New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
The Faber Polynomial Expansion Method and Its Applications
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nevalinna, R. Uber Uber die Konforme Abbildung Sterngebieten. Oversiktav-Fin. Vetenskaps Soc. Forh. 1920, 63, 1–21. [Google Scholar]
- Study, E. Konforme Abbildung Einfachzusammenhangender Bereiche; B. C. Teubner: Leipzig/Berlin, Germany, 1913. [Google Scholar]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Noor, K.I. On quasi-convex functions and related topics. Int. J. Math. Math. Sci. 1987, 10, 241–258. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent functions. In Grundehren der Math. Wiss.; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983; Volume I–II. [Google Scholar]
- Hayman, W.K. Multivalent Functions; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 1374–1408. [Google Scholar] [CrossRef]
- Lindelöf, E. Mémoire sur certaines inégalitis dans la théorie des functions monogénses et sur quelques propriétés nouvelles de ces fonctions dans levoisinage dun point singulier essentiel. Ann. Soc. Sci. Fenn. 1909, 35, 1–35. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Cluni, J. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durham; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Styer, D.; Wright, D.J. Results on bi-univalent functions. Proc. Am. Math. Soc. 1981, 82, 243–248. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Study. Univ. Babes Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Khan, S.; Khan, N.; Hussain, S.; Ahmad, Q.Z.; Zaighum, M.A. Some classes of bi-univalent functions associated with Srivastava-Attiya operator. Bull. Math. Anal. Appl. 2017, 9, 37–44. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.H.; Xiao, H.G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Atshan, W.G.; Rahman, I.A.R.; Alb Lupas, A. Some results of new subclasses for bi-univalent functions using quasi subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotirla, L.I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Alb Lupas, A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Al Amoush, A.G.; Murugusundaramoorthy, G. Certain subclasses of λ-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial. Afr. Mat. 2023, 34, 11. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials. J. Math. 2022, 7, 8162182. [Google Scholar]
- Amini, E.; Al-Omari, S.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Swamy, S.R.; Sailaja, Y. Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activated function and k-Fibonacci numbers. J. Math. Comput. Sci. 2022, 27, 105–117. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Salagean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach conjecture, translated from the 1989 Chinese original and revised by the author. AMS/IP Stud. Adv. Math. 1999, 12, MR1699322. [Google Scholar]
- Faber, G. Uber polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus Math. 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions. J. Fract. Calc. Appl. 2017, 8, 108–117. [Google Scholar]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus Math. 2015, 353, 113–116. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomial coefficient estimates for meromorphic bi-starlike functions. Int. J. Math. Math. Sci. 2013, 2013, 498159. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes Rendus Math. 2013, 351, 349–352. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Math. 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Attiya, A.A.; Yassen, M.F. A Family of analytic and bi-univalent functions associated with Srivastava-Attiya Operator. Symmetry 2022, 14, 2006. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Singh, M.; Khan, S.; Tang, H.; Khan, M.f.; Kamal, M. New applications of Faber polynomial expansion for analytical bi-close-to-convex functions defined by using q-calculus. Mathematics 2023, 11, 1217. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Hussain, S.; Darus, M.; Matarneh, K. Certain new class of analytic functions defined by using a fractional derivative and Mittag-Leffler functions. Axioms 2022, 11, 655. [Google Scholar] [CrossRef]
- Khan, N.; Khan, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Javed, U. Some applications of analytic functions associated with q-fractional operator. Mathematics 2023, 11, 930. [Google Scholar] [CrossRef]
- Khan, S.; Altınkaya, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 41, 153–164. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. 2016, 36, 863–971. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Filomat 2018, 32, 3143–3153. [Google Scholar] [CrossRef]
- Sakar, F.M.; Tasar, N. Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends Math. Sci. 2019, 7, 62–70. [Google Scholar] [CrossRef]
- Wanas, A.K.; Páll-Szabó, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babeș Bolyai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S.; Magesh, N. Coefficint estimates for subclass of m-fold symmetric bi-univalent functioms. Kragujev. J. Math. 2022, 46, 395–406. [Google Scholar] [CrossRef]
- Aldawish, I.; Swamy, S.R.; Frasin, B.A. A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fract. 2022, 6, 271. [Google Scholar] [CrossRef]
- Breaz, D.; Cotîrlă, L.I. The study of coefficient estimates and Fekete–Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator. J. Inequalities Appl. 2023, 2023, 15. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. Fekete–Szegö functional problems of m-fold symmetric bi-univalent functions. J. Math. Ineq. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. Certain class of m-fold functions by applying Faber polynomial expansions. Stud. Univ. Babe s-Bolyai Math. 2021, 66, 491–505. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Khan, N.; Tchier, F.; Xin, Q.; Malik, S.N.; Khan, S. Coefficient bounds for a family of m-fold symmetric bi-univalent functions. Axioms 2023, 12, 317. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in univalent functions. In Fractional Calculus; and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Gasper, G.; Rahman, M. Basic hypergeometric series (with a Foreword by Richard Askey). In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Tech. Tran. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Selvakumaran, K.A.; Choi, J.; Purohit, S.D. Certain subclasses of analytic functions defined by fractional q-calculus operators. Appl. Math. E-Notes 2021, 21, 72–80. [Google Scholar]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Groups and Symmetries: From Neolithic Scots to John McKay; American Mathematical Society: Washington, DC, USA, 2007; Volume 47, p. 3. [Google Scholar]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Al-Shaikh, S.B.; Abubaker, A.A.; Matarneh, K. New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions. Axioms 2023, 12, 600. https://doi.org/10.3390/axioms12060600
Khan MF, Al-Shaikh SB, Abubaker AA, Matarneh K. New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions. Axioms. 2023; 12(6):600. https://doi.org/10.3390/axioms12060600
Chicago/Turabian StyleKhan, Mohammad Faisal, Suha B. Al-Shaikh, Ahmad A. Abubaker, and Khaled Matarneh. 2023. "New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions" Axioms 12, no. 6: 600. https://doi.org/10.3390/axioms12060600
APA StyleKhan, M. F., Al-Shaikh, S. B., Abubaker, A. A., & Matarneh, K. (2023). New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions. Axioms, 12(6), 600. https://doi.org/10.3390/axioms12060600