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Abstract: In this study, we used two unique approaches, namely the Yang transform decomposition
method (YTDM) and the homotopy perturbation transform method (HPTM), to derive approximate
analytical solutions for nonlinear time-fractional Zakharov–Kuznetsov equations (ZKEs). This frame-
work demonstrated the behavior of weakly nonlinear ion-acoustic waves in plasma containing cold
ions and hot isothermal electrons in the presence of a uniform magnetic flux. The density fraction
and obliqueness of two compressive and rarefactive potentials are depicted. In the Liouville–Caputo
sense, the fractional derivative is described. In these procedures, we first used the Yang transform
to simplify the problems and then applied the decomposition and perturbation methods to obtain
comprehensive results for the problems. The results of these methods also made clear the connections
between the precise solutions to the issues under study. Illustrations of the reliability of the proposed
techniques are provided. The results are clarified through graphs and tables. The reliability of the pro-
posed procedures is demonstrated by illustrative examples. The proposed approaches are attractive,
though these easy approaches may be time-consuming for solving diverse nonlinear fractional-order
partial differential equations.

Keywords: Yang transform; fractional Zakharov–Kuznetsov equations; Liouville–Caputo operator;
Adomian decomposition method (ADM); homotopy perturbation method (HPM)
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1. Introduction

The generalization of integer-order to arbitrary-order calculus is known as fractional
calculus (FC), and it was first developed around the end of the seventeenth century. The
main advantage of fractional calculus is that it has been shown to be a highly useful
tool for understanding the memory and hereditary characteristics of numerous phenom-
ena. Additionally, ordinary calculus represents a small subset of fractional calculus. The
fractional-order derivative groundwork was laid through the combined effort of pioneers
such as Riemann [1], Liouville [2], Caputo [3], Podlubny [4], and Miller and Ross [5], among
many others [6,7]. The early theory of fractional derivatives has been rapidly advanced
throughout the past few decades. Authors such as Srivastava [8], Kilbas et al. [9], Leg-
nani et al. [10], and Hilfer [11] have gone into additional detail and developed the area. The
main focus of their studies was the systematic comprehension of FC, including uniqueness
and existence. The theory of fractional-order calculus has been linked to real-world projects
and used in a variety of fields, including electrodynamics [12], chaos theory [13], optics [14],
signal processing [15], and other areas [16–22].

The aforementioned works played a crucial role in our understanding of the nature and
behavior of nonlinear problems that arise in daily life, as well as the analytical and numeri-
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cal solutions for differential equations of an arbitrary order. Through spatial and temporal
fractional-order derivatives, fractional-order models have expanded our understanding
of differentiability and added nonlocal and system memory effects. These characteristics
enable us to model phenomena at various temporal and spatial scales without dividing the
problem into even more subsets. The assumption that fractional derivatives can highlight
or capture key characteristics of complicated events is the foundation for using fractional-
order models to span various scales. Furthermore, because classical derivatives are local
in nature, we can only use them to describe changes in a point’s immediate surroundings;
however, fractional derivatives allow us to express changes in an interval. Because of this
characteristic, arbitrary-order derivatives can be used to model a wider range of physical
processes related to quantum physics, signal analysis, diffusion, elasticity, and seismic
vibrations. It has been discovered that fractional differential equations may explain many
systems in transdisciplinary fields more effectively and conveniently. Fractional derivatives
are now frequently employed to examine a variety of difficult issues. For instance, fractional
calculus is used for the mathematical modeling of viscoelastic materials [23].

It is becoming noticeable that fractional partial differential equations (FPDEs) are
a useful modeling tool for complicated multiscale events, particularly those combining
overlapping microscopic and macroscopic dimensions. In contrast to integer-order PDEs,
the fractional order of the derivatives in FPDEs can be a function of both space and time
or even distribution. This has created outstanding prospects for simulating and mod-
eling multi-physics phenomena, such as the smooth transition from wave propagation
to diffusion or from local to non-local dynamics. Numerous well-known scholars have
made contributions to this area due to the importance of analytically solving FPDEs in
engineering and science [24–29]. With the aid of the Elzaki transform decomposition ap-
proach, the approximate analytical solution for time-fractional Swift–Hohenberg equations
with conformable derivatives was studied in [30]. The authors of [31] used the natural
decomposition approach to obtain the solutions of the fractional modified Boussinesq and
approximate long wave equations. In [32], a new fractional sub-equation method was used
to study an exact solution for fractional partial differential equations. A new analytical
solution for fractional nonlinear systems of third-order Korteweg–de Vries (KdV) equations
and systems of coupled Burgers equations in one and two dimensions were investigated
by the variational iteration method in [33] using a conformable fractional derivative. Frac-
tional calculus has been used by many scholars as a tool to ascertain the nature of complex
problems [34–41].

The Korteweg–de Vries equations are essential for scientific applications. One of
the well-known variations are the ZKEs, which analyze electrostatic-acoustic pulses in
magnetized ions. They were developed in an ocean-based study of coastal waves [42]. To
show nonlinear phenomena such as isotope waves in high-magnetization lossless plasma,
the ZKEs were initially developed in two dimensions [43]. In this study, we investigated
the time-fractional Zakharov–Kuznetsov (FZK) equation (α1, α2, α3)) with a fractional time-
derivative of the order 0 < λ ≤ 1, possessing the following form:

Dλ
ϑK+ a1(J α1)ς + b1(J α2)ςςς + b1(J α3)ςψψ = 0, (1)

where J = J (ς, ψ, ϑ), Dλ
ϑ denotes the Liouville–Caputo fractional derivative of the order

λ; a1 and b1 are arbitrary constants; αi, i = 1, 2, 3 are integers; and the nature of nonlinear
events such as ion-acoustic waves in the context of a symmetrical magnetic field in plasma
containing hot isothermal electrons and cold ions is depicted by the expression αi 6= 0
(i = 1, 2, 3) [44,45]. The ZKEs were suggested to examine a shallow nonlinear isotope ripple
in a plasma with significant magnetization impairment in three dimensions by the authors
of [43]. The variation iteration method [46] and the HPM [47] have been used, respectively,
to examine the approximative analytical solutions of fractional ZKEs. Several of the above-
mentioned strategies suffered from the drawback that they were invariably hierarchical
and involved a great deal of computational complexity. The innovations of this research
are the YTDM and HPTM, which combine the Yang transform (YT), ADM, and HPM to
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solve the time-fractional ZKE. The Yang transform was introduced by Xiao-Jun Yang and
can be used to handle various kinds of differential equations with constant coefficients
[48]. The proposed method made it simpler to estimate the series terms as compared to
the traditional Adomian process [49,50], since it does not need to compute the fractional
derivative or fractional integrals in the recursive mechanism. Since the YTDM does not
require prescribed assumptions, linearization, discretization, or perturbation, round-off
errors are avoided. In the literature, the YTDM has been used to solve a wide range of
differential equations, including Lax’s time-fractional Korteweg–de Vries equation [51]
and the phi-four equations [52]. He’s polynomials, the Yang transform, and the homotopy
perturbation method have been combined to generate the HPTM [53–55]. He’s polynomials
can be applied to simply manage nonlinear terms. The proposed method’s analytical results
demonstrated how easily implemented and highly desirable this method is computationally.
It appears that these new methods could be used to reduce the time and cost of computing.
The abovementioned methods produce convergent series.

The remainder of this article is structured as follows. We introduce some definitions
and YT features in Section 2. We describe the suggested methods for resolving fractional
partial differential equations (FPDEs) in Sections 3 and 4. After that, in Section 5, we use
the methods discussed to find approximations of solutions to the fractional space-time ZK
equation. In Section 6, we discuss the numerical simulations for present methods. The
paper’s conclusions are stated in Section 7.

2. Preliminaries

For our analysis, a number of definitions and axiom results from the literature were
necessary.

Definition 1. The fractional Liouville–Caputo derivative is as follows [56]:

Dλ
ϑJ (ς, ϑ) =

1
Γ(k− λ)

∫ ϑ

0
(ϑ− γ)k−λ−1J (k)(ς, γ)dγ, k− 1 < λ ≤ k, k ∈ N. (2)

Definition 2. The YT of the stated function is as follows [48]:

Y{J (ϑ)} = M(u) =
∫ ∞

0
e
−ϑ
u J (ϑ)dϑ, ϑ > 0, (3)

where u is the transform variable.
Some important functions for the YT are stated as follows:

Y[1] =u,

Y[ϑ] =u2,

Y[ϑq] =Γ(q + 1)uq+1,

(4)

representing the inverse YT as
Y−1{M(u)} = J (ϑ). (5)

Definition 3. The YT of the stated function with a derivative of nth order is given as follows [48]:

Y{J n(ϑ)} = M(u)
un −

n−1

∑
k=0

J k(0)
un−k−1 , ∀ n = 1, 2, 3, . . . (6)

Definition 4. The YT of the stated function with derivative of order fractional is given as [48]

Y{J λ(ϑ)} = M(u)
uλ

−
n−1

∑
k=0

J k(0)
uλ−(k+1)

, n− 1 < λ ≤ n. (7)
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3. Configuration for HPTM

In this subsection, we explain the basic concept behind the HPTM for solving the FPDE:

Dλ
ϑJ (ς, ϑ) = P1[ς]J (ς, ϑ) +Q1[ς]J (ς, ϑ), 0 < λ ≤ 1, (8)

with the initial guesses
J (ς, 0) = ξ(ς).

Here, Dλ
ϑ = ∂λ

∂ϑλ denotes the Liouville–Caputo fractional derivative, and P1[ς] and
Q1[ς] are linear and nonlinear operators, respectively.

Upon implementing the YT, we have

Y[Dλ
ϑJ (ς, ϑ)] = Y[P1[ς]J (ς, ϑ) +Q1[ς]J (ς, ϑ)], (9)

1
uλ
{M(u)− uJ (0)} = Y[P1[ς]J (ς, ϑ) +Q1[ς]J (ς, ϑ)], (10)

which yields
M(u) = uJ (0) + uλY[P1[ς]J (ς, ϑ) +Q1[ς]J (ς, ϑ)]. (11)

By utilizing the inverse YT, we obtain

J (ς, ϑ) = J (0) + Y−1[uλY[P1[ς]J (ς, ϑ) +Q1[ς]J (ς, ϑ)]]. (12)

Utilizing the HPM, we obtain

J (ς, ϑ) =
∞

∑
k=0

εkJk(ς, ϑ), (13)

with the parameter ε ∈ [0, 1].
The nonlinear term is taken as

Q1[ς]J (ς, ϑ) =
∞

∑
k=0

εk Hn(J ). (14)

In addition, Hk(J ) describes He’s polynomials and is written as follows:

Hn(J0,J1, . . . ,Jn) =
1

Γ(n + 1)
Dk

ε

[
Q1

(
∞

∑
k=0

εiJi

)]
ε=0

, (15)

where Dk
ε = ∂k

∂εk .
Substituting (12) and (13) into (11), we obtain

∞

∑
k=0

εkJk(ς, ϑ) = J (0) + ε×
(

Y−1

[
uλY{P1

∞

∑
k=0

εkJk(ς, ϑ) +
∞

∑
k=0

εk Hk(J )}
])

. (16)

On comparing the ε coefficients on both sides, we obtain

ε0 : J0(ς, ϑ) = J (0),

ε1 : J1(ς, ϑ) = Y−1
[
uλY(P1[ς]J0(ς, ϑ) + H0(J ))

]
,

ε2 : J2(ς, ϑ) = Y−1
[
uλY(P1[ς]J1(ς, ϑ) + H1(J ))

]
,

...

εk : Jk(ς, ϑ) = Y−1
[
uλY(P1[ς]Jk−1(ς, ϑ) + Hk−1(J ))

]
,

k > 0, k ∈ N.

(17)
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Lastly, the approximate analytical solution Jk(ς, ϑ) is stated as

J (ς, ϑ) = lim
M→∞

M

∑
k=1
Jk(ς, ϑ). (18)

4. Configuration for YTDM

In this subsection, we illustrate the basic concept behind the YTDM for solving the
FPDE:

Dλ
ϑJ (ς, ϑ) = P1(ς, ϑ) +Q1(ς, ϑ), 0 < λ ≤ 1, (19)

with the initial guesses
J (ς, 0) = ξ(ς).

Here, Dλ
ϑ = ∂λ

∂ϑλ denotes the Liouville–Caputo fractional derivative, and P1 and Q1
are linear and nonlinear operators, respectively.

Upon implementing the YT, we have

Y[Dλ
ϑJ (ς, ϑ)] = Y[P1(ς, ϑ) +Q1(ς, ϑ)],

1
uλ
{M(u)− uJ (0)} = Y[P1(ς, ϑ) +Q1(ς, ϑ)],

(20)

which yields
M(J ) = uJ (0) + uλY[P1(ς, ϑ) +Q1(ς, ϑ)]. (21)

By utilizing the inverse YT, we obtain

J (ς, ϑ) = J (0) + Y−1[uλY[P1(ς, ϑ) +Q1(ς, ϑ)]. (22)

Utilizing the YTDM, we have

J (ς, ϑ) =
∞

∑
m=0
Jm(ς, ϑ). (23)

The nonlinear term is taken as

Q1(ς, ϑ) =
∞

∑
m=0
Am, (24)

with

Am =
1

m!

[
∂m

∂`m

{
Q1

(
∞

∑
k=0

`kςk,
∞

∑
k=0

`kϑk

)}]
`=0

. (25)

Substituting (22) and (23) into (21), we obtain

∞

∑
m=0
Jm(ς, ϑ) = J (0) + Y−1

[
uλY

{
P1(

∞

∑
m=0

ςm,
∞

∑
m=0

ϑm) +
∞

∑
m=0
Am

}]
. (26)

Thus, we obtain the following approximation:

J0(ς, ϑ) = J (0), (27)

J1(ς, ϑ) = Y−1
[
uλY{P1(ς0, ϑ0) +A0}

]
.

In general, for m ≥ 1, we can write

Jm+1(ς, ϑ) = Y−1
[
uλY{P1(ςm, ϑm) +Am}

]
.
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5. Numerical Applications

Example 1. Let us assume a nonlinear FZK equation of the form

Dλ
ϑJ (ς, ψ, ϑ) + J 2

ς (ς, ψ, ϑ) +
1
8
J 2

ςςς(ς, ψ, ϑ) +
1
8
J 2

ψψς(ς, ψ, ϑ) = 0, 0 < λ ≤ 1, (28)

with the initial guess

J (ς, ψ, 0) =
4
3

µ sinh2(ς + ψ).

Upon implementing the YT, we have

Y
(

∂λJ
∂ϑλ

)
= Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
, (29)

which yields

1
uλ
{M(u)− uJ (0)} = Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
, (30)

M(u) = uJ (0) + uλ

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
. (31)

By utilizing the inverse YT, we obtain

J (ς, ψ, ϑ) = J (0) + Y−1

[
uλ

{
Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)}]
,

J (ς, ψ, ϑ) =
4
3

µ sinh2(ς + ψ) + Y−1

[
uλ

{
Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)}]
.

(32)

Utilizing the HPM, we obtain

∞

∑
k=0

εkJk(ς, ψ, ϑ) =
4
3

µ sinh2(ς + ψ) + ε

(
Y−1

[
uλY

[
−
(

∞

∑
k=0

εk Hk(J )

)
ς

− 1
8

(
∞

∑
k=0

εk Hk(J )

)
ςςς

− 1
8

(
∞

∑
k=0

εk Hk(J )

)
ψψς

]])
.

(33)

In addition, the nonlinear terms obtained by means of He’s polynomial Hk(J ) are as follows:

∞

∑
k=0

εk Hk(J ) = J 2(ς, ψ, ϑ). (34)

Some nonlinear terms are presented as below:

H0(J ) = J 2
0 ,

H1(J ) = 2J0J1,

H2(J ) = 2J0J2 + (J1)
2.

On comparing the ε coefficients on both sides, we obtain
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ε0 : J0(ς, ψ, ϑ) =
4
3

µ sinh2(ς + ψ),

ε1 : J1(ς, ψ, ϑ) = Y−1

(
uλY

[
− H0(J )− 1

8
H0(J )− 1

8
H0(J )

])

= −
[

224
9

µ2 sinh2(ς + ψ) cosh(ς + ψ) +
32
3

µ2 sinh(ς + ψ) cosh3(ς + ψ)

]
ϑλ

Γ(λ + 1)
,

ε2 : J2(ς, ψ, ϑ) = Y−1

(
uλY

[
− H1(J )− 1

8
H1(J )− 1

8
H1(J )

])

=
128
27

µ3

[
1200 cosh6(ς + ψ)− 2080 cosh4(ς + ψ) + 968 cosh2(ς + ψ)− 79

]
ϑ2λ

Γ(2λ + 1)
,

ε3 : J3(ς, ψ, ϑ) = Y−1

(
uλY

[
− H2(J )− 1

8
H2(J )− 1

8
H2(J )

])
= −2048

81
sinh(ς + ψ) cosh(ς + ψ)[

884,000 cosh6(ς + ψ)− 160,200 cosh4(ς + ψ) + 85,170 cosh2(ς + ψ)− 11,903

]
µ4 ϑ3λ

Γ(3λ + 1)
,

...
The approximate analytical solution obtained by means of the HPTM is as follows:

J (ς, ψ, ϑ) = J0(ς, ψ, ϑ) + J1(ς, ψ, ϑ) + J2(ς, ψ, ϑ) + J3(ς, ψ, ϑ) + · · ·

=
4
3

µ sinh2(ς + ψ)−
[

224
9

µ2 sinh2(ς + ψ) cosh(ς + ψ) +
32
3

µ2 sinh(ς + ψ) cosh3(ς + ψ)

]
ϑλ

Γ(λ + 1)

+
128
27

µ3

[
1200 cosh6(ς + ψ)− 2080 cosh4(ς + ψ) + 968 cosh2(ς + ψ)− 79

]
ϑ2λ

Γ(2λ + 1)

− 2048
81

sinh(ς + ψ) cosh(ς + ψ)

[
884,000 cosh6(ς + ψ)− 160,200 cosh4(ς + ψ) + 85,170 cosh2(ς + ψ)

− 11,903

]
µ4 ϑ3λ

Γ(3λ + 1)
+ · · ·

Implementation of YTDM
Upon implementing the YT, we have

Y
{

∂λJ
∂ϑλ

}
= Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
, (35)

which yields

1
uλ
{M(u)− uJ (0)} = Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
, (36)

M(u) = uJ (0) + uλY

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)
. (37)

By utilizing the inverse YT, we obtain
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J (ς, ψ, ϑ) = J (0) + Y−1

[
uλ

{
Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)}]

=
4
3

µ sinh2(ς + ψ) + Y−1

[
uλ

{
Y

(
−J 2

ς (ς, ψ, ϑ)− 1
8
J 2

ςςς(ς, ψ, ϑ)− 1
8
J 2

ψψς(ς, ψ, ϑ)

)}]
.

(38)

Utilizing the YTDM, we have

J (ς, ϑ) =
∞

∑
m=0
Jm(ς, ψ, ϑ). (39)

The nonlinear term obtained by means of the Adomian polynomial is taken as J 2(ς, ψ, ϑ) =

∑∞
m=0Am. Thus, we obtain

∞

∑
m=0
Jm(ς, ψ, ϑ) = J (ς, ψ, 0) + Y−1

[
uλY

[
−
(

∞

∑
m=0
Am

)
ς

− 1
8

(
∞

∑
m=0
Am

)
ςςς

− 1
8

(
∞

∑
m=0
Am

)
ψψς

]]

=
4
3

µ sinh2(ς + ψ) + Y−1

[
uλY

[
−
(

∞

∑
m=0
Am

)
ς

− 1
8

(
∞

∑
m=0
Am

)
ςςς

− 1
8

(
∞

∑
m=0
Am

)
ψψς

]]
.

(40)

Some nonlinear terms are presented below:

A0 = J 2
0 ,

A1 = 2J0J1,

A2 = 2J0J2 + J 2
1 .

Thus, we obtain the following approximation:

J0(ς, ψ, ϑ) =
4
3

µ sinh2(ς + ψ).

For m = 0

J1(ς, ψ, ϑ) = −
[

224
9

µ2 sinh2(ς + ψ) cosh(ς + ψ) +
32
3

µ2 sinh(ς + ψ) cosh3(ς + ψ)

]
ϑλ

Γ(λ + 1)
.

For m = 1

J2(ς, ψ, ϑ) =
128
27

µ3

[
1200 cosh6(ς + ψ)− 2080 cosh4(ς + ψ) + 968 cosh2(ς + ψ)− 79

]
ϑ2λ

Γ(2λ + 1)
.

For m = 2

J3(ς, ψ, ϑ) =− 2048
81

sinh(ς + ψ) cosh(ς + ψ)

[
884,000 cosh6(ς + ψ)− 160,200 cosh4(ς + ψ)

+ 85,170 cosh2(ς + ψ)− 11,903

]
µ4 ϑ3λ

Γ(3λ + 1)
.

Consequently, we determine the series solutions by continuing the same process in order to
calculate the components for (m ≥ 3) as follows:
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J (ς, ψ, ϑ) =
∞

∑
m=0
Jm(ς, ψ, ϑ) = J0(ς, ψ, ϑ) + J1(ς, ψ, ϑ) + J2(ς, ψ, ϑ) + J3(ς, ψ, ϑ) + · · ·

=
4
3

µ sinh2(ς + ψ)−
[

224
9

µ2 sinh2(ς + ψ) cosh(ς + ψ) +
32
3

µ2 sinh(ς + ψ) cosh3(ς + ψ)

]
ϑλ

Γ(λ + 1)

+
128
27

µ3

[
1200 cosh6(ς + ψ)− 2080 cosh4(ς + ψ) + 968 cosh2(ς + ψ)− 79

]
ϑ2λ

Γ(2λ + 1)

− 2048
81

sinh(ς + ψ) cosh(ς + ψ)

[
884, 000 cosh6(ς + ψ)− 160, 200 cosh4(ς + ψ) + 85, 170 cosh2(ς + ψ)

− 11, 903

]
µ4 ϑ3λ

Γ(3λ + 1)
+ · · ·

By setting λ = 1, we obtain

J (ς, ψ, ϑ) =
4
3

µ sinh2(ς + ψ− µϑ). (41)

Example 2. Let us assume a nonlinear FZK equation of the form

Dλ
ϑJ (ς, ψ, ϑ) + J 3

ς (ς, ψ, ϑ) + 2J 3
ςςς(ς, ψ, ϑ) + 2J 3

ψψς(ς, ψ, ϑ) = 0, 0 < λ ≤ 1, (42)

with the initial guess

J (ς, ψ, 0) =
3
2

µ sinh

[
1
6
(ς + ψ)

]
.

Upon implementing the YT, we have

Y
(

∂λJ
∂ϑλ

)
= Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
, (43)

which yields

1
uλ
{M(u)− uJ (0)} = Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
, (44)

M(u) = uJ (0) + uλ

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
. (45)

By utilizing the inverse YT, we obtain

J (ς, ψ, ϑ) = J (0) + Y−1

[
uλ

{
Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)}]

=
3
2

µ sinh

[
1
6
(ς + ψ)

]
+ Y−1

[
uλ

{
Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)}]
.

(46)

Utilizing the HPM, we obtain
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∞

∑
k=0

εkJk(ς, ψ, ϑ) =
3
2

µ sinh

[
1
6
(ς + ψ)

]
+ ε

(
Y−1

[
uλY

[
−
(

∞

∑
k=0

εk Hk(J )

)
ς

− 2

(
∞

∑
k=0

εk Hk(J )

)
ςςς

− 2

(
∞

∑
k=0

εk Hk(J )

)
ψψς

]])
.

(47)

In addition, the nonlinear terms obtained by means of He’s polynomial Hk(J ) are as follows:

∞

∑
k=0

εk Hk(J ) = J 3(ς, ψ, ϑ). (48)

Some nonlinear terms are presented below:

H0(J ) = J 3
0 ,

H1(J ) = 3J 2
0 J1,

H2(J ) = 3J 2
0 J2 + 3J0J 2

1 .

On comparing the ε coefficients on both sides, we obtain

ε0 : J0(ς, ψ, ϑ) =
3
2

µ sinh

[
1
6
(ς + ψ)

]
,

ε1 : J1(ς, ψ, ϑ) = Y−1

(
uλY

[
− H0(J )− 2H0(J )− 2H0(J )

])

= −3µ3 sinh2

[
1
6
(ς + ψ)

]
cosh

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
− 3

8
µ3 cosh3

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
,

ε2 : J2(ς, ψ, ϑ) = Y−1

(
uλY

[
− H1(J )− 2H1(J )− 2H1(J )

])

=
3
32

ϑ2λ

Γ(2λ + 1)
µ5 sinh

[
1
6
(ς + ψ)

][
765 cosh4

[
1
6
(ς + ψ)

]
− 729 cosh2

[
1
6
(ς + ψ)

]
+ 91

]]
,

...
The approximate analytical solution obtained by means of the HPTM is as follows:

J (ς, ψ, ϑ) = J0(ς, ψ, ϑ) + J1(ς, ψ, ϑ) + J2(ς, ψ, ϑ) + · · ·

=
3
2

µ sinh

[
1
6
(ς + ψ)

]
− 3µ3 sinh2

[
1
6
(ς + ψ)

]
cosh

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)

− 3
8

µ3 cosh3

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
+

3
32

ϑ2λ

Γ(2λ + 1)
µ5 sinh

[
1
6
(ς + ψ)

][
765 cosh4

[
1
6
(ς + ψ)

]

− 729 cosh2

[
1
6
(ς + ψ)

]
+ 91

]]
+ · · ·

Implementation of YTDM
Upon implementing the YT, we have

Y
{

∂λJ
∂ϑλ

}
= Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
, (49)
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which yields

1
uλ
{M(u)− uJ (0)} = Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
, (50)

M(u) = uJ (0) + uλY

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)
. (51)

By utilizing the inverse YT, we obtain

J (ς, ψ, ϑ) = J (0) + Y−1

[
uλ

{
Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)}]

=
3
2

µ sinh

[
1
6
(ς + ψ)

]
+ Y−1

[
uλ

{
Y

(
−J 3

ς (ς, ψ, ϑ)− 2J 3
ςςς(ς, ψ, ϑ)− 2J 3

ψψς(ς, ψ, ϑ)

)}]
.

(52)

Utilizing the YTDM, we have

J (ς, ϑ) =
∞

∑
m=0
Jm(ς, ψ, ϑ). (53)

The nonlinear term obtained by means of the Adomian polynomial is taken as J 3(ς, ψ, ϑ) =

∑∞
m=0Am. Thus, we have

∞

∑
m=0
Jm(ς, ψ, ϑ) = J (ς, ψ, 0) + Y−1

[
uλY

[
−
(

∞

∑
m=0
Am

)
ς

− 2

(
∞

∑
m=0
Am

)
ςςς

− 2

(
∞

∑
m=0
Am

)
ψψς

]]

=
3
2

µ sinh

[
1
6
(ς + ψ)

]
+ Y−1

[
uλY

[
−
(

∞

∑
m=0
Am

)
ς

− 2

(
∞

∑
m=0
Am

)
ςςς

− 2

(
∞

∑
m=0
Am

)
ψψς

]]
.

(54)

Some nonlinear terms are presented below:

A0 = J 3
0 ,

A1 = 3J 2
0 J1,

A2 = 3J 2
0 J2 + 3J0J 2

1 .

Thus, we obtain the following approximation:

J0(ς, ψ, ϑ) =
3
2

µ sinh

[
1
6
(ς + ψ)

]
.

For m = 0

J1(ς, ψ, ϑ) = −3µ3 sinh2

[
1
6
(ς + ψ)

]
cosh

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
− 3

8
µ3 cosh3

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
.

For m = 1

J2(ς, ψ, ϑ) =
3

32
ϑ2λ

Γ(2λ + 1)
µ5 sinh

[
1
6
(ς + ψ)

][
765 cosh4

[
1
6
(ς + ψ)

]
− 729 cosh2

[
1
6
(ς + ψ)

]
+ 91

]]
.
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Consequently, we determine the series solutions by continuing the same process in order to
calculate the components for (m ≥ 3) as follows:

J (ς, ψ, ϑ) =
∞

∑
m=0
Jm(ς, ψ, ϑ) = J0(ς, ψ, ϑ) + J1(ς, ψ, ϑ) + J2(ς, ψ, ϑ) + · · ·

=
3
2

µ sinh

[
1
6
(ς + ψ)

]
− 3µ3 sinh2

[
1
6
(ς + ψ)

]
cosh

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)

− 3
8

µ3 cosh3

[
1
6
(ς + ψ)

]
ϑλ

Γ(λ + 1)
+

3
32

ϑ2λ

Γ(2λ + 1)
µ5 sinh

[
1
6
(ς + ψ)

][
765 cosh4

[
1
6
(ς + ψ)

]

− 729 cosh2

[
1
6
(ς + ψ)

]
+ 91

]]
+ · · ·

By setting λ = 1, we obtain

J (ς, ψ, ϑ) =
3
2

µ sinh2

[
1
6
(ς + ψ− µϑ)

]
. (55)

6. Numerical Simulation Studies

In this section, we present a numerical analysis to verify the precision of the numerical
solution obtained by the two effective techniques. The third-order series solution was
taken into consideration to assess the corresponding behavior in the proposed approaches.
Figure 1a shows the behavior of the exact solution, while Figure 1b shows the graphical
behavior for the approximative solution derived using the proposed approaches with λ = 1.
A surface plot of approximations for various fractional orders with λ = 0.25, 0.50, 0.75,
and 1 is shown in Figure 1c,d for ϑ = 0.01. We illustrate the behavior of the exact solution
in Figure 2a and the graphical behavior of the approximative solution derived by the
proposed approaches in Figure 2b for λ = 1. Similarly, the surface plot of approximations
for various fractional orders with λ = 0.25, 0.50, 0.75, and 1 is shown in Figure 2c,d for
ϑ = 0.01. The domains for all the figures are ς ∈ [0, 1], ϑ ∈ [0, 0.01], with ψ = 1 and
µ = 0.001. A comparison of the exact and approximative solutions for various values of λ
is shown in Table 1. In Table 2, we compare our solution with the solutions derived by the
perturbation–iteration algorithm (PIA) and residual power series method (RPSM) in terms
of absolute error at µ = 0.001 and λ = 1, as an example. Table 3 represents the comparison
between the exact and the approximate solution for various values of λ, whereas in Table 4
we compare our solution with the solution derived by the variational iteration method
(VIM) in terms of absolute error at µ = 0.001 and λ = 1, as an example. The numerical
simulation is presented to show the precision and demonstrate how the resulting solution
converged to the exact solution as the fractional order transitioned into the classical order.
Finally, we can conclude that the analysis under consideration could help researchers better
understand the nature of various nonlinear and complex problems describing a variety of
events. Both the couple and the system of equations describing real-world situations could
be solved using the proposed techniques and fractional operator.
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Figure 1. Graphical representation of the accuracy of the solutions of Example 1 obtained using the
proposed techniques and various fractional orders.

Figure 2. Graphical representation of the accuracy of the solutions of Example 2 obtained using the
proposed techniques and various fractional orders.
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Table 1. Numerical simulation of the accuracy of the solutions of Example 1 obtained using the
proposed techniques for different orders of λ.

ϑ ς λ = 0.85 λ = 0.90 λ = 0.95 λ = 1 (Approx) λ = 1 (Exact)

0.2 0.002999 0.003012 0.003025 0.003037 0.003037
0.4 0.004747 0.004776 0.004805 0.004835 0.004835

0.01 0.6 0.007327 0.007392 0.007457 0.007524 0.007524
0.8 0.011097 0.011245 0.011392 0.011541 0.011541
1 0.016543 0.016873 0.017203 0.017538 0.017538

0.2 0.002999 0.003012 0.003024 0.003037 0.003037
0.4 0.004746 0.004775 0.004805 0.004835 0.004835

0.02 0.6 0.007324 0.007390 0.007456 0.007524 0.007524
0.8 0.011091 0.011240 0.011388 0.011541 0.011541
1 0.016529 0.016863 0.017195 0.017538 0.017538

0.2 0.002998 0.003011 0.003024 0.003037 0.003037
0.4 0.004745 0.004775 0.004804 0.004835 0.004835

0.03 0.6 0.007322 0.007388 0.007454 0.007524 0.007524
0.8 0.011086 0.011236 0.011384 0.011541 0.011541
1 0.016517 0.016853 0.017187 0.017538 0.017538

0.2 0.002998 0.003011 0.003024 0.003037 0.003037
0.4 0.004744 0.004774 0.004803 0.004835 0.004835

0.04 0.6 0.007319 0.007386 0.007453 0.007524 0.007524
0.8 0.011081 0.011231 0.011381 0.011541 0.011541
1 0.016505 0.016843 0.017179 0.017538 0.017538

0.2 0.002997 0.003010 0.003023 0.003037 0.003037
0.4 0.004743 0.004773 0.004802 0.004835 0.004835

0.05 0.6 0.004743 0.007384 0.007451 0.007524 0.007524
0.8 0.011076 0.011227 0.011377 0.011541 0.011541
1 0.016494 0.016834 0.017171 0.017538 0.017538

Table 2. Comparison between our solution and the solutions derived by the perturbation–iteration
algorithm (PIA) and residual power series method (RPSM) at µ = 0.001 and λ = 1 for example 1 in
terms of absolute error.

ϑ ς ψ PIA Error RPSM Error Our Method Error

0.2 0.1 0.1 3.85217 × 10−7 3.85217 × 10−7 3.8519486000 × 10−7

0.3 0.1 0.1 5.75911 × 10−7 5.75912 × 10−7 5.7583616000 × 10−7

0.4 0.1 0.1 7.65359 × 10−7 7.65352 × 10−7 7.6517330000 × 10−7

0.2 0.6 0.6 4.66337 × 10−5 4.66389 × 10−5 4.6473505000 × 10−5

0.3 0.6 0.6 6.86056 × 10−5 6.86314 × 10−5 6.8073230000 × 10−5

0.4 0.6 0.6 8.98263 × 10−5 8.99046 × 10−5 8.8581596000 × 10−5

0.2 0.9 0.9 5.12131 × 10−4 5.14241 × 10−4 4.9248718000 × 10−4

0.3 0.9 0.9 7.38186 × 10−4 7.48450 × 10−4 6.7502883000 × 10−4

0.4 0.9 0.9 9.57942 × 10−4 9.89139 × 10−4 8.1510249000 × 10−4

Table 3. Numerical simulation of the accuracy of the solutions of Example 2 obtained using the
proposed techniques for different orders of λ.

ϑ ς λ = 0.80 λ = 0.90 λ = 0.95 λ = 1 (Approx) λ = 1 (Exact)

0.2 0.030120 0.030147 0.030173 0.030197 0.030197
0.4 0.035230 0.035259 0.035288 0.035315 0.035315

0.01 0.6 0.040377 0.040410 0.040442 0.040473 0.040473
0.8 0.045568 0.045604 0.045641 0.045675 0.045675
1 0.050807 0.050848 0.050889 0.050928 0.050928
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Table 3. Cont.

ϑ ς λ = 0.80 λ = 0.90 λ = 0.95 λ = 1 (Approx) λ = 1 (Exact)

0.2 0.030119 0.030146 0.030172 0.030195 0.030195
0.4 0.035229 0.035258 0.035288 0.035313 0.035313

0.02 0.6 0.040376 0.040409 0.040441 0.040470 0.040470
0.8 0.045566 0.045603 0.045640 0.045672 0.045672
1 0.050806 0.050847 0.050888 0.050925 0.050925

0.2 0.030118 0.030145 0.030172 0.030192 0.030192
0.4 0.035228 0.035257 0.035287 0.035310 0.035310

0.03 0.6 0.040375 0.040408 0.040441 0.040467 0.040467
0.8 0.045565 0.045602 0.045639 0.045670 0.045670
1 0.050804 0.050846 0.050887 0.050923 0.050923

0.2 0.030117 0.030144 0.030171 0.030190 0.030190
0.4 0.035227 0.035256 0.035286 0.035308 0.035308

0.04 0.6 0.040374 0.040407 0.040440 0.040465 0.040465
0.8 0.045564 0.045601 0.045638 0.045667 0.045667
1 0.050803 0.050845 0.050886 0.050920 0.050920

0.2 0.030116 0.030144 0.030170 0.030187 0.030187
0.4 0.035226 0.035256 0.035285 0.035305 0.035305

0.05 0.6 0.040372 0.040406 0.040439 0.040462 0.040462
0.8 0.045563 0.045600 0.045637 0.045664 0.045664
1 0.050802 0.050843 0.050885 0.050917 0.050917

Table 4. Comparison between our solution and the solution derived by the variational iteration
method (VIM) at µ = 0.001 and λ = 1 for example 2 in terms of absolute error.

ϑ ς ψ VIM Error Our Method Error

0.2 0.1 0.1 5.00091 × 10−5 4.9951950000 × 10−8

0.3 0.1 0.1 5.00091 × 10−5 7.4927920000 × 10−8

0.4 0.1 0.1 5.00091 × 10−5 9.9903860000 × 10−8

0.2 0.6 0.6 3.02003 × 10−4 5.0898600000 × 10−8

0.3 0.6 0.6 3.02003 × 10−4 7.6348000000 × 10−8

0.4 0.6 0.6 3.02003 × 10−4 1.0179720000 × 10−7

0.2 0.9 0.9 4.56780 × 10−4 5.2122800000 × 10−8

0.3 0.9 0.9 4.56780 × 10−4 7.8184000000 × 10−8

0.4 0.9 0.9 4.56780 × 10−4 1.0424500000 × 10−7

7. Conclusions

The time-fractional ZK equation, which governs the nonlinear evolution of ion-acoustic
waves in a magnetized plasma with hot and cold electrons, was investigated in this study
using the proposed YTD and HPT methods. Both negative (rarefactive) and positive
(compressive) potential structures that were symmetric about the origin were produced
according to the different physical properties. Due to the limited number of estimations
used in the proposed procedures, they were more effective than alternative analytical
approaches. We gained a clear understanding of the technique, because it entailed directly
applying the YT to the anticipated problem before modifying the ADM and HPM. The
approximate solution to the considered problem was then derived using the inverse Yang
transform. We presented 2D and 3D plots to illustrate the compatibility of the generated
model and the precise solutions to the problems, respectively. The results obtained by
existing studies were very well in line with the solutions presented in examples 1 and 2 in
this paper. The simulations demonstrated that the proposed techniques attained remarkable
agreement, suggesting that the proposed methods are quite effective and simple to use
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for obtaining approximative analytical solutions to a variety of fractional physical and
biological models.

Author Contributions: Conceptualization, A.H.G., F.M. and A.K.; methodology, A.H.G., F.M. and
A.K.; software, A.K.; validation, A.H.G., F.M. and A.K.; formal analysis, A.K.; investigation, A.K.;
resources, A.H.G., F.M. and A.K.; data curation, A.H.G., A.K.; writing—original draft preparation,
A.K.; writing—review and editing, A.K.; visualization, A.H.G., A.K.; supervision, A.H.G., F.M.;
project administration, F.M.; funding acquisition, F.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The numerical data used to support the findings of this study are
included within the article.

Acknowledgments: We would like to thank the reviewers for their careful reading of our paper and
constructive suggestions for improving its quality. Additionally, the author Fatemah Mofarreh ex-
presses her gratitude to the Princess Nourah bint Abdulrahman University Researcher Support Project
(number PNURSP2023R27), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Riemann, G.F.B. Versuch einer allgemeinen Auffassung der Integration und Differentiation, Gesammelte Mathematische Werke; Springer:

Leipzig, Germany, 1896.
2. Liouville, J. Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveau genre de calcul pour resoudre ces

questions. J. Ecole Polytech. 1832, 13, 1–69.
3. Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969.
4. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
5. Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993.
6. Sene, N.; Abdelmalek, K. Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional

derivative. Chaos Solitons Fractals 2019, 127, 158–164. [CrossRef]
7. Murio, D.A. Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl.

Sci. Eng. 2009, 17, 229–243. [CrossRef]
8. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions

and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520.
9. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006; Volume 204.
10. Legnani, W.; Moschandreou, T.E.; Reyhanoglu, M. Nonlinear Systems: Theoretical Aspects and Recent Applications; IntechOpen:

London, UK, 2020.
11. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
12. Nasrolahpour, H. A note on fractional electrodynamics. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2589–2593. [CrossRef]
13. Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726.

[CrossRef]
14. Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons and other solutions to the conformable space-time fractional

Fokas-Lenells equation. Optik 2018, 167, 150–156. [CrossRef]
15. Li, Y.; Liub, F.; Turner, I.W.; Li, T. Time-fractional diffusion equation for signal smoothing. Appl. Math. Comput. 2018, 326, 108–116.

[CrossRef]
16. Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Ali Khan, R. Numerical multistep approach for solving fractional partial

differential equations. Int. J. Comput. Methods 2017, 14, 1750029. [CrossRef]
17. Sheng, H.; Chen, Y.; Qiu, T. Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications; Springer Science

& Business Media: Berlin, Germany, 2011.
18. Sunthrayuth, P.; Alyousef, H.A.; El-Tantawy, S.A.; Khan, A.; Wyal, N. Solving Fractional-Order Diffusion Equations in a Plasma

and Fluids via a Novel Transform. J. Funct. Spaces 2022, 2022, 1899130. [CrossRef]
19. Shah, N.A.; El-Zahar, E.R.; Akgül, A.; Khan, A.; Kafle, J. Analysis of fractional-order regularized long-wave models via a novel

transform. J. Funct. Spaces 2022, 2022, 2754507. [CrossRef]
20. Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Garcia Guirao, J.L. Numerical solutions caused by DGJIM and ADM methods for

multi-term fractional BVP involving the generalized ψ-RL-operators. Symmetry 2021, 13, 532. [CrossRef]
21. Amara, A.; Etemad, S.; Rezapour, S. Approximate solutions for a fractional hybrid initial value problem via the Caputo

conformable derivative. Adv. Differ. Equ. 2020, 2020, 608. [CrossRef]

http://doi.org/10.1016/j.chaos.2019.06.036
http://dx.doi.org/10.1080/17415970802082872
http://dx.doi.org/10.1016/j.cnsns.2013.01.005
http://dx.doi.org/10.1016/j.jmaa.2006.10.040
http://dx.doi.org/10.1016/j.ijleo.2018.04.015
http://dx.doi.org/10.1016/j.amc.2018.01.007
http://dx.doi.org/10.1142/S0219876217500293
http://dx.doi.org/10.1155/2022/1899130
http://dx.doi.org/10.1155/2022/2754507
http://dx.doi.org/10.3390/sym13040532
http://dx.doi.org/10.1186/s13662-020-03072-3


Axioms 2023, 12, 609 17 of 18

22. Etemad, S.; Shikongo, A.; Owolabi, K.M.; Tellab, B.; Avci, I.; Rezapour, S.; Agarwal, R.P. A new fractal-fractional version of giving
up smoking model: Application of Lagrangian piece-wise interpolation along with asymptotical stability. Mathematics 2022,
10, 4369. [CrossRef]

23. Ogata, K. Modern Control Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2010; Volume 5.
24. Owyed, S.; Abdou, M.A.; Abdel-Aty, A.H.; Alharbi, W.; Nekhili, R. Numerical and approximate solutions for coupled time

fractional nonlinear evolutions equations via reduced differential transform method. Chaos Solitons Fractals 2020, 131, 109474.
[CrossRef]

25. Song, L.; Zhang, H. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys. Lett. A 2007,
367, 88–94. [CrossRef]

26. Arqub, O.A.; El-Ajou, A. Solution of the fractional epidemic model by homotopy analysis method. J. King Saud Univ.-Sci. 2013, 25,
73–81. [CrossRef]

27. Das, S.; Vishal, K.; Gupta, P.K.; Yildirim, A. An approximate analytical solution of time-fractional telegraph equation. Appl. Math.
Comput. 2011, 217, 7405–7411. [CrossRef]

28. Jassim, H.K.; Shareef, M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio
fractional operator. J. Math. Comput. Sci. 2021, 23, 58–66. [CrossRef]

29. Mahor, T.C.; Mishra, R.; Jain, R. Analytical solutions of linear fractional partial differential equations using fractional Fourier
transform. J. Comput. Appl. Math. 2021, 385, 113202. [CrossRef]

30. Nonlaopon, K.; Alsharif, A.M.; Zidan, A.M.; Khan, A.; Hamed, Y.S.; Shah, R. Numerical investigation of fractional-order
Swift-Hohenberg equations via a Novel transform. Symmetry 2021, 13, 1263. [CrossRef]

31. Botmart, T.; Agarwal, R.P.; Naeem, M.; Khan, A.; Shah, R. On the solution of fractional modified Boussinesq and approximate
long wave equations with non-singular kernel operators. AIMS Math. 2022, 7, 12483–12513. [CrossRef]

32. Zheng, B.; Wen, C. Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv.
Differ. Equ. 2013, 2013, 199. [CrossRef]

33. Alderremy, A.A.; Aly, S.; Fayyaz, R.; Khan, A.; Shah, R.; Wyal, N. The analysis of fractional-order nonlinear systems of third order
KdV and Burgers equations via a novel transform. Complexity 2022, 2022, 4935809. [CrossRef]

34. Ganie, A.H.; AlBaidani, M.M.; Khan, A. A Comparative Study of the Fractional Partial Differential Equations via Novel Transform.
Symmetry 2023, 15, 1101. [CrossRef]

35. Al-Sawalha, M.M.; Khan, A.; Ababneh, O.Y.; Botmart, T. Fractional view analysis of Kersten-Krasil’shchik coupled KdV-mKdV
systems with non-singular kernel derivatives. AIMS Math. 2022, 7, 18334–18359. [CrossRef]

36. Ganie, A.H.; Houas, M.; AlBaidani, M.M.; Fathima, D. Coupled system of three sequential Caputo fractional differential equations:
Existence and stability analysis. Math. Methods Appl. Sci. 2023, early view. [CrossRef]

37. AL-Smadi, M.H.; Gumah, G.N. On the homotopy analysis method for fractional SEIR epidemic model. Res. J. Appl. Sci. Eng.
Technol. 2014, 7, 3809–3820. [CrossRef]

38. Kolokoltsov, V.N. The probabilistic point of view on the generalized fractional partial differential equations. Fract. Calc. Appl.
Anal. 2019, 22, 543–600. [CrossRef]

39. Martin, O. Stability approach to the fractional variational iteration method used for the dynamic analysis of viscoelastic beams. J.
Comput. Appl. Math. 2019, 346, 261–276. [CrossRef]

40. Khader, M.; Kumar, S.; Abbasbandy, S. Fractional homotopy analysis transforms method for solving a fractional heat-like physical
model. Walailak J. Sci. Technol. (WJST) 2016, 13, 337–353.

41. Haq, F.; Shah, K.; ur Rahman, G.; Shahzad, M. Numerical solution of fractional order smoking model via Laplace Adomian
decomposition method. Alex. Eng. J. 2018, 57, 1061–1069. [CrossRef]

42. Çenesiz, Y.; Tasbozan, O.; Kurt, A. Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari
system. Tbilisi Math. J. 2017, 10, 117–125. [CrossRef]

43. Zakharov, V.; Kuznetsov, E. On three-dimensional solitons. Sov. Phys. 1974, 39, 285–288.
44. Monro,S.; Parkes,E.J. The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys.

1999, 62, 305–317. [CrossRef]
45. Monro, S.; Parkes, E.J. Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 2000,

64, 41126. [CrossRef]
46. Molliq, R.Y.; Noorani, M.S.M.; Hashim, I.; Ahmad, R.R. Approximate solutions of fractional Zakharov-Kuznetsov equations by

VIM. J. Comput. Appl. Math. 2009, 233, 103–108. [CrossRef]
47. Yildirim, A.; Gulkanat, Y. Analytical approach to fractional Zakharov-Kuznetsov equations by He’s homotopy perturbation

method. Commun. Theor. Phys. 2010, 53, 1005.
48. Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Laplace Transform and Applications. In Local Fractional Integral

Transforms and Their Applications; Academic Press: Cambridge, MA, USA, 2016; pp. 147–178.
49. Adomian, G. Nonlinear Stochastis System Theory and Applications to Physics Kluwer; Academic Publishers: Cambridge, MA,

USA, 1989.
50. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer: Dordrecht, The Netherlands, 1994.
51. Mishra, N.K.; AlBaidani, M.M.; Khan, A.; Ganie, A.H. Two Novel Computational Techniques for Solving Nonlinear Time-

Fractional Lax’s Korteweg-de Vries Equation. Axioms 2023, 12, 400. [CrossRef]

http://dx.doi.org/10.3390/math10224369
http://dx.doi.org/10.1016/j.chaos.2019.109474
http://dx.doi.org/10.1016/j.physleta.2007.02.083
http://dx.doi.org/10.1016/j.jksus.2012.01.003
http://dx.doi.org/10.1016/j.amc.2011.02.030
http://dx.doi.org/10.22436/jmcs.023.01.06
http://dx.doi.org/10.1016/j.cam.2020.113202
http://dx.doi.org/10.3390/sym13071263
http://dx.doi.org/10.3934/math.2022693
http://dx.doi.org/10.1186/1687-1847-2013-199
http://dx.doi.org/10.1155/2022/4935809
http://dx.doi.org/10.3390/sym15051101
http://dx.doi.org/10.3934/math.20221010
http://dx.doi.org/10.1002/mma.9278
http://dx.doi.org/10.19026/rjaset.7.738
http://dx.doi.org/10.1515/fca-2019-0033
http://dx.doi.org/10.1016/j.cam.2018.06.024
http://dx.doi.org/10.1016/j.aej.2017.02.015
http://dx.doi.org/10.1515/tmj-2017-0010
http://dx.doi.org/10.1017/S0022377899007874
http://dx.doi.org/10.1017/S0022377800008771
http://dx.doi.org/10.1016/j.cam.2009.03.010
http://dx.doi.org/10.3390/axioms12040400


Axioms 2023, 12, 609 18 of 18

52. Mishra, N.K.; AlBaidani, M.M.; Khan, A.; Ganie, A.H. Numerical Investigation of Time-Fractional Phi-Four Equation via Novel
Transform. Symmetry 2023, 15, 687. [CrossRef]

53. He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [CrossRef]
54. He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear

Mech. 2000, 35, 37–43. [CrossRef]
55. He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [CrossRef]
56. Podlubny, I.; Kacenak, M. Isoclinal matrices and numerical solution of fractional differential equations. In Proceedings of the 2001

European Control Conference (ECC), Porto, Portugal, 4–7 September 2001.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym15030687
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0020-7462(98)00085-7
http://dx.doi.org/10.1016/S0096-3003(01)00312-5

	Introduction
	Preliminaries
	Configuration for HPTM
	Configuration for YTDM
	Numerical Applications
	Numerical Simulation Studies
	Conclusions
	References

