oretical reasoning, the classical moments are unknowable, except if q is very low, as thor-
oughly justified [1,2]. On the other hand, if we choose a low q, namely 𝑞 = 1,2 (and occa-
sionally 3), then we can estimate in a reliable manner a moment of total order 𝑝 + 𝑞 − 1, 
which can be made very high by choosing a high p. This enables knowing the high-order 
properties of a distribution from a sample, which justifies the name knowable moments. In 
the next section, we will see that the estimation of the K-moments can be easily made using 
order statistics. 

While the K-moment framework allows for studying transformations of 𝑥, the simplest 
case of the untransformed variable suffices for most statistical tasks. In this case, Equation 
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that a specific one, say 𝑥(:), is the maximum of all p. Apparently, if 𝑖 < 𝑝 then this proba-
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(x, p)). Specifically, they are expressed as

K′pq = pE
[

A(x, p)F(x)p−1xq
]
,
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= pE
[
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Kpq = pE
[

A(x, p)F(x)p−1(x− µ)q
]
,
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(x, p)F(x)p−1
(x− µ)q

] (9)

where, in the most common cases, the adjustment factors A(x, p) and
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As we will see below, K-moments can alternatively be written as expectations of prod-
ucts of 𝑥 (or ൫𝑥 − 𝜇൯), the distribution function or tail function raised to the power 𝑝 − 1, 
and some adjustment factors (𝐴൫𝑥, 𝑝൯ or 𝐴൫𝑥, 𝑝൯). Specifically, they are expressed as 𝐾ᇱ = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ𝑥ቃ , 𝐾ᇱ = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ𝑥ቃ 𝐾 = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ൫𝑥 − 𝜇൯ቃ , 𝐾 = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ൫𝑥 − 𝜇൯ቃ (9) 

where, in the most common cases, the adjustment factors 𝐴൫𝑥, 𝑝൯ and 𝐴൫𝑥, 𝑝൯ can be omitted 
as 𝐴൫𝑥, 𝑝൯ = 𝐴൫𝑥, 𝑝൯ = 1. However, in some of the cases, they can take different values, as 
will be specified below. 

Equation (9) justifies their name moments. As will be seen, for 𝑝 = 1, 𝐴൫𝑥, 1൯ = 1 in all 
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 𝐾ଵᇱ = 𝐾ଵᇱ = Eൣ𝑥൧  = : 𝜇ᇱ ,     𝐾ଵ = Eൣ൫𝑥 − 𝜇൯൧ =: 𝜇 (10) 

However, whenever we have only an observed sample, and we do not know 𝐹൫𝑥൯ from the-
oretical reasoning, the classical moments are unknowable, except if q is very low, as thor-
oughly justified [1,2]. On the other hand, if we choose a low q, namely 𝑞 = 1,2 (and occa-
sionally 3), then we can estimate in a reliable manner a moment of total order 𝑝 + 𝑞 − 1, 
which can be made very high by choosing a high p. This enables knowing the high-order 
properties of a distribution from a sample, which justifies the name knowable moments. In 
the next section, we will see that the estimation of the K-moments can be easily made using 
order statistics. 

While the K-moment framework allows for studying transformations of 𝑥, the simplest 
case of the untransformed variable suffices for most statistical tasks. In this case, Equation 
(9) is simplified to 𝐾ᇱ = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ𝑥ቃ , 𝐾ᇱ = 𝑝E ቂ𝐴൫𝑥, 𝑝൯𝐹൫𝑥൯ିଵ𝑥ቃ 𝐾 = 𝐾ᇱ − 𝜇, 𝐾 = 𝐾ᇱ  − 𝜇 

(11) 

where the last two relationships that give the central moments are a direct consequence of 
the fact that max൫𝑥ଵ − 𝜇, 𝑥ଶ − 𝜇, … , 𝑥 − 𝜇൯  = max൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ − 𝜇  (and likewise for the 
minimum). 

2.2. Estimation 
We assume that we have a sample of size n arranged in ascending order, 𝑥(ଵ:) ≤𝑥(ଶ:) ≤  … ≤  𝑥(:). We chose 𝑝 ≤ 𝑛 of them at random and we wish to find the probability 

that a specific one, say 𝑥(:), is the maximum of all p. Apparently, if 𝑖 < 𝑝 then this proba-
bility is zero. If 𝑖 ≥ 𝑝, then the total number of combinations in which the 𝑥(:) is the maxi-
mum among the p variables equals the number of ways of choosing the 𝑝 − 1 remaining 

variables among the possible 𝑖 − 1 of them, i.e., ൬ 𝑖 − 1𝑝 − 1൰. The total number of ways to choose 

any p variables out of n is ቀ𝑛𝑝ቁ. Thus, the sought probability, call it 𝑏, is 

(x, p) can be omitted
as A(x, p) =
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any p variables out of n is ቀ𝑛𝑝ቁ. Thus, the sought probability, call it 𝑏, is 

(x, p) = 1. However, in some of the cases, they can take different values, as
will be specified below.

Equation (9) justifies their name moments. As will be seen, for p = 1, A(x, 1) = 1 in all
cases. Therefore, by setting p = 1, we recover the classical noncentral (raw) moments, i.e.,

K′1q =
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= E[xq] =: µ′q, K1q = E
[
(x− µ)q] =: µq (10)

However, whenever we have only an observed sample, and we do not know F(x) from
theoretical reasoning, the classical moments are unknowable, except if q is very low, as
thoroughly justified [1,2]. On the other hand, if we choose a low q, namely q = 1, 2 (and
occasionally 3), then we can estimate in a reliable manner a moment of total order p + q− 1,
which can be made very high by choosing a high p. This enables knowing the high-order
properties of a distribution from a sample, which justifies the name knowable moments. In
the next section, we will see that the estimation of the K-moments can be easily made using
order statistics.

While the K-moment framework allows for studying transformations of x, the simplest
case of the untransformed variable suffices for most statistical tasks. In this case, Equation (9)
is simplified to

K′p = pE
[

A(x, p)F(x)p−1x
]
,
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is called the lower knowable moment (K-moment) of order p. 
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The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we can 
define central K-moments by setting 𝑔൫𝑥൯ = (𝑥 − 𝜇). 

= pE
[
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(x, p)F(x)p−1x
]

Kp = K′p − µ, Kp =
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where the last two relationships that give the central moments are a direct consequence of
the fact that max

(
x1 − µ, x2 − µ, . . . , xp − µ

)
= max

(
x1, x2, . . . , xp

)
− µ (and likewise for

the minimum).

2.2. Estimation

We assume that we have a sample of size n arranged in ascending order,
x(1:n) ≤ x(2:n) ≤ . . . ≤ x(n:n). We chose p ≤ n of them at random and we wish to
find the probability that a specific one, say x(i:n), is the maximum of all p. Apparently, if
i < p then this probability is zero. If i ≥ p, then the total number of combinations in which
the x(i:n) is the maximum among the p variables equals the number of ways of choosing
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the p− 1 remaining variables among the possible i− 1 of them, i.e.,
(

i− 1
p− 1

)
. The total

number of ways to choose any p variables out of n is
(

n
p

)
. Thus, the sought probability,

call it binp, is

binp =

(
i− 1
p− 1

)
/
(

n
p

)
(12)

Note that
n

∑
i=p

(
i− 1
p− 1

)
=

(
n
p

)
(13)

and hence
n

∑
i=p

binp = 1 (14)

as expected.
Given that the probability of x(i:n) being the maximum of the p out of n variables is

binp, the estimator of the expectation of the K-moment K′p will be

K̂′p =
n

∑
i=1

binpx(i:n) (15)

To find the estimator of the lower K-moments, it suffices to reverse the order of the sample,
i.e., to replace x(i:n) with x(n−i+1:n). Hence,

K̂
′
p =

n

∑
i=1

binpx(n−i+1:n) =
n

∑
i=1

bn−i+1,n,px(i:n) (16)

If we use all integer values of p from 1 to n, from the ordered sample x(i:n) we can

calculate n upper moments K̂′p and n lower moments K̂
′
p, a total of 2n quantities. However,

the information contained in each of the sequences K̂′p and K̂
′
p is equivalent to each other:

Proposition 1. The equivalence relationships of upper and lower moment estimators are:

K̂
′
p = −

p

∑
i=1

(−1)i
(

p
i

)
K̂′i , K̂′p = −

p

∑
i=1

(−1)i
(

p
i

)
K̂
′
i (17)

The proof is given in [2].
The above formulation is for integer moment order p. We can readily generalize for

real p by replacing factorials with the Gamma function. After algebraic manipulations, we
obtain the final expression:

binp =

{
0, i < p

p Γ(n−p+1)
Γ(n+1)

Γ(i)
Γ(i−p+1) , i ≥ p ≥ 0

(18)

In the algorithmic evaluation of Equation (18), it is suggested to first calculate the
logarithms of the gamma functions and add them (or subtract, as appropriate), and then
exponentiate the sum.

For p = 1, Equation (18) results in bin1 = 1/n and thus we recover the estimate of the

mean, K̂′1 = K̂
′
1 = µ̂. For p = n, Equation (18) results in bnnn = 1 with all other binn = 0,

and thus only the maximum (or the minimum) value of the sample is taken into account in
the estimation. For p > n, estimation becomes impossible. Thus, the method permits the
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estimation of moment orders as high as the sample size, n. As p increases from 1 to n, fewer
sample items are used in the estimation until it remains only one for p = n.

The following result is important to note:

Proposition 2. The estimators (15)–(16) with binp determined from (18), are unbiased.

The proof is given in [2]. By replacing x with a transformation g(x) we readily obtain
an estimator of transformed K-moments but unbiasedness cannot be assured in all cases.

The calculations to estimate K-moments are easy and follow the steps listed below, which
are also illustrated in a spreadsheet that accompanies the paper as Supplementary Information:

1. We sort the sample xj into ascending order, i.e., we designate x(i:n), i = 1, . . . , n.
2. For a specific moment order p, we employ Equation (18) to find binp for i = 1, . . . , n.
3. From Equation (15), we calculate K̂′p.

4. From Equation (16) we calculate K̂
′
p.

5. We repeat steps 2–4 for all required orders p.

Often the data include ties either because the stochastic variable of interest is of discrete
type or because they are too many and are summarized in more manageable form. In
this case, the calculations can be simplified by applying a single coefficient to each value
appearing in the sample. Assuming that a certain value xj appears j times in the sample,
namely from positions j1 to j2 in the ordered sample, i.e., x(j1:n) = · · · = x(j2:n) = xj, with

j = j2 − j1 + 1, the value xj should be multiplied by the sum ∑
j2
i=j1

binp. This sum is easy to
calculate analytically, resulting in a concise expression:

b(j1,j2),n,p :=
j2

∑
i=j1

binp =
j2
p

bj2np −
j1 − p

p
bj1np (19)

It is easy to verify that for j2 = j1, the result is b(j1,j2),n,p = bj1np as it should. Moreover,
if j2 = j1 − 1, which means that there is no appearance of a particular value ( j = 0), then
the result is b(j1,j2),n,p = 0, as required.

An illustration of the good performance of the estimation tactic provided by Equation
(19) follows. A sample of 10,000 values was generated from the generalized Pareto distribution
with mean µ = 1 and tail index ξ = 0.1 (so that its scale parameter is λ = 0.9). Its distribution
function is shown in Table 1, along with the expressions of the classical moments, and
upper and lower K-moments, all of which are closed analytical expressions (see [2]). These
expressions are evaluated for the above parameter values for order p from 1 to 10,000, and the
results are plotted in Figure 1. Note that for better legibility, the quantities µ′p

1/p were plotted
for the classical moments, and that these diverge to infinity for p ≥ 1/ξ = 10. The classical
moments were also estimated by the standard statistical estimators; naturally, these do not
diverge for any p but rather for the maximum value p = 10,000 the quantity
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equals the
maximum sample value, which happens to be 15.4. As a result, the estimates start to depart
for the theoretical values even for low p (>4) and the difference is infinite for p ≥ 10.

Table 1. Equations of the moments of the generalized Pareto distribution (adapted from [2]) 1.

Characteristic Equation Equation No.

Distribution function F(x) = 1− (1 + ξx/λ)−1/ξ (20)
Classical noncentral moment µ′p := E[xp] = p(λ/ξ)pB(p, 1/ξ − p) (21)

Upper K-moment K′p := E
[

x(p)

]
= (λ/ξ)(pB(p, 1− ξ)− 1) (22)

Lower K-moment
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:= E
[

x(1:p)

]
= λ/(p− ξ) (23)

1 B(a, b) is the beta function.
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Figure 1. Comparison of theoretical moments of the Pareto distribution with parameters ξ = 0.1 and
λ = 0.9 with their estimates from a synthetic sample of 10,000 values, detailed (based on Equations (15)–(18))
and summary (based on Equation (19)). For the classical moments, for better legibility, the quantities µ′p

1/p

are plotted. The upper and lower K-moments are K′p and
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, respectively.

The upper and lower K-moments were estimated in two ways. In the detailed estima-
tion, the entire synthetic sample of 10,000 values was used with Equations (15)–(18). In the
summary estimation, the 10,000 values were grouped into 110 classes, and for each class
i = 1, . . . , 110 with x values ranging in [ai, ai+1) the x values were replaced by the midpoint
xi = (a i + ai+1)/2 and the estimation was made using Equation (19). It can be observed
in Figure 1 that (a) the summary estimates are almost indistinguishable from the detailed
estimates and (b) both estimates are almost indistinguishable from the theoretical values.
These observations support the reliability of the K-moment concept. Furthermore, they
suggest that when the sample size is large, a summary estimation is equally reliable and
algorithmically much faster.

For the reader’s convenience, the calculations to produce Figure 1 as well as the figure per
se are also provided in a spreadsheet that accompanies the paper as Supplementary Information.

Apparently, if the stochastic variable of interest is of discrete type, the estimation will
always be made using Equation (19).

2.3. Theoretical Calculations for Continuous Stochastic Variables, q = 1

If x is a continuous stochastic variable, then the maximum of p variables, i.e., the vari-
able x(p) = max

(
x1, x2, . . . , xp

)
, will have distribution and density functions, respectively,

F(p)(x) = F(x)p, f (p)(x) = p f (x)F(x)p−1 (24)

where the former is the product of p instances of F(x) (justified by the fact that the variables
xi are independent copies of x, by definition of the sample concept), while the latter is
the derivative of F(p)(x) with respect to x. It is then readily verified that the following
proposition holds true.
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Proposition 3. For a continuous stochastic variable x, the upper and lower K-moments of order p,
are, respectively:

K′p = E
[

x(p)

]
= E

[
max

(
x1, x2, . . . , xp

)]
= pE

[
(F(x))p−1x

]
(25)
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= E
[

x(1:p)

]
= E

[
min

(
x1, x2, . . . , xp

)]
= pE

[(
F(x)

)p−1x
]

(26)

Hence, with reference to Equation (11), the adjustment factors are A(x, p) =
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properties of a distribution from a sample, which justifies the name knowable moments. In 
the next section, we will see that the estimation of the K-moments can be easily made using 
order statistics. 

While the K-moment framework allows for studying transformations of 𝑥, the simplest 
case of the untransformed variable suffices for most statistical tasks. In this case, Equation 
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(11) 

where the last two relationships that give the central moments are a direct consequence of 
the fact that max൫𝑥ଵ − 𝜇, 𝑥ଶ − 𝜇, … , 𝑥 − 𝜇൯  = max൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ − 𝜇  (and likewise for the 
minimum). 

2.2. Estimation 
We assume that we have a sample of size n arranged in ascending order, 𝑥(ଵ:) ≤𝑥(ଶ:) ≤  … ≤  𝑥(:). We chose 𝑝 ≤ 𝑛 of them at random and we wish to find the probability 

that a specific one, say 𝑥(:), is the maximum of all p. Apparently, if 𝑖 < 𝑝 then this proba-
bility is zero. If 𝑖 ≥ 𝑝, then the total number of combinations in which the 𝑥(:) is the maxi-
mum among the p variables equals the number of ways of choosing the 𝑝 − 1 remaining 

variables among the possible 𝑖 − 1 of them, i.e., ൬ 𝑖 − 1𝑝 − 1൰. The total number of ways to choose 

any p variables out of n is ቀ𝑛𝑝ቁ. Thus, the sought probability, call it 𝑏, is 

(x, p) = 1
for continuous variables. It is easy to see that the sequence of K′p is non-decreasing and that of
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is non-increasing as p increases.
We note that the calculation of K′p can be made by

K′p = pE
[
(F(x))p−1x

]
= p

∞∫
−∞

(F(x))p−1x f (x)dx = p
1∫

0

x(F)Fp−1dF (27)

where x(F) is the inverse of function F(x), known as the quantile function. Therefore, we
can write

G(p) =
1∫

0

x(F)Fp−1dF, G(p) :=
K′p
p

(28)

In other words, the function G(p) is the finite Mellin transform [13] of the quantile function
x(F). Consequently, if we know the K-moments K′p for any p, and hence the function
G(p), by inverting the transform we can find the quantile function x(F) and hence the

distribution function F(x). A similar result can be obtained for the lower K-moments
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.

2.4. Theoretical Calculations for Discrete Stochastic Variables, q = 1

If x is a discrete stochastic variable taking on the values xj, j = 0, 1, . . . , J, with proba-

bility mass function Pj := P
{

x = xj
}
= F

(
xj
)
− F

(
xj−1

)
, then P

{
x(p) ≤ xi

}
= F(xi)

p and,
hence, the probability mass function of x(p) will be

P(p)
j := P

{
x(p) = xj

}
= P

{
x(p) ≤ xj

}
− P

{
x(p) < xj

}
= F

(
xj
)p − F

(
xj−1

)p (29)

where we use the convention F(x−1) = 0. Consequently, the upper K-moment of order p is

K′p = E
[

x(p)

]
=

J

∑
j=0

(
F
(

xj
)p − F

(
xj−1

)p
)

xj (30)

By expanding and making algebraic manipulations, we find

K′p = xJ −
J−1

∑
j=0

F
(
xj
)p(xj+1 − xj

)
(31)

In the most common case in which xj = j the following proposition holds true:

Proposition 4. For a discrete stochastic variable x, taking on values j = 0, . . . , J, where J is finite
or infinite, the upper K-moment of order p, is, respectively:

K′p = J −
J−1

∑
j=0

F(j)p (32)
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K′p =
∞

∑
j=0

(
1− F(j)p) (33)

For infinite J and for large j, F(j)→ 1. Thus, the expression in parenthesis in Equation (33)
tends to zero. Therefore, we can easily evaluate K′p numerically from (32), and by choosing a large
(but finite) upper limit J, the convergence is fast.

The above relationships do not use the general formula (9). If we want to use it, we
should evaluate A(xi, p). From Equation (30) we obtain

K′p = E
[

x(p)

]
=

J

∑
j=0

F
(

xj
)p−1

(
F
(
xj
)
− F

(
xj−1

)p/F
(
xj
)p−1

)
pPj

PJ xj (34)

Thus, by comparing this with Equation (9), we find

A
(
xj, p

)
=

F(xj)−F(xj−1)
p
/F(xj)

p−1

pPj

=
F(xj)

p(F(xj)−F(xj−1))

(
1−

(
F(xi−1)

F(xi)

)p) (35)

and finally

A
(
xj, p

)
=

1−
(

F
(

xj−1
)
/F
(

xj
))p

p
(
1− F

(
xj−1

)
/F
(
xj
)) (36)

As j increases, F
(
xj−1

)
/F
(
xj
)
→ 1 , and it is easy to see that

lim
j→∞

A
(
xj, p

)
= 1 (37)

thus, approaching the behaviour seen in continuous variables. On the other hand, for
varying p

lim
p→0

A
(

xj, p
)
=
− ln

(
F
(
xj−1

)
/F
(
xj
))

1− F
(

xj−1
)
/F
(

xj
) , lim

p→1
A
(
xj, p

)
= 1, lim

p→∞
A
(

xj, p
)
= 0 (38)

If one sets A
(

xj, p
)
= 1 to approximate K′p, the error is prohibitively large. This is

illustrated in Figure 2 for two of the most common discrete-variable distributions, Poisson
and geometric.
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The Poisson distribution has probability mass, distribution, and characteristic K-
moments, respectively,

Pj = e−λ λj

j!
, F(x) = e−λ

bxc

∑
j=0

λj

j!
, K′1 = K12 = λ (39)

and the geometric distribution

Pj = λ(1− λ)j, F(x) = 1− (1− λ)bxc+1,

K′1 = 1−λ
λ , K′2 = (1−λ)(3−λ)

λ(2−λ)
, K′2 = (1−λ)2

λ(2−λ)
, K12 = 1−λ

λ2

(40)

Coming now to the lower K-moments, the probability mass function of x(1:p) will be

P(p)
j := P

{
x(1:p) = xj

}
= P

{
x(1:p) ≥ xj

}
− P

{
x(p) > xj

}
= F

(
xj−1

)p − F
(
xj
)p (41)

where we set F(x−1) = 1. Consequently, the upper K-moment of order p is
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= E
[

x(1:p)

]
=

J

∑
j=0

(
F
(
xj−1

)p − F
(
xj
)p
)

xj (42)

By expanding and making algebraic manipulations, we find
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= x0 +
J−1

∑
j=0

F
(
xj
)p(xj+1 − xj

)
(43)

and in the most common case in which xj = j, the following proposition holds true:

Proposition 5. For a discrete stochastic variable x, taking on values j = 0, . . . , J, where J is finite
or infinite, the lower K-moment of order p, is, respectively:
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=
J−1

∑
j=0

F(j)p (44)
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=
∞

∑
j=0

F(j)p (45)

Again, in the latter case, the convergence is fast and therefore we can easily evaluate
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Furthermore, we generalize the definition to transformations 𝑔(𝑥) of the stochastic var-
iable of interest 𝑥. Thus, by setting 𝑔൫𝑥൯ = 𝑥, where q is an integer, we obtain: 

Definition 3. The expectation: 𝐾ᇱ ∶= E[𝑥() ] = Eൣmax൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (5) 

is called the upper K-moment of orders p,q. 

Definition 4. The expectation: 𝐾ᇱ : = Eቂ𝑥(ଵ:) ቃ = Eൣmin൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (6) 

is called the lower K-moment of orders p,q. 

The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we can 
define central K-moments by setting 𝑔൫𝑥൯ = (𝑥 − 𝜇). 

numerically by choosing a large J; notice that for large J, F(J)→ 0 , and the sum will
not change if we choose an even larger J.

2.5. Theoretical Calculations for Continuous Stochastic Variables, q > 1

As already mentioned, it is possible to generalize the K-moments for transformations
of the original variable x. Here we consider the transformation y := g(x) =

(
x− c)q ,

where c is a real constant and q ≥ 1 is an integer. This transformation will allow recovering
the classical moments, raw and central, as special cases of the K-moments for p = 1, q > 1,
which has some usefulness as will be seen in Section 3.1.
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There are two distinct cases, depending on whether q is odd or even. We start with
the former case, which is easier because the transformation is a monotonic (increasing)
function. In this case, as demonstrated in Appendix A, we have

K′py = p
∞∫
−∞

F(x)p−1(x− c)q f (x)dx (46)

For c = 0 and for c = µ, we obtain the following results.

Proposition 6. For a continuous stochastic variable x, the upper and lower K-moments of orders
p,q where q is an odd integer, are, respectively:

K′pq = pE
[

F(x)p−1xq
]
,
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= pE
[

F(x)p−1xq
]

(47)

and the respective central K-moments are, respectively:

Kpq = pE
[

F(x)p−1(x− µ)q
]
,
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= pE
[

F(x)p−1
(x− µ)q

]
(48)

This means that, again, A(x, p) =
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(x, p) = 1.
Next, we consider the case where q is even, in which, as shown in Appendix A, we have

K′py = p
∞∫
−∞

(F( c+|x− c|)− F( c−|x− c|))p−1(x− c)q f (x)dx (49)

For c = 0, we obtain the following result.

Proposition 7. For a continuous stochastic variable x, the upper K-moment of orders p,q where q is
an even integer, is:

K′pq = pE
[
(F(|x|)− F(−|x|))p−1xq

]
(50)

and in the case that the variable is non-negative, it simplifies to

K′pq = pE
[

F(x)p−1xq
]

(51)

This means that for non-negative variables, again, A(x, p) = 1.
For c = µ, we find the upper central moments as follows:

Proposition 8. For a continuous stochastic variable x, the upper central K-moment of orders p,q
where q is an even integer, is:

Kpq = pE
[
(F(µ+|x− µ|)− F(µ−|x− µ|))p−1(x− µ)q

]
(52)

This means that, in this case, A(x, p) 6= 1. Specifically,

A(x, p) =
(

F(µ+|x− µ|)− F(µ−|x− µ|)
F(x)

)p−1
(53)

In the special case that the distribution is symmetric about µ, as happens, e.g., in the
normal distribution, it holds that F(µ−|x− µ|) = 1− F(µ+|x− µ|). Hence, we can write
the following:
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Proposition 9. For a continuous stochastic variable x with a symmetric distribution, the upper
central K-moment of orders p,q where q is an even integer, is:

Kpq = pE
[
|2F(x)− 1|p−1(x− µ)q

]
= 2p

∞∫
µ

(2F(x)− 1)p−1(x− µ)q f (x)dx (54)

Illustrations of the above results are given in Figure 3 for q = 2, for the normal and
exponential distributions, and for both noncentral and central upper K-moments. The exact
values are compared to approximations obtained by the simplification A(x, p) = 1. In the
case of noncentral upper K-moments of the exponential distribution, A(x, p) = 1 is exact,
but this also gives good approximations in other cases, unless the distribution is symmetric
(such as the normal distribution) and the moments central.
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Figure 3. Comparison of exact upper K-moments of orders p, 2 and approximations thereof setting
A(x, p) = 1, for the distribution (upper) normal and (lower) exponential, where, in both cases, the
mean and standard deviation are 1; (left) noncentral and (right) central upper K-moments.
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3. Applications and Advantages
3.1. Evaluation of Classical Moment Estimates

As we have seen (Equation (10)), the classical moments can be recovered as special
cases of K-moments. Undoubtedly, the classical moments (and tools related to them such as
cumulants) are very useful theoretical concepts. If the distribution function is specified, their
true values can be derived easily. However, their estimation from samples is problematic
for moment order beyond 3–4 (hence the term unknowable). In contrast, K-moments can
be estimated reliably for high orders p (hence their name knowable), provided that the
order q is low. Furthermore, K-moments can also predict the value of the estimates of the
classical moments, which in fact is not the true value of the classical moment. This may
sound paradoxical, given that the classical estimator

µ̂′
p

:=
1
n

n

∑
i=1

xp
i (55)

is unbiased for order p, however large. In practice, however, the convergence of µ̂′p to µ′p
is extraordinarily slow. Thus, the value of µ̂′p deviates from µ′p. This deviation has been
termed [2] the slow convergence bias, because, theoretically speaking, based on the bias
definition, there is no bias per se. The K-moments can give us an indication of what we
can anticipate for the value of µ̂′p. By examining the moment estimators, we establish
relationships between K- and classical moments broader than Equation (10).

Specifically, as shown by Koutsoyiannis [2], the following relationship links the esti-
mated with the true classical moment via the K-moments:

µ̂′p ≈
K′

p

n1
K′np

µ′p (56)

If the classical moment µ′p is estimated as the average of m independent samples, each of
size n, then the product mn should be substituted for n in Equation (56).

We illustrate the relationship of K- and classical moments using Monte Carlo simula-
tion for the exponential distribution with a lower bound of zero and a scale parameter of 1
and the normal distribution with a mean of µ = 1 and a standard deviation of σ = 1. The
exponential distribution has simple expressions of its moments, i.e.,

µ′p = K′1p = p!, K′p = Hp,
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= 1/p (57)

where Hp denotes the pth harmonic number. For q > 2, the K-moment K′pq does not have a
closed analytical expression but its calculation can be easily performed by numerical integra-
tion. For the normal distribution, the classical noncentral moments can be determined by a
recursive relationship involving cumulants [2], which, in this particular case, takes the form

µ′p = µµ′p−1 + (p− 1)σ2µ′p−2 (58)

For the K-moments of the normal distribution and for p ≤ 4, the related expressions are
contained in Table 4. For p > 4, no analytical solution exists but numerical integration can
readily give the K-moment values.

Figure 4 shows the simulation results for sample size n = 100. The theoretical
(true) moments, of orders 1 to 100, of the two distributions are compared to the empirical
estimations from a single sample, as well as from an ensemble of m samples (by averaging m
estimates where m = 1000 and 10 for the exponential and normal distribution, respectively).
For the exponential distribution, the single sample estimates are lower than the true
moments for p ≥ 4 and the deviation increases with p, approaching one order of magnitude
as p approaches n. For the normal distribution, the deviations are somewhat smaller.
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Figure 4. Comparison of the empirical estimates to theoretical values of classical noncentral moments
from the indicated number m of simulations of independent samples of size n = 100 each from (left)
the exponential distribution with a mean of 1 and (right) the normal distribution with a mean and
standard deviation of 1. The empirical estimates are compared to the true moments (theoretical;
Equation (55)) and to the values determined by Equation (56) (adapted theoretical).

From a practical point of view—and despite the theoretical guarantee that the classical
moment estimates are unbiased—Figure 4 shows that these estimates depart from the
true moments. Even the average estimates from 1000 different synthetic samples deviate
substantially from the true moments for order p > 10. On the other hand, Equation (56),
also plotted in Figure 4, very aptly represents the behaviour of the estimates in all cases.

In brief, the classical moment estimators do not estimate the classical moments but rather
some hybrid quantities involving both classical and K-moments, as seen in Equation (56).

It should be noted that Equation (56) was extracted for non-negative stochastic variables.
However, it can also be applied to variables that can also take negative values, provided that
the mean is positive. This was the case for the illustrated normal distribution with µ = σ = 1
(Figure 4, right panel), which takes negative values with a probability of 16%.

3.2. Summary Statistics

Because the classical moments beyond order 3–4 are unknowable (from a sample), it
has been a customary practice to use those for orders p from 1 to 4 only. These indicate
the location, variability, skewness and kurtosis of a distribution, often called summary
statistics. For p = 2, 3, 4, the central classical moments are used after standardization by the
variance raised in a proper power so that a nondimensional metric is obtained.

In using K-moments, as we have seen, we can estimate moments of very high orders,
which are particularly useful for the study of extremes [2], as well as for simulation from
non-normal distributions [14]. Yet we can use the K-moments of orders p from 1 to 4, to
derive summary statistics, such as in the classical moments. To this aim, we enrol the notion
of the discrete derivative of K-moments at zero. Earlier studies [1,2] have used the notion
of hypercentral K-moments, which for parsimony we avoid defining and using here.

We set k j = K′j−1 for j ≥ 0 and k j = K′−j+1 for j ≤ 0 and we determine the (centred)
discrete derivatives of k j at j = 0. The discrete derivatives are linear functions of k j terms,
with coefficients given in [15] and reproduced in columns 2–8 of Table 2. The calculations
are presented in Table 2, where to find the final results we eliminated the lower K-moments
as these can also be expressed in terms of upper K-moments. We notice in Table 2 that
the second derivative is, by identity, zero and the third derivative is a multiple of the first.
Therefore, these are skipped as they do not add any information. Our final result is this:
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Proposition 10. The mean and dispersion of a probability distribution are expressed by the zeroth,
and first discrete derivatives of k j at j = 0 and are equal to K′1 and K2, respectively. The skewness
and kurtosis of a probability distribution are expressed by the fourth and fifth discrete derivatives,
respectively, of k j at j = 0, standardized by K2. These four summary statistics are expressed in
terms of K-moments of first to fourth orders.

Table 2. Calculation of discrete derivatives of K-moments.

Derivative
Coefficients of kj = K’

j−1 or kj = K’
j−1 for Lag j

Derivative Expression * Result *
−3 −2 −1 0 1 2 3

0 1 K′1 = K′1 = µ K′1 = µ

1 −1/2 0 1
2

1
2

(
K′2 − K′2

)
K2

2 1 −2 1
[
K′2 + K′2 − 2K′1

]
[0]

3 −1/2 1 0 −1 1
2

[
1
2

(
K′3 − K′3 − 2K′2 + 2K

′
2

)] [
− 1

2 K2

]
4 1 −4 6 −4 1 K′3 + K′3 − 4K′2 − 4K′2 + 6K′1 2K3 − 3K2

5 −1/2 2 −5/2 0 5/2 −2 1
2

1
2

(
K′4 − K′4 − 4K′3 + 4K′3 + 5K′2 − 5K

′
2

)
K4 − 2K3 + 2K2

* The expressions in square brackets are not used as they do not contain additional information.

These summary statistics are shown in Table 3. We can also recover the classical
summary statistics by increasing q from 1 to 4, keeping p = 1 and using the zeroth
derivative alone (or else not taking derivatives at all). These are also shown in Table 3 and
are identical to the classical summary statistics. Interestingly, the summary statistics for
q = 1 are related to those produced by L-moments [16], as it can be shown that

K2 = λ2, 2
K3

K2
− 3 =

λ3

λ2
,

K4

K2
− 2

K3

K2
+ 2 =

1
5

λ4

λ2
+

4
5

(59)

Table 3. Standardized summary statistics derived by discrete derivatives of K-moments for q = 1 or
the zeroth derivative for p = 1; the latter coincide with the classical summary statistics.

Characteristic q = 1 p = 1

Location K′1 = K′1 = µ

Dispersion K2 K12

Skewness 2 K3
K2
− 3 K13

K3/2
12

Kurtosis
K4
K2
− 2 K3

K2
+ 2 K14

K2
12

Apparently, as illustrated in Section 3.1, the sample estimates in the case q = 1 are more
reliable (closer to their theoretical values) than those for p = 1. Some examples of theoretical
values for customary distributions (normal, exponential, Pareto) are listed in Table 4.
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Table 4. Examples of summary statistics for customary distributions.

Case Symbol Normal (µ,σ) Exponential (λ) Generalized Pareto (λ,ξ)
F(x) 1

2 erfc
(

µ−x√
2σ

)
1− e−x/λ 1−

(
1 + ξ x

λ

)−1/ξ

q = 1 K′1 µ λ λ
1−ξ

K2
σ√
π
= 0.56419σ λ

2 = 0.5λ λ
(1−ξ)(2−ξ)

K3
3σ

2
√
π
= 0.84628σ 5λ

6 = 0.83333λ (5−ξ)λ
(1−ξ)(2−ξ)(3−ξ)

K4
6ArcTan[

√
2]

π3/2 σ = 1.02938σ
13λ
12 = 1.08333λ (26−9ξ+ξ2)λ

(1−ξ)(2−ξ)(3−ξ)(4−ξ)

Skewness, 2 K3
K2
− 3 0 1

3 = 0.33333 1+ξ
3−ξ

Kurtosis, K4
K2
− 2 K3

K2
+ 2 6

π arctan
√

2− 1 = 0.82452 5
6 = 0.83333 10−5ξ+ξ2

(3−ξ)(4−ξ)

p = 1 K12 = µ2 σ2 λ2 λ2

(1−ξ)2(1−2ξ)

K13 = µ3 0 2λ3 2(1+ξ)λ3

(1−ξ)3(1−2ξ)(1−3ξ)

K14 = µ4 3σ4 9λ4 3(3+ξ+2ξ2)λ4

(1−ξ)4(1−2ξ)(1−3ξ)(1−4ξ)

Skewness, K13

K3/2
12

0 2 2
√

1−2ξ(1+ξ)
1−3ξ

Kurtosis, K14
K2

12
3 9 3(1−2ξ)(3+ξ+2ξ2)

(1−3ξ)(1−4ξ)

3.3. Estimation of Distribution Function

In an observed sample of size n, the ith smallest value is an estimate of the nth order
statistic, x(i:n). It is well known in statistics that the stochastic variable u := F

(
x(i:n)

)
has

beta distribution with parameters i and n− i + 1 and hence its expected value is:

E[u] = E
[

F
(

x(i:n)
)]

=
i

n + 1
(60)

Equation (60) constitutes the most widely known and the most popular way of empiri-
cally assigning values of the distribution function (and return periods) to observed sample
values. It is known as the Weibull plotting position (Weibull, 1939; [17]). Namely, to the ob-
served value x(i:n) we assign a distribution function estimate F̂

(
x(i:n)

)
= i/(n + 1), which

is unbiased for F
(

x(i:n)
)

but not for transformations thereof or for x(i:n) per se. However,
Equation (60) is not the earliest, as Hazen (1914; [18]) had proposed a different formula,
F̂
(

x(i:n)
)
= (i− 0.5)/n, which looks similar but, as far as the maximum observation is

concerned, the difference in the assigned exceedance probability (and return period) is
dramatic, at a ratio of 2:1. Several other formulae have been proposed in the 20th century,
which are listed in [2] (Table 5.4) and can be written in the general form

F̂
(

x(i:n)
)
=

i + A− 1
n + 2A− 1

(61)

where A is a constant (0 ≤ A ≤ 1). The formulae by Weibull and Hazen correspond to
A = 1 and A = 1/2, respectively. Another common value is A = 5/8, which was proposed
by Blom (1958; [19]) for the normal distribution (see also [20]). The lowest possible value
A = 0 yields F̂

(
x(i:n)

)
= (i− 1)/(n− 1) and thus assigns the values 0 and 1 to the lowest

and highest sample values, respectively.
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The results for the highest and lowest values are

F̂
(

x(n)
)
=

n + A− 1
n + 2A− 1

, F̂
(

x(1:n)

)
=

A
n + 2A− 1

(62)

These can also assign distribution function values to K-moments values, which are the
expectations of the highest and lowest values:

F̂
(

K′p
)
=

p + A− 1
p + 2A− 1

, F̂
(
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)
=

A
p + 2A− 1

(63)

However, Koutsoyiannis [2] provided more accurate relationships for K-moment
values, based on the following quantities:

Definition 7. The quantities:

Λp :=
1

pF
(

K′p
) , Λp :=

1

pF
(
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are termed the Λ-coefficients.

For given p and distribution function F(x), the quantities K′p,
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, F
(

K′p
)

, Λp and

Λp are analytically or numerically determined from their definitions, but this might be
complicated. However, Λp and Λp exhibit small variation with p, which makes a very
good approximation possible if we first accurately determine (a) the values
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are very easy to
determine, as they refer to the probability of non-exceedance of the mean:
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− 1
(65)

and can also be reliably estimated from a sample by finding the proportion of sample values
that are smaller than µ. For symmetric distributions, F(µ) = 1/2 and thus

Axioms 2023, 12, x FOR PEER REVIEW 17 of 30 
 

Blom (1958; [19]) for the normal distribution (see also [20]). The lowest possible value 𝐴 = 0 
yields 𝐹൫𝑥(:)൯ = (𝑖 − 1)/(𝑛 − 1) and thus assigns the values 0 and 1 to the lowest and high-
est sample values, respectively. 

The results for the highest and lowest values are 𝐹൫𝑥()൯ = 𝑛 + 𝐴 − 1𝑛 + 2𝐴 − 1 , 𝐹൫𝑥(ଵ:)൯ = 𝐴𝑛 + 2𝐴 − 1 (62) 

These can also assign distribution function values to K-moments values, which are the ex-
pectations of the highest and lowest values: 𝐹൫𝐾ᇱ ൯ = 𝑝 + 𝐴 − 1𝑝 + 2𝐴 − 1 , 𝐹 ቀ𝐾ᇱ ቁ = 𝐴𝑝 + 2𝐴 − 1 (63) 

However, Koutsoyiannis [2] provided more accurate relationships for K-moment val-
ues, based on the following quantities: 

Definition 7. The quantities: 𝛬 ∶= 1𝑝 𝐹൫𝐾ᇱ ൯ , 𝛬 ∶= 1𝑝 𝐹 ቀ𝐾ᇱ ቁ (64) 

are termed the Λ-coefficients. 

For given p and distribution function 𝐹(𝑥), the quantities 𝐾ᇱ , 𝐾ᇱ , 𝐹൫𝐾ᇱ ൯, 𝛬 and 𝛬 are 
analytically or numerically determined from their definitions, but this might be compli-
cated. However, 𝛬 and 𝛬 exhibit small variation with p, which makes a very good approx-
imation possible if we first accurately determine (a) the values 𝛬ଵ and 𝛬ଵ for 𝑝 = 1, and (b) 
the asymptotic values 𝛬ஶ and 𝛬ஶ. The values 𝛬ଵ and 𝛬ଵ are very easy to determine, as they 
refer to the probability of non-exceedance of the mean: 𝛬ଵ = 11 − 𝐹(𝜇) , 𝛬ଵ = 1𝐹(𝜇) = 𝛬ଵ𝛬ଵ − 1 (65) 

and can also be reliably estimated from a sample by finding the proportion of sample values 
that are smaller than 𝜇. For symmetric distributions, 𝐹(𝜇) = 1/2 and thus 𝛬ଵ = 𝛬ଵ = 2. 

The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

=

Axioms 2023, 12, x FOR PEER REVIEW 17 of 30 
 

Blom (1958; [19]) for the normal distribution (see also [20]). The lowest possible value 𝐴 = 0 
yields 𝐹൫𝑥(:)൯ = (𝑖 − 1)/(𝑛 − 1) and thus assigns the values 0 and 1 to the lowest and high-
est sample values, respectively. 

The results for the highest and lowest values are 𝐹൫𝑥()൯ = 𝑛 + 𝐴 − 1𝑛 + 2𝐴 − 1 , 𝐹൫𝑥(ଵ:)൯ = 𝐴𝑛 + 2𝐴 − 1 (62) 

These can also assign distribution function values to K-moments values, which are the ex-
pectations of the highest and lowest values: 𝐹൫𝐾ᇱ ൯ = 𝑝 + 𝐴 − 1𝑝 + 2𝐴 − 1 , 𝐹 ቀ𝐾ᇱ ቁ = 𝐴𝑝 + 2𝐴 − 1 (63) 

However, Koutsoyiannis [2] provided more accurate relationships for K-moment val-
ues, based on the following quantities: 

Definition 7. The quantities: 𝛬 ∶= 1𝑝 𝐹൫𝐾ᇱ ൯ , 𝛬 ∶= 1𝑝 𝐹 ቀ𝐾ᇱ ቁ (64) 

are termed the Λ-coefficients. 

For given p and distribution function 𝐹(𝑥), the quantities 𝐾ᇱ , 𝐾ᇱ , 𝐹൫𝐾ᇱ ൯, 𝛬 and 𝛬 are 
analytically or numerically determined from their definitions, but this might be compli-
cated. However, 𝛬 and 𝛬 exhibit small variation with p, which makes a very good approx-
imation possible if we first accurately determine (a) the values 𝛬ଵ and 𝛬ଵ for 𝑝 = 1, and (b) 
the asymptotic values 𝛬ஶ and 𝛬ஶ. The values 𝛬ଵ and 𝛬ଵ are very easy to determine, as they 
refer to the probability of non-exceedance of the mean: 𝛬ଵ = 11 − 𝐹(𝜇) , 𝛬ଵ = 1𝐹(𝜇) = 𝛬ଵ𝛬ଵ − 1 (65) 

and can also be reliably estimated from a sample by finding the proportion of sample values 
that are smaller than 𝜇. For symmetric distributions, 𝐹(𝜇) = 1/2 and thus 𝛬ଵ = 𝛬ଵ = 2. 

The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

= 2.
The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and

depend on the tail behaviour of the distribution, as shown in Table 5. From the limits
also listed in Table 5, we infer that when the distribution is upper or lower bounded,
the upper or lower Λ-coefficient is in the range (0, eγ = 1.78107). Otherwise (when the
distribution is unbounded), the Λ-coefficient is greater than eγ. In unbounded variables
that have finite variance (as happens with several natural processes), the tail index should
be bounded by 1/2 (ξ, ξ ′ < 1/2) and thus the upper or lower Λ-coefficient is in the range
(eγ = 1.78107,π = 3.14159).

Table 5. Asymptotic values of Λ-coefficients (based on [2]).

Characteristic Definition of Tail Index 1 Asymptotic Λ
Limit for ζ,ζ’,ξ,ξ’=

Equation No.
0 1/2 1 ∞

Upper bounded by cU,
tail index ζ ′ lim

x→cU

(
cU − x)−ζ ′ F(x) = l1 Λ∞ = Γ(1 + 1/ζ′)−ζ ′ 0 1/

√
2 1 eγ (66)

Upper unbounded, tail
index ξ

lim
x→∞

x1/ξ F(x) = l2 Λ∞ = Γ(1− ξ)1/ξ eγ π ∞ – (67)

Lower bounded by cL,
tail index ζ lim

x→cL
(x− cL)

−ζ F(x) = l3 Λ∞ = Γ(1 + 1/ζ)−ζ 0 1/
√

2 1 eγ (68)

Lower unbounded, tail
index ξ′ lim

x→−∞
(−x)1/ξ ′ F(x) = l4 Λ∞ = Γ(1− ξ′)1/ξ ′ eγ π ∞ – (69)

1 li , i = 1, . . . , 4 are constants < ∞; Γ(a) is the gamma function; γ = 0.577216 is the Euler constant and thus
eγ = 1.78107.
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For the most common case that the domain of the stochastic variable x is [0, ∞) and
the variance is finite, Λ∞ will be in the range (eγ,π ), depending on the upper tail index ξ,
and Λ∞ will be in the range (0, eγ ), depending on the lower tail index ζ. Both tail indices ξ
and ζ can be visualized in a double logarithmic plot of the ratio F(x)/F(x) vs. x. As x → 0 ,
given the definitions in Table 5, we will have F(x) ∝ xζ and F(x)/F(x) ∝ xζ . Therefore, ζ
is the double logarithmic slope of F(x)/F(x) as x → 0 . On the other hand, as x → ∞ , we
will have 1/F(x) ∝ x1/ξ and F(x)/F(x) ∝ x1/ξ . Therefore, ξ is the inverse of the double
logarithmic slope of F(x)/F(x) as x → ∞ .

Once the tail indices ξ and ζ are known, the asymptotic Λ-coefficients can be de-
termined from Table 5. Notably, most of the customary distributions, such as normal,
lognormal, exponential, Gamma, Weibull, etc. (more specifically, those belonging to the
domain of attraction of the Extreme Value Type I distribution; see [2], pp. 76–79 and
235–236), have an upper tail index ξ = 0 and thus Λ∞ = eγ.

Given the three quantities
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determined from Equation (65)),
we can approximate Λp for any order p by

Λp ≈ Λ∞ +

(

Axioms 2023, 12, x FOR PEER REVIEW 17 of 30 
 

Blom (1958; [19]) for the normal distribution (see also [20]). The lowest possible value 𝐴 = 0 
yields 𝐹൫𝑥(:)൯ = (𝑖 − 1)/(𝑛 − 1) and thus assigns the values 0 and 1 to the lowest and high-
est sample values, respectively. 

The results for the highest and lowest values are 𝐹൫𝑥()൯ = 𝑛 + 𝐴 − 1𝑛 + 2𝐴 − 1 , 𝐹൫𝑥(ଵ:)൯ = 𝐴𝑛 + 2𝐴 − 1 (62) 

These can also assign distribution function values to K-moments values, which are the ex-
pectations of the highest and lowest values: 𝐹൫𝐾ᇱ ൯ = 𝑝 + 𝐴 − 1𝑝 + 2𝐴 − 1 , 𝐹 ቀ𝐾ᇱ ቁ = 𝐴𝑝 + 2𝐴 − 1 (63) 

However, Koutsoyiannis [2] provided more accurate relationships for K-moment val-
ues, based on the following quantities: 

Definition 7. The quantities: 𝛬 ∶= 1𝑝 𝐹൫𝐾ᇱ ൯ , 𝛬 ∶= 1𝑝 𝐹 ቀ𝐾ᇱ ቁ (64) 

are termed the Λ-coefficients. 

For given p and distribution function 𝐹(𝑥), the quantities 𝐾ᇱ , 𝐾ᇱ , 𝐹൫𝐾ᇱ ൯, 𝛬 and 𝛬 are 
analytically or numerically determined from their definitions, but this might be compli-
cated. However, 𝛬 and 𝛬 exhibit small variation with p, which makes a very good approx-
imation possible if we first accurately determine (a) the values 𝛬ଵ and 𝛬ଵ for 𝑝 = 1, and (b) 
the asymptotic values 𝛬ஶ and 𝛬ஶ. The values 𝛬ଵ and 𝛬ଵ are very easy to determine, as they 
refer to the probability of non-exceedance of the mean: 𝛬ଵ = 11 − 𝐹(𝜇) , 𝛬ଵ = 1𝐹(𝜇) = 𝛬ଵ𝛬ଵ − 1 (65) 

and can also be reliably estimated from a sample by finding the proportion of sample values 
that are smaller than 𝜇. For symmetric distributions, 𝐹(𝜇) = 1/2 and thus 𝛬ଵ = 𝛬ଵ = 2. 

The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

−Λ∞
)

p
, Λp ≈ Λ∞ +
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−Λ∞
, F̂

(
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2. Definitions and Main Derivations 
2.1. Definition and Meaning 

Let 𝑥  be a stochastic variable with a distribution function 𝐹(𝑥)  and a tail function 𝐹(𝑥) ∶= 1 − 𝐹(𝑥). Notice that we have adopted the Dutch (van Dantzig–Hemelrijk [12]) con-
vention of underlining stochastic variables while common variables are not underlined. This 
convention is much clearer and more rigorous than its alternatives, which either (a) do not 
distinguish the stochastic from common variables or (b) use upper-case letters for stochastic 
variables and lower-case ones for common variables. Alternative (a), while being popular, 
particularly in Bayesian statistics texts, is ambiguous and can be misleading (see several ex-
amples in [2]). Alternative (b) is too restrictive (it prohibits using lower-case letters for sto-
chastic variables), ambiguous (when the standard notation of a physical quantity is in upper 
case, it could be misinterpreted as a stochastic variable, while it is not), or both (for example 
,when using Greek letters, e.g., the Latin 𝑥 and the Greek 𝜒 have the same appearance in 
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The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we can 
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)
≈ 1

Λ∞ p +
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Blom (1958; [19]) for the normal distribution (see also [20]). The lowest possible value 𝐴 = 0 
yields 𝐹൫𝑥(:)൯ = (𝑖 − 1)/(𝑛 − 1) and thus assigns the values 0 and 1 to the lowest and high-
est sample values, respectively. 

The results for the highest and lowest values are 𝐹൫𝑥()൯ = 𝑛 + 𝐴 − 1𝑛 + 2𝐴 − 1 , 𝐹൫𝑥(ଵ:)൯ = 𝐴𝑛 + 2𝐴 − 1 (62) 
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However, Koutsoyiannis [2] provided more accurate relationships for K-moment val-
ues, based on the following quantities: 

Definition 7. The quantities: 𝛬 ∶= 1𝑝 𝐹൫𝐾ᇱ ൯ , 𝛬 ∶= 1𝑝 𝐹 ቀ𝐾ᇱ ቁ (64) 

are termed the Λ-coefficients. 

For given p and distribution function 𝐹(𝑥), the quantities 𝐾ᇱ , 𝐾ᇱ , 𝐹൫𝐾ᇱ ൯, 𝛬 and 𝛬 are 
analytically or numerically determined from their definitions, but this might be compli-
cated. However, 𝛬 and 𝛬 exhibit small variation with p, which makes a very good approx-
imation possible if we first accurately determine (a) the values 𝛬ଵ and 𝛬ଵ for 𝑝 = 1, and (b) 
the asymptotic values 𝛬ஶ and 𝛬ஶ. The values 𝛬ଵ and 𝛬ଵ are very easy to determine, as they 
refer to the probability of non-exceedance of the mean: 𝛬ଵ = 11 − 𝐹(𝜇) , 𝛬ଵ = 1𝐹(𝜇) = 𝛬ଵ𝛬ଵ − 1 (65) 

and can also be reliably estimated from a sample by finding the proportion of sample values 
that are smaller than 𝜇. For symmetric distributions, 𝐹(𝜇) = 1/2 and thus 𝛬ଵ = 𝛬ଵ = 2. 

The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

−Λ∞
(71)

More accurate approximations are given in [2] (pp. 208–215), but these depend on the
entire expression of distribution function—not only on its tail indices. Nonetheless, the
approximation by Equation (71) suffices for most statistical tasks.

By comparing Equations (63) and (71), we deduce that the former is a special case of
the latter, in which
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= 2 and Λ∞ = Λ∞ = 1/A. We understand, thus, that the
approximation by Equation (71), which is based on three independent parameters (
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, Λ∞
and Λ∞

)
, is more accurate and flexible than that of plotting positions, i.e., Equations (61)–(63).

There is an additional reason that makes the former even more accurate. Each K′p or
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Let 𝑥  be a stochastic variable with a distribution function 𝐹(𝑥)  and a tail function 𝐹(𝑥) ∶= 1 − 𝐹(𝑥). Notice that we have adopted the Dutch (van Dantzig–Hemelrijk [12]) con-
vention of underlining stochastic variables while common variables are not underlined. This 
convention is much clearer and more rigorous than its alternatives, which either (a) do not 
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,when using Greek letters, e.g., the Latin 𝑥 and the Greek 𝜒 have the same appearance in 
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If 𝑥  is of continuous type, we define its probability density function as 𝑓(𝑥) ∶=d𝐹(𝑥)/d𝑥. If it is of discrete type, taking on the values 𝑥, 𝑗 = 0,1, … , 𝐽, where possibly 𝐽 = ∞, 
we define its probability mass function as 𝑃 ∶= 𝑃൛𝑥 = 𝑥ൟ = 𝐹൫𝑥൯ − 𝐹൫𝑥ିଵ൯. 

We consider a sample of 𝑥, i.e., a number 𝑝 of independent copies of the stochastic var-
iable 𝑥, i.e., 𝑥ଵ, 𝑥ଶ, … , 𝑥. If we arrange the variables in ascending order, the ith smallest, de-
noted as 𝑥(:), 𝑖 = 1, … , 𝑝 is termed the ith order statistic. The largest (pth) order statistic is: 𝑥() ∶= 𝑥(:) = max൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ (1) 

and the smallest (first) is 𝑥(ଵ:) = min൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ (2) 

Now we define the K-moments in terms of expectations of these variables, denoted as E[ ], in the following manner. 

Definition 1. The expectation of the largest of the p variables 𝑥(): 𝐾ᇱ ∶= E[𝑥()] = Eൣmax൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (3) 

is called the upper knowable moment (K-moment) of order p. 

Definition 2. The expectation of the smallest of the p variables 𝑥(ଵ:): 𝐾ᇱ ∶= Eൣ𝑥(ଵ:)൧ = Eൣmin൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (4) 

is called the lower knowable moment (K-moment) of order p. 

Furthermore, we generalize the definition to transformations 𝑔(𝑥) of the stochastic var-
iable of interest 𝑥. Thus, by setting 𝑔൫𝑥൯ = 𝑥, where q is an integer, we obtain: 

Definition 3. The expectation: 𝐾ᇱ ∶= E[𝑥() ] = Eൣmax൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (5) 

is called the upper K-moment of orders p,q. 

Definition 4. The expectation: 𝐾ᇱ : = Eቂ𝑥(ଵ:) ቃ = Eൣmin൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (6) 

is called the lower K-moment of orders p,q. 

The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we can 
define central K-moments by setting 𝑔൫𝑥൯ = (𝑥 − 𝜇). 

(excepting the case p = n) is estimated by several sample values, while in Equations (61)–(63)
each x(i:n) is a single data value. An additional advantage of using Equation (71) is that it
can be applied for any desired p, integer or real (up to the sample size n) while the equations
based on plotting positions work only for the individual values of the observed sample.

An illustration of the method for estimating the distribution function from samples is
shown in Figure 5. This is for the generalized Pareto distribution and for a rather small
sample size, n = 100. Monte Carlo simulation was employed to generate 100 series from
the same distribution and find the median at each p and the uncertainty band. The figure
includes a Cartesian plot of the probability distribution function F(x) (left), as well as a
double logarithmic plot of the ratio F(x)/F(x). As discussed above, the latter enables
visualizing the tails of the distribution. Note that this ratio is closely associated with the
return period, a quantity widely used in engineering design [2], by

F(x)
−
F(x)

=
T − D

D
=

D
T − D

(72)

where T and T denote return periods of maxima and minima, respectively, and D is the
time step of observations.
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Figure 5. Illustration of the estimation, using K-moments, of the probability distribution function, plotted
in a Cartesian plot of F(x) (left) and a double logarithmic plot of F(x)/F(x) (right). 100 data series of
n = 100 values each were generated from a Generalized Pareto distribution (see Table 1) with µ = 1 and
tail index ξ = 0.1, and then processed to calculate the median and produce the uncertainty band.

The empirical estimates in Figure 5 are also compared with their theoretical values,
also plotted in the figure. There is good agreement between the two, and the uncertainty
band is fairly narrow.

When the stochastic variable of interest is discrete, the situation is more compli-
cated [21,22]. In this case, the distribution function F(x) is a discontinuous function
with jumps at each possible realization of the stochastic variable, such as at the integers
j = 0, 1, . . .. On the other hand, the K-moments, which are averages of maxima or min-
ima, take on real values. We assume that there exists a distribution function, FC(x), of a
continuous variable, which yields the same K-moments as F(x). Theoretically, this can
be determined as follows. We first estimate the K-moments K′p from the discrete F(x)
and we equate them with those of FC(x). Knowing the latter, we use the inverse Mellin
transform of (28) to estimate the quantile function xC(F). By inverting the latter, we find
FC(x). However, this will be computationally cumbersome. Here we use the simplification:

F(x) = FC(bxc+ c) (73)

assuming a constant c = 0.25, which was found optimal after numerical investigation.
Based on this and assuming a broken-line form of FC(x), we write

FC(x) =

{
F(0)x/c x ≤ c
F(bx− cc) + (F(bx− cc+ 1)− F(bx− cc))(x− c− bx− cc), x > c

(74)

This is illustrated for the Poisson distribution (Equation (39)) and geometric distribu-
tion (Equation (40)) in Figure 6. Both distributions belong to the domain of attraction of
the Extreme Value I distribution and therefore Λ∞ = eγ. From Equation (74), the lower
tail is ζ = 1 and therefore Λ∞ = 1. Figure 6 is similar to Figure 5 and was constructed
with the same method, except that the theoretical curve plotted is FC(x) instead of F(x).
The reason is that it is the former that is consistent with the K-moment estimates, which
indeed compare well with the theoretical expectation. The uncertainty bands are again
fairly narrow.
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Figure 6. Illustration of the estimation, using K-moments, of the probability distribution function,
plotted in a Cartesian plot of F(x) (left column) and a logarithmic plot of F(x)/F(x) (right column).
The distributions illustrated are the Poisson (upper row; Equation (39)) and the geometric (lower
row; Equation (40)) for µ = 4. For each of them, 100 data series of n = 100 values each were generated
and then processed to calculate the median and produce the uncertainty band. The line marked
“Theoretical” is FC(x), based on Equation (74).

3.4. Fitting a Distribution Function

The method of moments has been one of the standard techniques in fitting distribution
functions to data. Another standard is the method of maximum likelihood, which is well
reasoned and is based on an optimization logic. In contrast, the method of moments is based
on solving equations and is not quite rigorously argued. Assuming that we fit a two-parameter
model (say, a generalized Pareto distribution), the method of moments uses the first two
classical (noncentral) moments and determines the two parameters by equating the sample
moments to the theoretical moments of the distributions. A similar strategy is followed by
the method of L-moments, which is regarded as more reliable than that of classical moments.
However, Koutsoyiannis [2] raised the following two major questions on the logic of this
strategy, particularly when the focus of the study is the occurrence of extremes:

1. Why use the first and second moments and not, say, the second and third? One may easily
justify the standard choice of using the lowest possible order of moments by the fact that higher
moments are less accurately estimated. On the other hand, one may counter that, when we are
interested in extremes, these are better reflected in higher-order moments. It is well known that
a model can hardly be a perfect representation of reality. Thus, we cannot expect that a good
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model fitting on the first and second moment would be equally suitable for the distribution
tail, i.e., the behaviour on extremes.

2. Why use two moments and not more? The standard answer, that two equations suffice to
find two unknowns, may be adequate from a theoretical mathematical point of view but it
is not from an empirical and engineering one. (As the saying goes, to draw a straight line,
a mathematician needs two points but an engineer needs three). Certainly, an optimization
framework (as in maximizing likelihood or in minimizing fitting error) is much preferable and
superior to an equation solving method.

The K-moments and their advantages, which are particularly strong for an extreme-
oriented modelling, enable a different fitting strategy, which uses as many moments as
required for the particular application. For example, assuming that we have a sample of
size n, we can estimate n upper K-moments and n lower K-moments for integer values of
p. We can then use the former if we are interested in the body of the distribution and its
upper tail, or the latter if we are interested in the body of the distribution and its lower tail,
or we can use both sequences simultaneously. Alternatively, if the sample size is too large,
we could choose a subset of them, e.g., 100 values of p (not necessarily integer) arranged in
a geometric progression from 1 to n. The objective of the fitting algorithm is to minimize
the average mean square error (possibly weighted) between the empirical and theoretical
K-F relationships.

Koutsoyiannis [2] discusses a possible criticism of using high-order K-moments (up
to order n), which is the fact that the higher-order moments are more uncertain than the
lower ones, and notes:

This criticism would be valid if the true distribution function was known to be the one
chosen as a model for the real-world process studied. But this is hardly the case. Let us
assume that in the time series of flow observations we have three very high values and that
we have chosen a certain model, e.g., a Lognormal distribution. How can we be sure that
the model is correct? If we are not sure (which actually is always the case), and if we are
to design a certain engineering construction, would we prefer a fitting of the chosen model
that is consistent with theoretical considerations, e.g., based on the maximum likelihood
method, even if this yields a departure for the three high values? Or would we feel safer if
our fitting represents well the three high values?

The steps of the fitting algorithm, adapted from [2], are outlined below. These steps are
based on the upper K-moments, K′p, and are oriented toward a fitting that is good for
the body of the distribution and the upper tail. If we are interested in extreme lows, we

can substitute the lower K-moments
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for the upper ones, and appropriately adapt the
following steps. If we are equally interested in both tails, then we can use both upper and
lower tails:

1. We choose a number m + 1 of moment orders, i.e., pi = ni/m, i = 0, . . . , m, with
p0 = 1, pm = n. The rationale for this is that when dealing with samples of size n of
the order of several thousands, the number m could be chosen much smaller, e.g., of
the order of 100, to speed up calculations without compromising accuracy. The orders
pi need not be natural numbers.

2. We estimate the upper K-moments K′pi
of orders pi, i = 0, . . . , m using Equations (15)

and (18).
3. Assuming default values of the distribution parameters, represented as a vector λ, we

determine
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The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

from Equation (65), the theoretical relationships between parameters of
the specified distribution and the mean µ = K′1 (such as those in Table 1 or Table 4)
and the expression of the distribution function F(x). Alternatively, but not preferably,
we can estimate
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However, Koutsoyiannis [2] provided more accurate relationships for K-moment val-
ues, based on the following quantities: 

Definition 7. The quantities: 𝛬 ∶= 1𝑝 𝐹൫𝐾ᇱ ൯ , 𝛬 ∶= 1𝑝 𝐹 ቀ𝐾ᇱ ቁ (64) 

are termed the Λ-coefficients. 

For given p and distribution function 𝐹(𝑥), the quantities 𝐾ᇱ , 𝐾ᇱ , 𝐹൫𝐾ᇱ ൯, 𝛬 and 𝛬 are 
analytically or numerically determined from their definitions, but this might be compli-
cated. However, 𝛬 and 𝛬 exhibit small variation with p, which makes a very good approx-
imation possible if we first accurately determine (a) the values 𝛬ଵ and 𝛬ଵ for 𝑝 = 1, and (b) 
the asymptotic values 𝛬ஶ and 𝛬ஶ. The values 𝛬ଵ and 𝛬ଵ are very easy to determine, as they 
refer to the probability of non-exceedance of the mean: 𝛬ଵ = 11 − 𝐹(𝜇) , 𝛬ଵ = 1𝐹(𝜇) = 𝛬ଵ𝛬ଵ − 1 (65) 

and can also be reliably estimated from a sample by finding the proportion of sample values 
that are smaller than 𝜇. For symmetric distributions, 𝐹(𝜇) = 1/2 and thus 𝛬ଵ = 𝛬ଵ = 2. 

The asymptotic values can be found by utilizing results by Koutsoyiannis [2] and de-
pend on the tail behaviour of the distribution, as shown in Table 5. From the limits also listed 
in Table 5, we infer that when the distribution is upper or lower bounded, the upper or lower 
Λ-coefficient is in the range (0, eஓ = 1.78107 ). Otherwise (when the distribution is 
unbounded), the Λ-coefficient is greater than eஓ. In unbounded variables that have finite 
variance (as happens with several natural processes), the tail index should be bounded by 
1/2 (𝜉, 𝜉ᇱ < 1/2) and thus the upper or lower Λ-coefficient is in the range (eஓ = 1.78107, π =3.14159). 

Table 5. Asymptotic values of Λ-coefficients (based on [2]). 

Characteristic Definition of Tail Index 1 Asymptotic Λ 
Limit for 𝜻, 𝜻′, 𝝃, 𝝃′ = Equation 

No.  0 1/2 1 ∞ 
Upper bounded by 𝑐, tail index 𝜁ᇱ  lim௫→(𝑐 − 𝑥)ିᇲ𝐹(𝑥) = 𝑙ଵ  𝛬ஶ = Γ(1 + 1 𝜁′⁄ )ିᇲ  0 1 √2⁄   1 eஓ  (66)

Upper unbounded, 
tail index 𝜉 

lim௫→ஶ 𝑥ଵ క⁄  𝐹(𝑥) = 𝑙ଶ  𝛬ஶ = Γ(1 − 𝜉)ଵ క⁄   eஓ  π  ∞ –  (67)

Lower bounded by 𝑐, tail index 𝜁 
lim௫→ై(𝑥 − 𝑐)ି𝐹(𝑥) = 𝑙ଷ  𝛬ஶ = Γ(1 + 1 𝜁⁄ )ି  0 1 √2⁄   1 eஓ  (68)

Lower unbounded, 
tail index 𝜉′  lim௫→ିஶ(−𝑥)ଵ కᇲ⁄ 𝐹(𝑥) = 𝑙ସ  𝛬ஶ = Γ(1 − 𝜉′)ଵ కᇲ⁄   eஓ  π  ∞  – (69)

from the sample mean, along with Equation (65).
4. As the vector λ contains the tail index ξ, we determine Λ∞ from the relationships

of Table 5.
5. Given
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and Λ∞, for each pi we estimate the empirical distribution function value

F̂
(

K′pi

)
from Equation (71).
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6. Given the parameter values in vector λ, for each K-moment K′pi
, we estimate the theo-

retical distribution function F
(

K̂′pi

)
from the expression of the distribution function

F(x) setting x = K̂′pi
.

7. We form an expression for the total fitting error as the sum:

E(λ) :=
m

∑
i=0

wi

ln

 F̂
(

K′pi

)
F̂
(

K′pi

)
− ln

 F
(

K̂′pi

)
F
(

K̂′pi

)
2

(75)

where wι denotes a weighting coefficient. The rationale of choosing the logarithmic
deviations of the ratio F(x)/F(x), instead of F(x), is that this better represents the
distribution tails (see e.g., Figure 5, right). The error E is a function of the chosen
parameters λ, and we evaluate it for the chosen parameter set.

8. We repeat the calculations of steps 3–7 for different sets of parameter vectors λ until
the fitting error becomes minimal. The repetitions are executed by a solver (available
in every software environment) using as objective function (to be minimized) the
error E(λ).

The procedure is typically very fast, almost instant, as the only step with computational
burden, that in step 2, is executed only once. A default value of the weight is wi = 1. Two
alternatives are:

wi =

{
1, l ≤ K′pi

< u
0, otherwise

, wi =

 F̂
(

K′pi

)
F̂
(

K′pi

)
b

(76)

where the former focuses the fitting on a particular range of the variable, that between
chosen lower and upper bounds l and u, respectively, while the latter gives more em-
phasis on fitting to high values of the distribution function by choosing a constant b > 0
(e.g., b = 0.5).

Remarkably, the above procedure does not need evaluation of the theoretical K-
moments per se (except for the mean µ = K′1). While this evaluation is feasible for any
distribution, it may be cumbersome as it may involve numerical integration. Notice in
Equation (75) the quantity F̂

(
K′pi

)
is estimated from Equation (71) as a function of pi while

F
(

K̂′pi

)
is estimated from the data using Equations (15) and (18). This makes the procedure

as simple as possible. In addition, it readily provides a visual comparison.
Several examples of distribution fitting using real world data are presented in [2].

Here we repeat, after adaptation, one of them for the sake of illustration. This is for hourly
wind data of the MIT station in Boston, MA, USA (42.367◦ N, 71.033◦ W, 9.0 m), perhaps
the longest worldwide. The data are available from the United States National Oceanic
and Atmospheric Administration, but a great deal of effort was needed to convert them
to hourly time series [23]. They cover, with minor gaps, the period of January 1945 to
December 2014 (70 calendar years with a few missing values; a number of hourly values of
589, 551, 1% of which are zero and were excluded from the analysis, which was made for
the remaining n = 583, 465 nonzero values). The model chosen is the ParetoBurr–Feller
(PBF; [2]) distribution with four parameters (the tail indices ζ, ξ, the scale parameter λ and
the lower bound xL, whose characteristics that are needed for the fitting are:

F(x) = 1−
(

1 + ζξ
(

x−xL
λ

)ζ
)− 1

ζξ

,
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=

1 +

(
B
(

1
ζξ−

1
ζ , 1

ζ

)
ζ

)ζ
 1

ζξ

, Λ∞ = Γ(1− ξ)
1
ξ , Λ∞ = Γ

(
1 + 1

ζ

)−ζ
(77)
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The resulting fit is shown in Figure 7 in terms of a plot of the ratio F(x)/F(x), which
enables visualization of the tails. By comparing the theoretical curve with the empirical
one based on K-moments, we see that the fitting is excellent for the entire range that can be
observed from the sample, spanning 11 orders of magnitude of the ratio F(x)/F(x).
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Figure 7. Comparison of empirical and theoretical PBF distribution fitted on the hourly wind speed
time series at the MIT station in Boston, MA, USA, excluding the zero values. For visualization of
the distribution tails, the distribution function is depicted in terms of the ratio F(x)/F(x) and the
axes are logarithmic. The parameters are: ξ = 0.120, ζ = 2.73, λ = 5.35 m/s, xL = 0.15 m/s and were
fitted on the entire domain of wind speed. The fitting was performed based on upper and lower
K-moments using the approximation of Equation (71). The points for K-moments have been adapted
for the bias effect of time dependence (see Section 3.6).

3.5. Estimation of Density Function

When assigning values of distribution function to the K-moments, the arrangement
of point estimates thereof produces a smooth curve, which allows a direct estimate of the
probability density. This is a strong advantage of the K-moments as it is the only method
that can provide a detailed representation of the density function, replacing the rougher
representation offered by the popular concept of the histogram [3].

Specifically, given the 2n− 1 sample estimates of K-moments K̂′p and K̂
′
p, namely the

ordered values K̂
′
n ≤ K̂

′
n−1 ≤ · · · ≤ K̂

′
1 ≡ K̂′1 ≤ K̂′2 ≤ · · · K̂′n−1 ≤ K̂′n, and the estimates of

the distribution function F̂
(

K′p
)

and F̂
(
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2. Definitions and Main Derivations 
2.1. Definition and Meaning 

Let 𝑥  be a stochastic variable with a distribution function 𝐹(𝑥)  and a tail function 𝐹(𝑥) ∶= 1 − 𝐹(𝑥). Notice that we have adopted the Dutch (van Dantzig–Hemelrijk [12]) con-
vention of underlining stochastic variables while common variables are not underlined. This 
convention is much clearer and more rigorous than its alternatives, which either (a) do not 
distinguish the stochastic from common variables or (b) use upper-case letters for stochastic 
variables and lower-case ones for common variables. Alternative (a), while being popular, 
particularly in Bayesian statistics texts, is ambiguous and can be misleading (see several ex-
amples in [2]). Alternative (b) is too restrictive (it prohibits using lower-case letters for sto-
chastic variables), ambiguous (when the standard notation of a physical quantity is in upper 
case, it could be misinterpreted as a stochastic variable, while it is not), or both (for example 
,when using Greek letters, e.g., the Latin 𝑥 and the Greek 𝜒 have the same appearance in 
upper case, i.e., 𝑋; see additional remarks in [2]). 

If 𝑥  is of continuous type, we define its probability density function as 𝑓(𝑥) ∶=d𝐹(𝑥)/d𝑥. If it is of discrete type, taking on the values 𝑥, 𝑗 = 0,1, … , 𝐽, where possibly 𝐽 = ∞, 
we define its probability mass function as 𝑃 ∶= 𝑃൛𝑥 = 𝑥ൟ = 𝐹൫𝑥൯ − 𝐹൫𝑥ିଵ൯. 

We consider a sample of 𝑥, i.e., a number 𝑝 of independent copies of the stochastic var-
iable 𝑥, i.e., 𝑥ଵ, 𝑥ଶ, … , 𝑥. If we arrange the variables in ascending order, the ith smallest, de-
noted as 𝑥(:), 𝑖 = 1, … , 𝑝 is termed the ith order statistic. The largest (pth) order statistic is: 𝑥() ∶= 𝑥(:) = max൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ (1) 

and the smallest (first) is 𝑥(ଵ:) = min൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯ (2) 

Now we define the K-moments in terms of expectations of these variables, denoted as E[ ], in the following manner. 

Definition 1. The expectation of the largest of the p variables 𝑥(): 𝐾ᇱ ∶= E[𝑥()] = Eൣmax൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (3) 

is called the upper knowable moment (K-moment) of order p. 

Definition 2. The expectation of the smallest of the p variables 𝑥(ଵ:): 𝐾ᇱ ∶= Eൣ𝑥(ଵ:)൧ = Eൣmin൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (4) 

is called the lower knowable moment (K-moment) of order p. 

Furthermore, we generalize the definition to transformations 𝑔(𝑥) of the stochastic var-
iable of interest 𝑥. Thus, by setting 𝑔൫𝑥൯ = 𝑥, where q is an integer, we obtain: 

Definition 3. The expectation: 𝐾ᇱ ∶= E[𝑥() ] = Eൣmax൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (5) 

is called the upper K-moment of orders p,q. 

Definition 4. The expectation: 𝐾ᇱ : = Eቂ𝑥(ଵ:) ቃ = Eൣmin൫𝑥ଵ, 𝑥ଶ, … , 𝑥൯൧ (6) 

is called the lower K-moment of orders p,q. 

The above notation implies that we omit the subscript q when 𝑞 = 1. Likewise, we can 
define central K-moments by setting 𝑔൫𝑥൯ = (𝑥 − 𝜇). 

)
from Equation (71), it is then straightforward

to approximate the density function f (x) = dF(x)/dx by the discrete derivative:

f̂ (x) =


F̂
(

K′p+1

)
−F̂(K′p)

K̂′p+1−K̂′p
, K̂′p ≤ x < K̂′p+1

F̂
(
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)
K̂
′
p−K̂

′
p+1

, K̂
′
p+1 ≤ x < K̂

′
p

(78)
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This will result in 2n− 2 different values of the density f̂ (x), while it is possible to
expand the number of estimation points by using non-integer orders p [3]. The method
is illustrated in Figure 8 for the Generalized Pareto distribution, the same as in Figure 5,
by means of Monte Carlo simulation with 100 realizations of samples of 100 items each.
The estimated probability density, expressed in terms of the median of the simulations,
harmonizes with the true shape of the probability density, and the uncertainty, depicted in
terms of prediction limits, is low in the body of the distribution, but increases in the upper
and lower tails.
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Figure 8. Illustration of the median estimate and uncertainty (in terms of prediction limits) of the
probability density using the proposed method, plotted in Cartesian (left) and logarithmic (right)
axes. The original results from the proposed method are interpolated at the points that are plotted in
the graphs. The true distribution is Generalized Pareto (see Table 1) with µ = 1 and ξ = 0.1, from
which 100 data series of n = 100 values each were generated and processed to calculate the median
of the estimates and produce their uncertainty band.

3.6. Accounting for Estimation Bias in Time Series with Time Dependence

K-moments characterize the marginal (first order) distribution of a stochastic process
and therefore are not affected by the dependence structure of the process. However, their
estimators are affected. If we do not have a random sample of a stochastic variable, but
rather a time series from a process with time dependence, then bias is induced to estimators
of K-moments. Thus, unless the stochastic process is white noise, the estimator unbiasedness
ceases to hold. It has been shown in [2] that the estimation bias is negligible in the case of
processes with short-range dependence and those characterized by periodic oscillations.

However, in processes with long-range dependence (LRD), the bias can be substantial.
LRD, also known as Hurst–Kolmogorov (HK) dynamics, is quantified by the Hurst parameter,
H, which in turn is most conveniently defined through its climacogram as follows. Let
us consider any stochastic process x(t) in continuous time t, and define the cumulative
process as

X(k) :=
k∫

0

x(t)dt (79)

Then X(k)/k is the time averaged process. The climacogram γ(k) of the process x(t) is the
variance of the time averaged process at time scale k [24], i.e.,

γ(k) := var
[

X(k)
k

]
(80)
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The climacogram of the HK process is given as a power function of the time scale k, i.e.,

γ(k) = λ2
(α

k

)2−2H
(81)

where α and λ are scale parameters with units of time and [x], respectively. In a purely
random process, H = 1/2, while in most natural processes, 1/2 ≤ H ≤ 1, as first observed
by Hurst in 1951 [25]. A high value of H (approaching 1) indicates an enhanced presence
of patterns such as grouping of similar events (e.g., floods, droughts) in time, enhanced
change and enhanced uncertainty (e.g., in future predictions). A low value of H (<1/2)
indicates enhanced fluctuation or antipersistence. Processes with more complex expressions
of climacogram also exhibit LRD if

lim
k→∞

γ(k)k2−2H = l (82)

where l is finite.
Koutsoyiannis [2] assumed that the estimate K̂d

p derived by the standard estimators
(15)–(18), where the superscript ‘d’ stands for dependence, results in a bias that is propor-
tional to Kp, so that the relative bias

K̂d
p − Kp

Kp
= Θ(n, H) (83)

does not depend on the moment order p but rather only on the sample size n and the Hurst
parameter H. Based on this assumption, he derived the relative bias for an HK process as

Θ(n, H) ≈ 2H(1− H)

n− 1
− 1

2(n− 1)2−2H (84)

Further, assuming that K̂d
p equals the true K-moment of an order p′ < p, the adjusted

moment order p′ was derived as

p′ ≈ 2Θ + (1− 2Θ)p((1+Θ)
2
), Kp′ = Kd

p = (1 + Θ)Kp (85)

The above relationships enable the following simple algorithm to approximately
estimate the true moments from a time series of length n, which is a realization of a process
with LRD:

1. We construct the climacogram and estimate the Hurst parameter H.
2. From Equation (84), we estimate the relative bias Θ(n, H).
3. We choose a moment order p and estimate by the standard estimators (15)–(18) the

K-moment K′p (or Kp) as if we had an independent sample.
4. We adapt p by Equation (85) and infer that the quantity estimated in step 3 is an

estimate of K′p′ (or Kp′ ).

This is for moment order q = 1. A similar approach for higher q is discussed in [2].
An illustration is provided in Figure 9, which was made by stochastic simulation

assuming an HK process with marginal distribution generalized Pareto. The generation
of a simulated time series from the process is conducted using a simple method termed
the multiple time-scale fluctuation approach [26]. This generates Gaussian stochastic variables
u with climacogram that closely approximates that of Equation (81), by adding three
independent linear Markov processes (autoregressive of order 1), each having a different
lag-one autocorrelation coefficient, calculated as a function of H, as described in [26]. The
Gaussian series are subsequently transformed to have any desired distribution F (in our
case, generalized Pareto) by x = F−1(Φ(u)), where Φ is the normal distribution function.
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Figure 9. (Left) Illustration of the performance of the adaptation of K-moment estimation for an HK
process with Hurst parameter H = 0.9 and generalized Pareto marginal distribution (with µ = 1
and ξ = 0.1). (Right) For comparison, a graph for independent sample (H = 0.5) is provided, which
does not need adaptation. The estimates are averages of 200 simulations each with n = 2000 and are
almost indistinguishable from the theoretical values (after the adaptation in the left graph). The 95%
prediction limits (PL) are also shown.

The simulation results depicted in Figure 9 are for a high Hurst parameter, H = 0.9, to
magnify the bias. Interestingly, what would be assigned as K-moment for p = 2000, without
taking into account the effect of dependence, actually corresponds to the true K-moment of
p′ ≈ 500. This has dramatic consequences in the assignment of probabilities of exceedance
(or return periods). Without adaptation, we would assign a probability of exceedance four
times lower than the true one (or a four-fold return period). Another important observation
from comparing the two panels of the figure, which are for the same marginal distribution,
is the dramatic broadening of the prediction intervals in the case of LRD. This illustrates
how dependence amplifies uncertainty.

The above technique has already been applied to the wind data example in Figure 7, as
the estimated Hurst parameter is high, H = 0.9, and its effect (bias) on distribution function
estimation is substantial, with relative bias Θ = −0.06. Removing the bias resulted in a
reduction of the maximum order p = n = 583, 465 to p′ = 140, 117 (i.e., p′ < p/4).

4. Discussion

K-moments share some characteristics with the classical moments, L-moments [16]
and probability-weighted moments (PWM; [27]), which are discussed in detail in [2] and in
part in Sections 3.1 and 3.2 here. On the other hand, the differences are huge. Thus, the
K-moments are knowable with unbiased estimators (from samples) for high orders, up
to the sample size n, while in classical moments, the convergence bias is substantial and
the estimation uncertainty is orders of magnitude higher. Furthermore, as discussed in
Section 3.1, the K-moments can reveal what the estimators of classical moments actually
estimate, which is different from the true values thereof.

As per the L-moments and PWMs, the logic and strategies that is followed for these
concepts do not differ from those of classical moments. Up to this point, the K-moments
are similar to them and produce similar summary statistics, as discussed in Section 3.2.
However, the real power of K-moments is that their values can directly be assigned proba-
bilities, through Λ-coefficients. This is similar to what happens with order statistics, but
with some advantages over the latter, as the K-moments make optimal use of the entire
dataset, instead of using just one data value to assign probability. Thus, the sequence of
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K-moment values produces a smooth curve that can be used to empirically estimate the
density function, a unique feature among all moment types.

The assignment of probabilities to numerous upper and lower K-moment values, for
orders up to the sample size, enables a rich characterization of the distribution function, as
well as a strategy for model fitting totally different from other methods of moments. This
strategy involves the entire range of moment orders (rather than the first 1–4 moments),
can focus on different parts of the distribution (body, upper tail, lower tail) and enables
visualization of the fitting.

Another powerful characteristic of the K-moment framework, as presented above, is
the simple and intuitive definition in terms of averages of maxima or minima of stochastic
variables. This is different from other moment types and implies different behaviours (e.g.,
in discrete stochastic variables).

The fact that the K-moment framework assigns probabilities to moment values, which
is a unique feature among all moment types, makes theoretical calculations thereof (i.e.,
by integration or numerical integration) unnecessary. Instead, the calculations are made
in terms of the probabilities rather than values of the random variable. The simple ap-
proximation by Equation (71) is sufficient for most statistical tasks. When more accurate
approximations are required, these can be found in [2].

Finally, the K-moment estimators, unlike other moment types, can explicitly (albeit
approximately) take into account any existing dependence structure in case the data are
not an independent sample but a time series (i.e., a realization of a stochastic process). This
is also a unique feature among all types of moments.

5. Summary and Conclusions

Knowable moments or K-moments, defined as expectations of maxima or minima of
a number of independent identically distributed stochastic variables, have some features
that are not seen in other types of moments in stochastics and make them useful in relevant
applications. Their name highlights the fact that, in contrast to classical moments, which
are unknowable from samples for orders beyond 3–4, K-moments can be reliably and
unbiasedly estimated from a sample for very high orders up to the sample size, even if this
is several million or more. For such high orders, techniques to accelerate the calculations
are proposed.

Not only can K-moments replace the information contained in classical moments
and L-moments (e.g., summary statistics), but they can also provide information about
what a classical moment estimator determines, which actually is not the true value of that
classical moment.

An important feature of K-moment values is their ability to be assigned values of the
distribution function. This characteristic is shared by order statistics and not by any other
type of moments. However, there are substantial advantages over order statistics, because
K-moment estimators make optimal use of the entire dataset, rather than relying on a single
data value to be assigned a probability. This makes the estimation of the probability density
function from a sample possible, a feature not shared by any other type of moments.

Finally, K-moments offer the unique advantage of taking into account the estimation
bias when the data are not an independent sample but a time series from a process with
dependence, even of long range. Both for samples and time series, the K-moment concept
offers a strategy of model fitting, including its visualization, that is not shared with any
other method. This enables utilization of the highest possible moment orders, which are
particularly useful in modelling extreme highs or lows that are closely associated with
high-order moments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/axioms12060590/s1. A spreadsheet that illustrates the calculations
to produce Figure 1.
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Appendix A. Proof of Equations (46) and (49)

In the case that q is odd we have

Fy(y) = P
{

y ≤ y
}
= P

{
(x− c)q ≤ y

}
= P

{
x ≤ c + y1/q

}
= F

(
c + y1/q

)
(A1)

and

fy(y) =
f
(

c + y1/q
)

qy1−1/q (A2)

Hence the K-moment of order p of y will be

K′py = pE
[

Fy

(
y
)p−1

y
]
= p

∞∫
−∞

Fy(y)
p−1y fy(y)dy (A3)

and by setting x = c + y1/q

K′py = p
∞∫
−∞

F(x)p−1(x− c)q f (x)

q(x− c)q−1 q(x− c)q−1dx (A4)

from which we find Equation (46).
If q is even, then we have

Fy(y) = P
{

y ≤ y
}
= P

{
−y1/q ≤ x− c ≤ y1/q

}
= P

{
c− y1/q ≤ x ≤ c + y1/q

}
= F

(
c + y1/q

)
− F

(
c− y1/q

) (A5)

and

fy(y) =
f
(

c + y1/q
)
+ f

(
c− y1/q

)
qy1−1/q (A6)

Hence the K-moment of order p of y will be

K′py = pE
[

Fy

(
y
)p−1

y
]
= p

∞∫
0

Fy(y)
p−1y fy(y)dy (A7)

and by setting t = y1/q

K′py = p
∞∫
0
(F(c + t)− F(c− t))p−1tq f (c+t)+ f (c−t)

qtq−1 qtq−1dx

=
∞∫
0
(F(c + t)− F(c− t))p−1tq( f (c + t) + f (c− t))dt =

= p
∞∫
0
(F(c + t)− F(c− t))p−1tq f (c + t)dt

+p
∞∫
0
(F(c + t)− F(c− t))p−1tq f (c− t)dt

(A8)
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By substituting t→ −t in the last term we find that it can be written as

p
0∫

−∞

(F( c+|t|)− F( c−|t|))p−1tq f (c + t)dt (A9)

Hence Equation (A8) yields

K′py = p
∞∫
−∞

(F( c+|t|)− F( c−|t|))p−1tq f (c + t)dt (A10)

and by setting x = t + c we find Equation (49).
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By substituting 𝑡 → −𝑡 in the last term we find that it can be written as 

𝑝 න൫𝐹(𝑐 + |𝑡|) − 𝐹(𝑐 − |𝑡|)൯ିଵ𝑡𝑓(𝑐 + 𝑡) d𝑡
ିஶ  (A9) 

Hence Equation (A8) yields 
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and by setting 𝑥 = 𝑡 + 𝑐 we find Equation (49). 
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