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Abstract: In this research work, we suggest two mathematical models that take into account (i) two
categories of target cells, CD4+T cells and macrophages, and (ii) two modes of infection transmissions,
the direct virus-to-cell (VTC) method and cell-to-cell (CTC) infection transmission, where CTC is
an effective method of spreading human immunodeficiency virus type-1 (HIV-1), as with the VTC
method. The second model incorporates four time delays. In both models, the presence of a
bounded and positive solution of the biological model is investigated. The existence conditions of
all equilibria are established. The basic reproduction number R0 that identifies a disease index is
obtained. Lyapunov functions are utilized to verify the global stability of all equilibria. The theoretical
findings are verified through numerical simulations. According to the outcomes, the trajectories of
the solutions approach the infection-free equilibrium and infection-present equilibrium whenR0 ≤ 1
and R0 > 1, respectively. Further, we study the sensitivity analysis to investigate how the values
of all the parameters of the suggested model affectR0 for given data. We discuss the impact of the
time delay on HIV-1 progression. We find that a longer time delay results in suppression of the HIV-1
infection and vice versa.

Keywords: HIV-1 infection; Lyapunov function; global stability; time delay; sensitivity analysis
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1. Introduction

Human immunodeficiency virus type-1 (HIV-1) has been an area of attention in many
studies for a long time; HIV-1 causes Acquired Immunodeficiency Syndrome (AIDS). World
HIV-1 prevalence reached 38.4 million people by the end of 2021, with approximately 680,000
of people dying from HIV-1-related diseases and an estimated 1.5 million people acquiring
HIV-1 [1]. HIV-1 is an RNA virus that targets the CD4+T cells of the immune system.
Despite efforts by scientists to create measures to battle this virus as well as research on its
immunological and biological features and clinical outcomes, the study of HIV-1 dynamics
and the identification of factors that control the infection process are still of interest.

Various mathematical models of numerous viral infections have confirmed their effec-
tiveness in describing virus dynamics within hosts (see, e.g., [2–6]). Wide research on HIV
infection has been carried out to understand virus dynamics between hosts [7–10]. Further-
more, there are other studies that have examined the dynamics of HIV-1, the progression of
infection, and the dynamics of virus and immune system interaction within hosts [11–14].
Modeling transmissible diseases mathematically has become an important tool in analyzing
and controlling infectious diseases. Models and simulations can help construct and test
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hypotheses, evaluate quantitative hypotheses, provide specific answers, establish the impact
of parameter changes, and provide parameter estimations [15,16].

The traditional method of HIV-1 transmission is through virus-to-cell (VTC) contact,
but recent studies indicate that HIV-1 can also be efficiently spread via cell-to-cell contact.
It is reported that the CTC transmission mechanism can result in roughly 60% of the
total virus infection and that this infection mode shortens the period of virus creation by
0.9 times [17]. Therefore, mathematical modeling should take into account the CTC viral
infection method, which may be crucial to the virus’s ability to spread. Culshaw et al. [18]
built a two-dimensional HIV-1 model with the CTC mode. Then, researchers started
looking into HIV-1 mathematical models that account for both VTC and CTC transmission
modes [19–21]. Although the mathematical analysis of models with CTC transmission
is more difficult, the theoretical conclusions are more plentiful. These models can more
accurately depict the biological process of HIV-1 infection.

The standard HIV-1 dynamics model assumes only that the virus interacts with one
type of cell [22]; this model is based on ordinary differential equations and has been
extended to incorporate the existing time delay that occurs between when a virus enters a
cell and when new particles are created [12,23–26]. It was reported in [11] that the HIV-1
virus is capable of infecting both macrophages and CD4+T cells. An HIV-1 infection model
with two target cells was proposed in [27]; Ref. [28] contains five variables describing the
densities of uninfected CD4+T cells (x1), infected CD4+T cells (y1), uninfected macrophages
(x2), infected macrophages (y2), and free HIV-1 particles (v), where (x1, y1, x2, y2, v) =
(x1(t), y1(t), x2(t), y2(t), v(t)) and t is the time. The model is formulated as:

ẋ1 = α1︸︷︷︸
production of CD4+T cells

− γ1x1︸︷︷︸
death

− β1x1v︸ ︷︷ ︸
HIV-1 infectious transmission

, (1)

ẏ1 = β1x1v︸ ︷︷ ︸
HIV-1 infectious transmission

− ϑ1y1︸︷︷︸
death

, (2)

ẋ2 = α2︸︷︷︸
production of macrophages

− γ2x2︸︷︷︸
death

− β2x2v︸ ︷︷ ︸
HIV-1 infectious transmission

, (3)

ẏ2 = β2x2v︸ ︷︷ ︸
HIV-1 infectious transmission

− ϑ2y2︸︷︷︸
death

, (4)

v̇ = λ1ϑ1y1 + λ2ϑ2y2︸ ︷︷ ︸
production of HIV-1 from infected CD4+T cells and macrophages

− ϕv︸︷︷︸
death

. (5)

Elaiw [29] provided an analysis study of the mathematical model (1)–(5). The model
has been extended in different directions by including an eclipse phase [27,29], immune
response [30,31], time delay [30,32], and optimal drug schedules [33–35].

In the literature, all HIV-1 studies with two target cells have considered only VTC
infection as the mode of infection. Therefore, the purpose of this research work is to develop
and analyze two dynamical HIV-1 models with two categories of target cells and two modes
of infection: VTC and CTC. The second model is an extension of the first one by considering
the effects of four types of time delays. We aim to determine the conditions in which the
equilibrium points reach the state of stability, the effect of including the delay time on the
behavior of solutions of the introduced model, and also the extent to which the parameters
of the model influence the basic reproduction numberR0 for given data.

The paper is structured as follows: The introduction is the first section. In Section 2,
we introduce the proposed HIV-1 model with two types of target cells and two modes
of infection. In Section 3, we incorporate into the proposed first model the discrete time
delays. In both Sections 2 and 3 and for the proposed models; the basic properties are
established—such as the solutions’ nonnegativity and boundedness—and calculations are
performed to determine the parameter R0 along with the probable equilibrium points
and the conditions under which they exist, and we examine the global stability of the
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equilibria by using appropriate Lyapunov functions and applying the LaSalle invariance
principle. In Section 4, some numerical simulations are carried out to ensure the theoretical
results. In addition to analyzing sensitivity, we examine the stability of equilibria and test
key parameters and time delays to determine how they affect the dynamics of the model.
Finally, conclusions are provided in Section 5.

2. The Model

In this section, the authors reformulate and analyze the HIV-1 dynamics model to
depict the dispersion of the HIV-1 virus in the host through two ways of transmission of
the infection (VTC and CTC) and in the presence of two types of target cells (CD4+T cells
and macrophages).

2.1. Model Formulation

The proposed HIV-1 infection model incorporates both VTC and CTC transmission
and two categories of target cells: CD4+T cells and macrophages. The schematic diagram
for the interaction is presented in Figure 1, and the model is as follows:

ẋ` = α` − γ`x` − β`x`v− β̄`x`y`, ` = 1, 2, (6)

ẏ` = β`x`v + β̄`x`y` − ϑ`y`, ` = 1, 2, (7)

v̇ =
2

∑
`=1

λ`ϑ`y` − ϕv, (8)

where β̄1x1y1 and β̄2x2y2 are the CTC infection rates of the CD4+T cells and macrophages,
respectively. When the CTC infection mode is neglected, then Model (6)–(8) leads to Model
(1)–(5).

Figure 1. Schematic diagram of two target cells model with VTC and CTC infections (Model (6)–(8)).

2.2. Invariant Region

Through the following lemma, we prove that Model (6)–(8) is biologically well-defined.

Lemma 1. Let ζ` > 0, ` = 1, 2, 3; then, there exists a positively invariant compact set for Model
(6)–(8):

Ω =
{
(x1, y1, x2, y2, v) ∈ R5

≥0 : 0 ≤ x1, y1 ≤ ζ1, 0 ≤ x2, y2 ≤ ζ2, 0 ≤ v ≤ ζ3

}
.
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Proof. We have

ẋ`|(x`=0) = α` > 0, ` = 1, 2,

ẏ`|(y`=0) = β`x`v ≥ 0, for all x`, v ≥ 0, ` = 1, 2,

v̇|(v=0) =
2

∑
`=1

λ`ϑ`y` ≥ 0, for all y` ≥ 0, ` = 1, 2;

thus, the positively invariant property of R5
≥0 with respect to system (6)–(8) has been proofed.

Next, let F` = x` + y`. Then

Ḟ` = ẋ` + ẏ` = α` − γ`x` − ϑ`y` ≤ α` − δ`F`,

where, δ` = min{γ`, ϑ`}, ` = 1, 2. Then

F`(t) ≤ e−δ`t
(

F`(0)−
α`
δ`

)
+

α`
δ`

.

This shows that 0 ≤ F`(t) ≤ ζ` for all t ≥ 0 if F`(0) ≤ ζ`, where ζ` =
α`
δ`

. Consequently,
0 ≤ x`(t), y`(t) ≤ ζ` for all t ≥ 0 if x`(0) + y`(0) ≤ ζ`, ` = 1, 2. Further,

v̇(t) =
2

∑
`=1

λ`ϑ`y`(t)− ϕv(t) ≤
2

∑
`=1

λ`ϑ`ζ` − ϕv(t);

thus, 0 ≤ v(t) ≤ ζ3 for all t ≥ 0 if v(0) ≤ ζ3, where ζ3 =
2
∑
`=1

λ`ϑ`ζ`
ϕ

. This guarantees the

boundedness of x`(t), y`(t) and v(t), ` = 1, 2.

2.3. Equilibria

To calculate the equilibrium points of System (6)–(8), we solve the following system:

0 = α` − γ`x` − β`x`v− β̄`x`y`, ` = 1, 2, (9)

0 = β`x`v + β̄`x`y` − ϑ`y`, ` = 1, 2, (10)

0 =
2

∑
`=1

λ`ϑ`y` − ϕv; (11)

then, we obtain that System (6)–(8) has two equilibrium points:

(i) The infection-free equilibrium (IFE) Π0 = (x0
1, 0, x0

2, 0, 0), where x0
` =

α`
γ`

, ` = 1, 2,
(ii) The infection-present equilibrium (IPE) Π∗ = (x∗1 , y∗1 , x∗2 , y∗2 , v∗), where

x∗` =
α`

γ` + β`v∗ + β̄`y∗`
, y∗` =

−B` +
√

B2
` + 4A`C`

2A`
, (12)

and
A` = ϑ` β̄`, B` = v∗ϑ`β` + ϑ`γ` − β̄`α`, C` = v∗β`α` (13)

for all ` = 1, 2, in which v∗ satisfies this equation:

ϕv∗ =
2

∑
`=1

λ`ϑ`y∗` . (14)

The basic reproduction number R0: In infectious disease studies, the basic repro-
duction number, abbreviated as R0, is a measure used to describe the contagiousness of
transmissibility of an infectious disease. R0 signifies the average number of cells that are
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going to be infected by a cell that is already infected and is introduced into a suscepti-
ble cell. Utilizing the next-generation-matrix method approach described in [36], R0 of
System (6)–(8) can be determined as follows:

The Jacobian of the matrix of new infection terms at IFE is given by:

F =

 β̄1x0
1 0 β1x0

1
0 β̄2x0

2 β2x0
2

0 0 0

,

and the Jacobian of the matrix of the other terms at IFE is as follows:

∇ =

 ϑ1 0 0
0 ϑ2 0

−λ1ϑ1 −λ2ϑ2 ϕ

.

The basic reproduction number is calculated as:

R0 = ρ
(
F∇−1

)
where the matrix F∇−1 is obtained as:

F∇−1 =


β̄1x0

1
ϑ1

+
β1x0

1λ1
ϕ

β1x0
1λ2

ϕ
β1x0

1
ϕ

β2x0
2λ1

ϕ
β̄2x0

2
ϑ2

+
β2x0

2λ2
ϕ

β2x0
2

ϕ

0 0 0

,

and ρ
(
F∇−1) refers to the spectral radius of F∇−1. Hence,

R0 =
1
2

(
Φ̄ + Ψ̄ +

√
(Φ̄− Ψ̄)

2 + 4φ̄bψ̄b

)
, (15)

where

Φ̄ = φ̄a + φ̄b, Ψ̄ = ψ̄a + ψ̄b,

φ̄a =
β̄1x0

1
ϑ1

, φ̄b =
β1x0

1λ1

ϕ
, ψ̄a =

β̄2x0
2

ϑ2
, ψ̄b =

β2x0
2λ2

ϕ
. (16)

In the following Lemmas, we show the condition when v∗ is positive.

Lemma 2. Suppose thatR0 > 1. If Φ̄ < 1, Ψ̄ < 1, then M̄ = φ̄b
1−φ̄a

+ ψ̄b
1−ψ̄a

> 1.

Proof. LetR0 > 1, then

1
2

(
Φ̄ + Ψ̄ +

√
(Φ̄− Ψ̄)

2 + 4φ̄bψ̄b

)
> 1

=⇒
√
(Φ̄− Ψ̄)

2 + 4φ̄bψ̄b > 2− (Φ̄ + Ψ̄) > 0

=⇒ (Φ̄− Ψ̄)
2 + 4φ̄bψ̄b > 4− 4(Φ̄ + Ψ̄) + (Φ̄ + Ψ̄)

2 > 0

=⇒ φ̄b + ψ̄b − φ̄bψ̄a − φ̄aψ̄b > (1− φ̄a)(1− ψ̄a). (17)
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Since Φ̄ < 1, Ψ̄ < 1, then 1− φ̄a > 0 and 1− ψ̄a > 0. Therefore, (17) can be written
as follows:

φ̄b + ψ̄b − φ̄bψ̄a − φ̄aψ̄b
(1− φ̄a)(1− ψ̄a)

=
φ̄b

(1− φ̄a)
+

ψ̄b
(1− ψ̄a)

= M̄ > 1.

Lemma 3. Suppose thatR0 > 1, then the IFE Π∗ exists.

Proof. First, we have that any equilibrium exists that satisfies Equations (9)–(11). In the
case of the equilibrium Π∗, we have v 6= 0; then, from Equation (11), we find

2

∑
`=1

λ`ϑ`y`
ϕ
− v = 0. (18)

Adding Equations (9) and (10), we get

ϑ`y` = α` − γ`x`, ` = 1, 2. (19)

Substituting from Equation (19) into Equation (18), we obtain

2

∑
`=1

λ`α`
ϕ
−

2

∑
`=1

λ`γ`x`
ϕ

− v = 0.

Since x` = x`(v), y` = y`(v), ` = 1, 2, then we can define a function G(v) as:

G(v) =
2

∑
`=1

λ`α`
ϕ
−

2

∑
`=1

λ`γ`x`(v)
ϕ

− v, (20)

in which x`, y` satisfy Equations (9)–(11) for ` = 1, 2.
Now, we need to show that ∃ v∗ > 0 such that G(v∗) = 0 as follows:

If v = v̌ =
2
∑
`=1

λ`α`
ϕ > 0, then x`(v̌) > 0, y`(v̌) > 0, ` = 1, 2 andG(v̌) = −

2
∑
`=1

λ`γ`x`(v̌)
ϕ < 0.

Next, by calculating G(0) and G ′(0), we get:

G(0) =
2

∑
`=1

λ`α`
ϕ
−

2

∑
`=1

λ`γ`x`(0)
ϕ

=
λ1γ1x0

1
ϕ

1− 2

2− (1− φ̄a) +
√
(1− φ̄a)

2

+
λ2γ2x0

2
ϕ

1− 2

2− (1− ψ̄a) +
√
(1− ψ̄a)

2

,

G ′(0) = −
2

∑
`=1

λ`γ`

ϕ
x′`(0)− 1

=
λ1x0

1β1

2ϕ

√
(1− φ̄a)

2 + (1 + φ̄a)(
1 +

√
(1−φ̄a)

2−(1−φ̄a)

2

)2√
(1− φ̄a)

2

+
λ2x0

2β2

2ϕ

√
(1− ψ̄a)

2 + (1 + ψ̄a)(
1 +

√
(1−ψ̄a)

2−(1−ψ̄a)

2

)2√
(1− ψ̄a)

2

− 1.

In the next step, we calculate all possible cases of the two functions G(0), G ′(0), and
the results are provided by Table 1. As shown in Table 1, the function G(v) in Cases (1–3) is
strictly increasing at v = 0, and G(0) > 0 in Cases (4–6), while G(v̌) has a negative value.
This means that in all possible cases ∃ v∗ ∈ (0, v̌) satisfying G(v∗) = 0 if the condition
R0 > 1. Therefore, from Equations (12)–(13), we have x∗` > 0, y∗` > 0, v∗ > 0, ` = 1, 2. Thus,
the endemic equilibrium Π∗ exists whenR0 > 1.
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We conclude that for System (6)–(8):

(i) IfR0 ≤ 1, then there will be only one equilibrium: Π0;
(ii) IfR0 > 1, then there will be two equilibria: Π0 and Π∗.

Table 1. Functions G(0) and G ′(0) and their corresponding values for different conditions.

Case Conditions G(0) G ′(0)

1 φ̄a = 1, ψ̄a ≤ 1 0 +∞

2 φ̄a ≤ 1, ψ̄a = 1 0 +∞

3 φ̄a < 1, ψ̄a < 1 0 M̄− 1 > 0 (from Lemma 2)

4 φ̄a ≤ 1, ψ̄a > 1 λ2γ2x0
2

ϕ

(
ψ̄a − 1

ψ̄a

)
> 0 −

5 φ̄a > 1, ψ̄a ≤ 1 λ1γ1x0
1

ϕ

(
φ̄a − 1

φ̄a

)
> 0 −

6 φ̄a > 1, ψ̄a > 1 λ1γ1x0
1

ϕ

(
φ̄a − 1

φ̄a

)
+

λ2γ2x0
2

ϕ

(
ψ̄ac − 1

ψ̄a

)
> 0 −

2.4. Global Properties

The stability of a system is an important characteristic of its qualitative behavior.
Several stability theories are used in the study of dynamic systems. Among the most
important stability concepts is Lyapunov stability. Using this concept, we can maintain the
future states of a system arbitrarily close to the equilibrium by simply taking the initial
condition sufficiently close to the equilibrium.

A major role is played by Lyapunov functions when studying the stability of dynamical
systems. Many researchers have applied Lyapunov’s method to analyze the stability of
nonlinear systems over the last century [37], and it has recently been widely used in
many studies since this method has many advantages [38,39], including (i) Lyapunov
theory is a useful tool when studying uncertain (especially nonlinear) systems with time-
varying parameters, (ii) the theory provides procedures that are both efficient and insightful,
(iii) in the case of important classes of problems and specific classes of functions, the
theory is underpinned by suitable numerical methods such as those based on linear matrix
inequalities (LMIs), and (iv) this method does not need to find the actual solution.

In the following, and based on Lyapunov’s method and LaSalle’s invariance prin-
ciple (LIP) [40–42], we prove the global stability of System (6)–(8) at the infection-free
equilibrium (IFE) Π0 and at the disease infection point (IPE) Π∗. Let Γ

′
` be the largest

invariant subset of Γ` =
{
(x1, x2,y1, y2, v) : dΞ`

dt = 0
}

, where ` = 1, 2. Further, we define
the function Θ(ξ) = ξ − 1− ln ξ. For the purpose of proving global stability, we utilize the
following Lemma:

Lemma 4. Suppose thatR0 ≤ 1; then,

(i) φ̄a ≤ 1, φ̄b ≤ 1, ψ̄a ≤ 1, and ψ̄b ≤ 1
(ii) if M = Φ̄ + Ψ̄− Φ̄Ψ̄ + φ̄bψ̄b; thus, 0 < M ≤ 1.

Proof. (i) LetR0 ≤ 1, then

1 ≥ 1
2

(
Φ̄ + Ψ̄ +

√
(Φ̄− Ψ̄)

2 + 4φ̄bψ̄b

)
≥ 1

2

(
Φ̄ + Ψ̄ +

√
(Φ̄− Ψ̄)

2
)

.
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If Φ̄ ≥ Ψ̄, then

1 ≥ 1
2
(Φ̄ + Ψ̄ + (Φ̄− Ψ̄))

= Φ̄;

that is φ̄a ≤ 1, φ̄b ≤ 1, and then Ψ̄ ≤ 1.
Similarly, if Ψ̄ ≥ Φ̄, then

1 ≥ 1
2
(Φ̄ + Ψ̄ + (Ψ̄− Φ̄))

= Ψ̄;

thus, we have ψ̄a ≤ 1,ψ̄b ≤ 1, and then, Φ̄ ≤ 1.
(ii) Since Φ̄ ≤ 1 and Ψ̄ ≤ 1, then Φ̄ + Ψ̄ ≤ 2. Additionally, we haveR0 ≤ 1 that is

0 <
1
2

(
Φ̄ + Ψ̄ +

√
(Φ̄− Ψ̄)

2 + 4φ̄bψ̄b

)
≤ 1

=⇒ 4(Φ̄ + Ψ̄)− (Φ̄ + Ψ̄)
2 < 4(Φ̄ + Ψ̄)− (Φ̄ + Ψ̄)

2 + (Φ̄− Ψ̄)
2 + 4φ̄bψ̄b ≤ 4

=⇒ (Φ̄ + Ψ̄)

[
1− 1

4
(Φ̄ + Ψ̄)

]
< (Φ̄ + Ψ̄)− Φ̄Ψ̄ + φ̄bψ̄b ≤ 1;

here, Φ̄ + Ψ̄ > Φ̄Ψ̄ since Φ̄ ≤ 1, Ψ̄ ≤ 1. Consequently,

=⇒ 0 < Φ̄ + Ψ̄− Φ̄Ψ̄ + φ̄bψ̄b ≤ 1

=⇒ 0 < M ≤ 1.

This completes the proof.

Theorem 1. For System (6)–(8), if the value ofR0 is less than or equal to one (R0 ≤ 1), then Π0
is globally asymptotically stable (GAS).

Proof. LetR0 ≤ 1, and construct a function Ξ0(x1, y1, x2, y2, v) as:

Ξ0 =
2

∑
`=1

η`

[
x0
`Θ

(
x`
x0
`

)
+ y`

]
+ η3v,

where

η1 = ϑ1ϑ2λ1(1− ψ̄a),

η2 = ϑ1ϑ2λ2(1− φ̄a),

η3 = ϑ1ϑ2(1− φ̄a)(1− ψ̄a).

Clearly, Ξ0(x1, y1, x2, y2, v) > 0 for all x1, y1, x2, y2, v > 0, and Ξ0(x0
1, 0, x0

2, 0, 0) = 0.

Calculating
dΞ0

dt
along System (6)–(8), we obtain
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dΞ0

dt
=

2

∑
`=1

η`

(
1−

x0
`

x`

)
ẋ` +

2

∑
`=1

η`ẏ` + η3v̇

=
2

∑
`=1

η`

(
1−

x0
`

x`

)(
α` − γ`x` − β`x`v− β̄`x`y`

)
+

2

∑
`=1

η`
(

β`x`v + β̄`x`y` − ϑ`y`
)

+ η3

(
2

∑
`=1

λ`ϑ`y` − ϕv

)

= −
2

∑
`=1

η`γ`

(
x` − x0

`

)2

x`
+

2

∑
`=1

(
η` β̄`x0

`+ϑ`η3λ` − η`ϑ`

)
y` +

(
2

∑
`=1

η`β`x0
` − η3 ϕ

)
v

= −
2

∑
`=1

η`γ`

(
x` − x0

`

)2

x`
+
(

ϑ1ϑ2λ1(1− ψ̄a)β1x0
1 + ϑ1ϑ2λ2(1− φ̄a)β2x0

2

− ϑ1ϑ2(1− φ̄a)(1− ψ̄a)ϕ)v. (21)

Simplifying Equation (21), we get

dΞ0

dt
= −

2

∑
`=1

η`γ`

(
x` − x0

`

)2

x`
+ ϑ1ϑ2 ϕ((1− ψ̄a)φ̄b + (1− φ̄a)ψ̄b

− (1− φ̄a)(1− ψ̄a))v

= −
2

∑
`=1

η`γ`

(
x` − x0

`

)2

x`
− ϑ1ϑ2 ϕ(1−M)v.

As a result, dΞ0
dt ≤ 0 ifR0 ≤ 1 for x`, y`, v ∈ (0, ∞), ` = 1, 2. Moreover, dΞ0

dt = 0 when
x`(t) = x0

` and v(t) = 0, ` = 1, 2, for all t. The solutions of System (6)–(8) tend to Γ
′
0, which

has elements with v(t) = 0, so v̇(t) = 0. It follows from Equation (8) that

0 = v̇(t) =
2

∑
`=1

λ`ϑ`y`(t) =⇒ y`(t) = 0, ` = 1, 2.

Hence, Γ
′
0 = {Π0}, and by applying LIP, we get that Π0 is globally asymptotically

stable (GAS).

Theorem 2. For System (6)–(8), ifR0 exceeds one (R0 > 1), then Π∗ is GAS.

Proof. Formulate a function Ξ1(x1, y1, x2, y2, v) as:

Ξ1 =
2

∑
`=1

η̌`

[
x∗`Θ

(
x`
x∗`

)
+ y∗`Θ

(
y`
y∗`

)]
+ v∗2Θ

(
v2

v∗2

)
,

where

η̌` =
λ`ϑ`y∗`
β`x∗`v∗

, ` = 1, 2. (22)

Clearly, Ξ1(x1, y1, x2, y2, v) > 0 for all x1, y1, x2, y2, v > 0, and Ξ1(x∗1 , y∗1 , x∗2 , y∗2 , v∗) = 0.
Calculating dΞ1

dt along the trajectories of (6)–(8), we get
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dΞ1

dt
=

2

∑
`=1

η̌`

[(
1−

x∗`
x`

)
ẋ` +

(
1−

y∗`
y`

)
ẏ`

]
+

(
1− v∗

v

)
v̇

=
2

∑
`=1

η̌`

[(
1−

x∗`
x`

)(
α` − γ`x` − β`x`v− β̄`x`y`

)
+

(
1−

y∗`
y`

)(
β`x`v + β̄`x`y` − ϑ`y`

)]

+

(
1− v∗

v

)( 2

∑
`=1

λ`ϑ`y` − ϕv

)
. (23)

Simplify Equation (23), and in the following steps we apply the following conditions
for Π∗:

α` = γ`x∗` + β`x∗`v∗ + β̄`x∗`y∗` , ` = 1, 2, (24)

ϑ`y∗` = β`x∗`v∗ + β̄`x∗`y∗` , (25)

ϕv∗ =
2

∑
`=1

λ`ϑ`y∗` , (26)

=
2

∑
`=1

λ`

(
β`x∗`v∗ + β̄`x∗`y∗`

)
. (27)

We get

dΞ1

dt
= −

2

∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`

[(
1−

x∗`
x`

)(
β`x∗`v∗ + β̄`x∗`y∗` − β`x`v− β̄`x`y`

)
+

(
1−

y∗`
y`

)(
β`x`v + β̄`x`y` − ϑ`y`

)]
+

(
1− v∗

v

)( 2

∑
`=1

λ`ϑ`y` − ϕv

)
.

Collecting the terms of the last equation, we have

dΞ1

dt
=

2
−∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`

[
β`x∗`v∗ + β̄`x∗`y∗` − β`x∗`v∗

x∗`
x`
− β̄`x∗`y∗`

x∗`
x`

+β`x∗`v + β̄`x∗`y` − ϑ`y` − β`x`v
y∗`
y`
− β̄`x`y

∗
` + ϑ`y∗`

]
+

2

∑
`=1

λ`ϑ`y`

− ϕv− v∗

v

2

∑
`=1

λ`ϑ`y` + ϕv∗.

Then,

dΞ1

dt
=

2
−∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`

[
2β`x∗`v∗ − β`x∗`v∗

x∗`
x`

+ β`x∗`v + β̄`x∗`y` − β`x`v
y∗`
y`

]

+
2

∑
`=1

η̌`

[
2β̄`x∗`y∗` − β̄`x∗`y∗`

x∗`
x`
− β̄`x`y

∗
`

]
+

2

∑
`=1

[λ` − η̌`]ϑ`y`

−
2

∑
`=1

λ`ϑ`y∗`
v
v∗
− v∗

v

2

∑
`=1

λ`ϑ`y` +
2

∑
`=1

λ`

(
β`x∗`v∗ + β̄`x∗`y∗`

)
. (28)
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Simplifying Equation (28), we obtain

dΞ1

dt
= −

2

∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`β`x∗`v∗
[

2−
x∗`
x`

+
v
v∗
− y`

y∗`
−

x`vy∗`
x∗`v∗y`

]

+
2

∑
`=1

η̌` β̄`x∗`y∗`

[
2−

x∗`
x`
− x`

x∗`

]

+
2

∑
`=1

λ`β`x∗`v∗
[

1 +
y`
y∗`
− v

v∗
− y`

y∗`

v∗

v

]
+

2

∑
`=1

λ` β̄`x∗`y∗`

[
1 +

y`
y∗`
− v

v∗
− y`v∗

y∗`v

]
.

The last equation can be reduced to

dΞ1

dt
= −

2

∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`β`x∗`v∗
[

3−
x∗`
x`
−

x`vy∗`
x∗`v∗y`

− y`
y∗`

v∗

v

]

+
2

∑
`=1

η̌` β̄`x∗`y∗`

[
2−

x∗`
x`
− x`

x∗`

]

+
2

∑
`=1

(
λ`β`x∗`v∗ + λ` β̄`x∗`y∗`

)[
1 +

y`
y∗`
− v

v∗
− y`v∗

y∗`v

]

+
2

∑
`=1

η̌`β`x∗`v∗
[

v
v∗
− y`

y∗`
+

y`v∗

y∗`v
− 1
]

.

Now, from Equations (22) and (25), we have η̌`β`x∗`v∗ = λ`

[
β`x∗`v∗ + β̄`x∗`y∗`

]
, ` = 1, 2;

then, we get

dΞ1

dt
= −

2

∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`β`x∗`v∗
[

3−
x∗`
x`
−

x`vy∗`
x∗`v∗y`

− y`
y∗`

v∗

v

]

+
2

∑
`=1

η̌` β̄`x∗`y∗`

[
2−

x∗`
x`
− x`

x∗`

]
+

2

∑
`=1

η̌`β`x∗`v∗
[

1 +
y`
y∗`
− v

v∗
− y`v∗

y∗`v

]

+
2

∑
`=1

η̌`β`x∗`v∗
[

v
v∗
− y`

y∗`
+

y`v∗

y∗`v
− 1
]

;

hence,

dΞ1

dt
= −

2

∑
`=1

γ`η̌`

(
x` − x∗`

)2

x`
+

2

∑
`=1

η̌`β`x∗`v∗
[

3−
x∗`
x`
−

x`vy∗`
x∗`v∗y`

− y`
y∗`

v∗

v

]

+
2

∑
`=1

η̌` β̄`x∗`y∗`

[
2−

x∗`
x`
− x`

x∗`

]
,

where

3 ≤
x∗`
x`

+
x`vy∗`
x∗`v∗y`

+
y`v∗

y∗`v
, ` = 1, 2,

2 ≤
x∗`
x`

+
x`
x∗`

, ` = 1, 2.

In this case, x∗` , y∗` , v∗ > 0 if R0 > 1; then
dΞ1

dt
≤ 0 for all x`, y`,v > 0, ` = 1, 2. It can

be seen that
dΞ1

dt
= 0 if and only if (x1(t), y1(t), x2(t), y2(t), v(t)) = (x∗1 , y∗1 , x∗2 , y∗2 , v∗).

Therefore, the solutions of System (6)–(8) tend to Γ
′
1 = {Π∗} and Π∗ is GAS when

R0 > 1 according to LIP.
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3. The Model with Delay

We incorporate into System (6)–(8) the discrete time delays. The model takes
the form:

ẋ` = α` − γ`x` − β`x`v− β̄`x`y`, ` = 1, 2, (29)

ẏ` = β`e−ε`σ`x`(t− σ`)v(t− σ`) + β̄`e−ε`σ`x`(t− σ`)y`(t− σ`)− ϑ`y`, ` = 1, 2, (30)

v̇ =
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕv. (31)

In this model, the loss of the cells during the delay period [t− σ`, t] is given by e−ε`σ` ,
where ε` > 0, ` = 1, 2. The factor e−ε`v` represents the loss of the infected cells during the
delay period [t−v`, t], where ε` > 0, ` = 1, 2.

3.1. Properties of Solutions

Let Υ = max{σ1, v1, σ2, v2}, and denote by C the Banach space of continuous func-
tions mapping the interval [−Υ, 0] into R5

≥0. For System (29)–(31), we consider the initial
conditions

x`(ξ) = χ`(ξ), y`(ξ) = χ`+2(ξ), v(ξ) = χ5(ξ), ` = 1, 2,

χj(ξ) ≥ 0, j = 1, 2, . . . , 5, ξ ∈ [−Υ, 0], (32)

where (χ1(ξ), . . . , χ5(ξ)) ∈ C([−Υ, 0],R5
≥0). Thus, there exists a unique solution for System

(29)–(31) with initial conditions (32) (see [43]).

Lemma 5. Solutions of System (29)–(31) that satisfy the initial conditions (32) are non-negative
and are ultimately bounded by t ≥ 0.

Proof. We have ẋ` |x`=0= α` > 0; hence, x`(t) > 0. From Equations (29)–(31), we have:

y`(t) = χ`+2(0)e−ϑ`t +

t∫
0

(
β`e−ϑ`(t−ξ)x`(ξ − σ`)v(ξ − σ`)β̄`e−ϑ`(t−ξ)x`(ξ − σ`)y`(ξ − σ`)

)
dξ, ` = 1, 2,

v(t) = χ5(0)e−ϕt +
2

∑
`=1

t∫
0

e−ϕ(t−ξ)λ`ϑ`e−ε`v`y`(ξ −v`)dξ.

These show that y`(t) ≥ 0, ` = 1, 2, and v(t) ≥ 0 for all t ≥ 0.
Define F̃`(t) = e−ε`σ`x`(t − σ`) + y`(t), ` = 1, 2, and from Equation (29), we have

lim
t→∞

sup x`(t) ≤ α`
γ`

, ` = 1, 2. As a result,

dF̃`(t)
dt

= α`e−ε`σ` − γ`e−ε`σ`x`(t− σ`)− ϑ`y`(t)

≤ α`e−ε`σ` − δ̃`
(
e−ε`σ`x`(t− σ`) + y`(t)

)
≤ α` − δ̃` F̃`(t),

where δ̃` = min{γ`, ϑ`}, ` = 1, 2. Hence, lim
t→∞

sup F̃`(t) ≤ ζ̃`, where ζ̃` =
α`
δ̃`

, ` = 1, 2. Thus,

we get lim
t→∞

sup y`(t) ≤ ζ̃` for all t ≥ 0. On the other hand,

v̇(t) =
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕv(t) ≤
2

∑
`=1

λ`ϑ`e−ε`v` ζ̃` − ϕv(t) ≤
2

∑
`=1

λ`ϑ` ζ̃` − ϕv(t);
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then 0 ≤ v(t) ≤ ζ̃3 for all t ≥ 0 if v(0) ≤ ζ̃3, where ζ̃3 =
2
∑
`=1

λ`ϑ` ζ̃`
ϕ

. Consequently,

x`(t), y`(t), ` = 1, 2, and v(t) are ultimately bounded.

3.2. Equilibria

To calculate the equilibrium points of the System (29)–(31), we solve the following
system:

0 = α` − γ`x` − β`x`v− β̄`x`y`, ` = 1, 2, (33)

0 = β`e−ε`σ`x`v + β̄`e−ε`σ`x`y` − ϑ`y`, ` = 1, 2, (34)

0 =
2

∑
`=1

λ`ϑ`e−ε`v`y` − ϕv. (35)

As a result of the calculations, two equilibrium points can be found:

(i) Infection-free equilibrium (IFE) Π0 = (x0
1, 0, x0

2, 0, 0), where x0
` =

α`
γ`

, ` = 1, 2.
(ii) Infection-present equilibrium (IPE) Π̃ = (x̃1, ỹ1, x̃2, ỹ2, ṽ) with the following defini-

tions of each component:

x̃` =
α`

γ` + β`ṽ + β̄`ỹ`
, ỹ` =

−B̃` +
√

B̃2
` + 4Ã`C̃`

2Ã`
, (36)

and

Ã` = ϑ` β̄`, B̃` = ϑ`β`ṽ + ϑ`γ` − β̄`α`e−ε`σ` , C̃` = β`α`e−ε`σ` ṽ, (37)

where ` = 1, 2 and ṽ satisfies the following equation

ϕṽ =
2

∑
`=1

λ`ϑ`e−ε`v` ỹ`. (38)

The basic reproduction number R0: As in the previous method in Section 2.3, we
calculate the basic reproduction number R0 of System (29)–(31) by implementing the
next-generation-matrix method [36] as follows:

R0 = ρ
(
F̃ ∇̃−1

)
,

where the Jacobian of the matrix of new infection terms and the Jacobian of the matrix of
the other terms at IFE are given, respectively, by

F̃=

 β̄1e−ε1σ1 x0
1 0 β1e−ε1σ1 x0

1
0 β̄2e−ε2σ2 x0

2 β2e−ε2σ2 x0
2

0 0 0

,

∇̃ =

 ϑ1 0 0
0 ϑ2 0

−λ1ϑ1e−ε1v1 −λ2ϑ2e−ε2v2 ϕ

.

Thus,

R0 =
1
2

(
Φ̂ + Ψ̂ +

√(
Φ̂− Ψ̂

)2
+ 4φ̂bψ̂b

)
, (39)

where
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Φ̂ = φ̂a + φ̂b, Ψ̂ = ψ̂a + ψ̂b,

φ̂a =
β̄1e−ε1σ1 x0

1
ϑ1

, φ̂b =
β1e−(ε1σ1+ε1v1)x0

1λ1

ϕ
, ψ̂a =

β̄2e−ε2σ2 x0
2

ϑ2
, ψ̂b =

β2e−(ε2σ2+ε2v2)x0
2λ2

ϕ
. (40)

In the following Lemmas, we show the condition when there is a positive value for ṽ.

Lemma 6. Suppose thatR0 > 1. I f Φ̂ < 1, Ψ̂ < 1, then M̃ = φ̂b
1−φ̂a

+ ψ̂b
1−ψ̂a

> 1.

Proof. Similar to the proof of Lemma 2.

Lemma 7. Suppose thatR0 > 1, then the IPE Π̃ exists.

Proof. First, we have that there exists any equilibrium satisfying Equations (33)–(34). In
case of the equilibrium Π̃, we have v 6= 0; then, from Equation (35), we find

2

∑
`=1

λ`ϑ`e−ε`v`y`
ϕ

− v = 0.

Substituting from Equations (33)–(34) into the last equation, we get

2

∑
`=1

e−(ε`σ`+ε`v`)

(
λ`α`

ϕ
− λ`γ`x`

ϕ

)
− v = 0.

Since x` = x`(v), y` = y`(v), ` = 1, 2, then we can define a function G̃(v) as:

G̃(v) =
2

∑
`=1

e−(ε`σ`+ε`v`)

(
λ`α`

ϕ
− λ`γ`x`

ϕ

)
− v,

in which x`, y` satisfy Equations (33)–(35) for ` = 1, 2.
Now we need to show that ∃ ṽ > 0 such that G̃(ṽ) = 0 as follow:

If v = v̂∗ =
2
∑
`=1

λ`α`e−(ε`σ`+ε`v`)

ϕ > 0, then x`(v̂∗) > 0, y`(v̂∗) > 0, ` = 1, 2, and

G̃(v̂∗) = −
2
∑
`=1

λ`γ`x`(v̂∗)e
−(ε`σ`+ε`v`)

ϕ < 0.

Next, by calculating G̃(0) and G̃ ′(0), we get:

G̃(0) =
2

∑
`=1

e−(ε`σ`+ε`v`)

(
λ`γ`x0

`

ϕ
− λ`γ`

ϕ
x`(0)

)

=
φ̂bγ1

β1

1− 2

2−
(
1− φ̂a

)
+
√(

1− φ̂a
)2

+
ψ̂bγ2

β2

1− 2

2−
(
1− ψ̂a

)
+
√(

1− ψ̂a
)2

,

G̃ ′(0) = φ̂b

2φ̂a

 φ̂a + 1√(
φ̂a − 1

)2
− 1

+
ψ̂b

2ψ̂a

 ψ̂a + 1√(
ψ̂a − 1

)2
− 1

− 1.

We calculate all possible cases of functions G̃(0), G̃ ′(0), and the results are provided
by Table 2. As shown in Table 2, the function G̃(v) in Cases (1–3) is strictly increasing
at the point v = 0, and G̃(0) > 0 in Cases (4–6), while G̃(v̌) has a negative value. This
means that in all possible cases ∃ ṽ ∈ (0, v̂∗) satisfying G̃(ṽ) = 0 if the condition R0 > 1.
Therefore, from Equations (36)–(37), we have x̃` > 0, ỹ` > 0, ṽ > 0, ` = 1, 2. Thus, the
disease equilibrium Π̃ exists whenR0 > 1.
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From the above, we obtain:

(i) IfR0 ≤ 1, then there will be only one equilibrium Π0;
(ii) IfR0 > 1, then there will be two equilibria Π0 and Π̃.

Table 2. Functions G̃(0) and G̃ ′(0) and their corresponding values for different conditions.

Case Conditions G̃(0) G̃ ′(0)

1 φ̂a = 1, ψ̂a ≤ 1 0 +∞

2 φ̂a ≤ 1, ψ̂a = 1 0 +∞

3 φ̂a < 1, ψ̂a < 1 0 M̃− 1 > 0 (from Lemma 6)

4 φ̂a ≤ 1, ψ̂a > 1 ψ̂bγ2
β2

(
ψ̂a − 1

ψ̂a

)
> 0 −

5 φ̂a > 1, ψ̂a ≤ 1 φ̂bγ1
β1

(
φ̂a − 1

φ̂a

)
> 0 −

6 φ̂a > 1, ψ̂a > 1 φ̂bγ1
β1

(
φ̂a − 1

φ̂a

)
+

ψ̂bγ2
β2

(
ψ̂a − 1

ψ̂a

)
> 0 −

3.3. Global Properties

For System (29)–(31), as in Section 2.4, we verify the global asymptotic stability of both
Π0 and Π̃.

Let Γ̃
′
` be the largest invariant subset of Γ̃` =

{
(x1, x2,y1, y2, v) : dΞ̃`

dt = 0
}

, where
` = 1, 2. For the purpose of proving global stability, we utilize the following Lemma:

Lemma 8. Suppose thatR0 ≤ 1; then,

(i) φ̂a ≤ 1, φ̂b ≤ 1, ψ̂a ≤ 1, and ψ̂b ≤ 1;
(ii) If M̂ = Φ̂ + Ψ̂− Φ̂Ψ̂ + φ̂bψ̂b; thus, 0 < M̂ ≤ 1.

Proof. Similar to the proof of Lemma 4.

Theorem 3. For System (29)–(31), ifR0 ≤ 1, then Π0 is GAS .

Proof. LetR0 ≤ 1 and construct a function Ξ̃0(x1, y1, x2, y2, v) as:

Ξ̃0 =
2

∑
`=1

η̃`

[
x0
`Θ

(
x`
x0
`

)
+ eε`σ`y`

]

+
2

∑
`=1

η̃`

σ`∫
0

(
β`x`(t− ξ)v(t− ξ) + β̄`x`(t− ξ)y`(t− ξ)

)
dξ

+ η̃3

2

∑
`=1

λ`ϑ`e−ε`v`

v`∫
0

y`(t− ξ)dξ + η̃3v,

where

η̃1 = ϑ1ϑ2λ1e−(ε1σ1+ε1v1)(1− ψ̂a),

η̃2 = ϑ1ϑ2λ2e−(ε2σ2+ε2v2)(1− φ̂a), (41)

η̃3 = ϑ1ϑ2(1− φ̂a)(1− ψ̂a).
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Clearly, Ξ̃0(x1, y1, x2, y2, v) > 0 for all x1, y1, x2, y2, v > 0, and Ξ̃0(x0
1, 0, x0

2, 0, 0) = 0.

We calculate
dΞ̃0

dt
as:

dΞ̃0

dt
=

2

∑
`=1

η̃`

(
1−

x0
`

x`

)
ẋ` +

2

∑
`=1

η̃`eε`σ` ẏ`

+
2

∑
`=1

η̃`
(

β`x`v− β`x2(t− σ`)v(t− σ`) + β̄`x`y` − β̄`x`(t− σ`)y`(t− σ`)
)

+ η̃3

2

∑
`=1

e−ε`v`λ`ϑ`(y` − y`(t−v`)) + η̃3v̇.

Using Equations (29)–(31), we find

dΞ̃0

dt
=

2

∑
`=1

η̃`

(
1−

x0
`

x`

)(
α` − γ`x` − β`x`v− β̄`x`y`

)
+

2

∑
`=1

η̃`eε`σ`
(

β`e−ε`σ`x`(t− σ`)v(t− σ`) + β̄`e−ε`σ`x`(t− σ`)y`(t− σ`)− ϑ`y`
)

+
2

∑
`=1

η̃`
(

β`x`v− β`x2(t− σ`)v(t− σ`) + β̄`x`y` − β̄`x`(t− σ`)y`(t− σ`)
)

+ η̃3

2

∑
`=1

e−ε`v`λ`ϑ`(y` − y`(t−v`)) + η̃3

2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕη̃3v. (42)

Collecting the terms of Equation (42), we obtain

dΞ̃0

dt
= −

2

∑
`=1

η̃`γ`

(
x` − x0

`

)2

x`
+ ϑ1ϑ2 ϕ

(
λ1e−(ε1σ1+ε1v1)(1− ψ̂a)

β1x0
1

ϕ

+ λ2e−(ε2σ2+ε2v2)(1− φ̂a)
β2x0

2
ϕ
− (1− φ̂a)(1− ψ̂a)

)
v. (43)

Simplifying (43), we get

dΞ̃0

dt
= −

2

∑
`=1

η̃`γ`

(
x` − x0

`

)2

x`
+ ϑ1ϑ2 ϕ

(
Φ̂ + Ψ̂− φ̂bψ̂a − φ̂aψ̂b − φ̂aψ̂a − 1

)
v

= −
2

∑
`=1

η̃`γ`

(
x` − x0

`

)2

x`
− ϑ1ϑ2 ϕ

(
1− M̂

)
v.

As a result, dΞ̃0
dt ≤ 0 if R0 ≤ 1 for x`, y`, v ∈ (0, ∞), ` = 1, 2. Moreover, dΞ̃0

dt ≤ 0 = 0
when x`(t) = x0

` and v(t) = 0, ` = 1, 2, for all t. The solutions of System (29)–(31) tend to
Γ̃
′
0, which has elements with v(t) = 0, so v̇(t) = 0. Hence, from Equation (35), we get

0 = v̇(t) =
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`) =⇒ y`(t) = 0, ` = 1, 2.

Hence, Γ̃
′
0 = {Π0}, and by applying LIP, we get that Π0 is GAS.

Theorem 4. For System (29)–(31), ifR0 > 1, then Π̃ is GAS.
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Proof. Define Ξ̃1(x1, y1, x2, y2, v) as:

Ξ̃1 =
2

∑
`=1

η̄`

[
x̃`Θ

(
x`
x̃`

)
+ eε`σ` ỹ`Θ

(
y`
ỹ`

)]

+
2

∑
`=1

η̄`β` x̃`ṽ
σ`∫

0

Θ
(

x`(t− ξ)v(t− ξ)

x̃`ṽ

)
dξ

+
2

∑
`=1

η̄` β̄` x̃`ỹ`

σ`∫
0

Θ
(

x`(t− ξ)y`(t− ξ)

x̃`ỹ`

)
dξ

+
2

∑
`=1

λ`ϑ`ỹ`e−ε`v`

v`∫
0

Θ
(

y`(t− ξ)

ỹ`

)
dξ + ṽΘ

(v
ṽ

)
,

where

η̄1 =
λ1e−ε1v1 ϑ1ỹ1

β1 x̃1ṽ
=

λ1e−(ε1σ1+ε1v1)
(

β1 x̃1ṽ + β̄1 x̃1ỹ1
)

β1 x̃1ṽ
,

η̄2 =
λ2e−ε2v2 ϑ2ỹ2

β2 x̃2ṽ
=

λ2e−(ε2σ2+ε2v2)
(

β2 x̃2ṽ + β̄2 x̃2ỹ2
)

β2 x̃2ṽ
. (44)

Clearly, Ξ̃1(x1, y1, x2, y2, v) > 0 for all x1, y1, x2, y2, v > 0, and Ξ̃1(x̃1, ỹ1, x̃2, ỹ2, ṽ) = 0.
Calculating dΞ̃1

dt along the trajectories of (29)–(31), we get

dΞ̃1

dt
=

2

∑
`=1

η̄`

(
1− x̃`

x`

)(
α` − γ`x` − β`x`v− β̄`x`y`

)
+

2

∑
`=1

η̄`eε`σ`

(
1− ỹ`

y`

)(
β`e−ε`σ`x`(t− σ`)v(t− σ`) + β̄`e−ε`σ`x`(t− σ`)y`(t− σ`)− ϑ`y`

)
+

2

∑
`=1

η̄`β` x̃`ṽ
(

x`v
x̃`ṽ
− x`(t− σ`)v(t− σ`)

x̃`ṽ
+ ln

(
x`(t− σ`)v(t− σ`)

x`v

))

+
2

∑
`=1

η̄` β̄` x̃`ỹ`

(
x`y`
x̃`ỹ`

− x`(t− σ`)y`(t− σ`)

x̃`ỹ`
+ ln

(
x`(t− σ`)y`(t− σ`)

x`y`

))

+
2

∑
`=1

λ`ϑ`ỹ`e−ε`v`

(
y`
ỹ`
− y`(t−v`)

ỹ`
+ ln

(
y`(t−v`)

y`

))

+

(
1− ṽ

v

)( 2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕv

)
.

Thus,
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dΞ̃1

dt
=

2

∑
`=1

η̄`

(
1− x̃`

x`

)
(α` − γ`x`)

2
−∑
`=1

η̄`

(
β`x`v + β̄`x`y` − β`x`v

x̃`
x`
− β̄`x`y`

x̃`
x`

)

+
2

∑
`=1

η̄`
(

β`x`(t− σ`)v(t− σ`) + β̄`x`(t− σ`)y`(t− σ`)− eε`σ`ϑ`y`
)

+
2

∑
`=1

η̄`

(
−β`x`(t− σ`)v(t− σ`)

ỹ`
y`
− β̄`x`(t− σ`)y`(t− σ`)

ỹ`
y`

+ eε`σ`ϑ`y`
ỹ`
y`

)

+
2

∑
`=1

η̄`

(
β`x`v− β`x`(t− σ`)v(t− σ`) + β` x̃`ṽ ln

(
x`(t− σ`)v(t− σ`)

x`v

))

+
2

∑
`=1

η̄

(
β̄`x`y` − β̄`x`(t− σ`)y`(t− σ`) + β̄` x̃`ỹ` ln

(
x`(t− σ`)y`(t− σ`)

x`y`

))

+
2

∑
`=1

(
λ`ϑ`e−ε`v`y` − λ`ϑ`e−ε`v`y`(t−v`) + λ`ϑ`ỹ`e−ε`v` ln

(
y`(t−v`)

y`

))

+
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕv−
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)
ṽ
v
+ ϕṽ. (45)

Simplifying Equation (45), we then have

dΞ̃1

dt
=

2

∑
`=1

η̄`

(
1− x̃`

x`

)
(α` − γ`x`)

2
+∑
`=1

η̄`

(
β`x`v

x̃`
x`

+ β̄`x`y`
x̃`
x`

)

−
2

∑
`=1

η̄`eε`σ`ϑ`y` +
2

∑
`=1

η̄`

(
−β`x`(t− σ`)v(t− σ`)

ỹ`
y`
− β̄`x`(t− σ`)y`(t− σ`)

ỹ`
y`

+ eε`σ`ϑ`ỹ`

)

+
2

∑
`=1

η̄`β` x̃`ṽ ln
(

x`(t− σ`)v(t− σ`)

x`v

)
+

2

∑
`=1

η̄ β̄` x̃`ỹ` ln
(

x`(t− σ`)y`(t− σ`)

x`y`

)

+
2

∑
`=1

(
λ`ϑ`e−ε`v`y` − λ`ϑ`e−ε`v`y`(t−v`) + λ`ϑ`ỹ`e−ε`v` ln

(
y`(t−v`)

y`

))

+
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)− ϕv−
2

∑
`=1

λ`ϑ`e−ε`v`y`(t−v`)
ṽ
v
+ ϕṽ. (46)

Collecting the terms of Equation (46) and applying the equilibrium conditions for Π̃:

α` = γ` x̃` + β` x̃`ṽ + β̄` x̃`ỹ`, ` = 1, 2,

ϑ`ỹ` = β`e−ε`σ` x̃`ṽ + β̄`e−ε`σ` x̃`ỹ`, ` = 1, 2,

ϕṽ =
2

∑
`=1

λ`ϑ`e−ε`v` ỹ` =
2

∑
`=1

η̄`β` x̃`ṽ,
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we get

dΞ̃1

dt
=

2

∑
`=1

[
−η̄`γ`

(x` − x̃`)
2

x`
+ η̄`

(
β` x̃`ṽ + β̄` x̃`ỹ`

)(
1− x̃`

x`

)
−η̄`β` x̃`ṽ

x`(t− σ`)v(t− σ`)ỹ`
x̃`ṽy`

− η̄` β̄` x̃`ỹ`
x`(t− σ`)y`(t− σ`)

x̃`y`

+η̄`β` x̃`ṽ + η̄` β̄` x̃`ỹ` + η̄`β` x̃`ṽ ln
(

x`(t− σ`)v(t− σ`)

x`v

)
+η̄` β̄` x̃`ỹ` ln

(
x`(t− σ`)y`(t− σ`)

x`y`

)
+ η̄`β` x̃`ṽ ln

(
y`(t−v`)

y`

)
−η̄`β` x̃`ṽ

y`(t−v`)ṽ
ỹ`v

]
+

2

∑
`=1

η̄`β` x̃`ṽ. (47)

Using the following equalities

ln
(

x`(t− σ`)v(t− σ`)

x`v

)
= ln

(
x̃`
x`

)
+ ln

(
x`(t− σ`)v(t− σ`)ỹ`

y` x̃`ṽ

)
+ ln

(
y`ṽ
ỹ`v

)
,

ln
(

x`(t− σ`)y`(t− σ`)

x`y`

)
= ln

(
x̃`
x`

)
+ ln

(
x`(t− σ`)y`(t− σ`)

x̃`y`

)
,

ln
(

y`(t−v`)

y`

)
= ln

(
y`(t−v`)ṽ

ỹ`v

)
+ ln

(
ỹ`v
y`ṽ

)
, ` = 1, 2, (48)

Equation (47) becomes

dΞ̃1

dt
= −

2

∑
`=1

[
η̄`γ`

(x` − x̃`)
2

x`
+ η̄`

(
β` x̃`ṽ + β̄` x̃`ỹ`

)
Θ
(

x̃`
x`

)
+η̄`β` x̃`ṽ

(
Θ
(

x`(t− σ`)v(t− σ`)ỹ`
x̃`ṽy`

)
+ Θ

(
y`(t−v`)ṽ

ỹ`v

))
+η̄` β̄` x̃`ỹ`Θ

(
x`(t− σ`)y`(t− σ`)

x̃`y`

)]
.

Therefore,
dΞ1

dt
≤ 0 for all x`, y`,v > 0, ` = 1, 2. It can be seen that

dΞ̃1

dt
= 0 if and

only if (x1(t), y1(t), x2(t), y2(t), v(t)) = (x̃1, ỹ1, x̃2, ỹ2, ṽ). Therefore, the solutions of System
(29)–(31) tend to Γ̃

′
1 = {Π̃} and Π̃ is GAS whenR0 > 1 according to LIP.

4. Numerical Simulations

System (29)–(31) is analyzed numerically in this section, with a thorough discussion
of numerical sensitivity analysis and illustrating the results of Theorems 3 and 4 numerically.
Furthermore, we investigate the impact of temporal delays on the system’s dynamic
behavior. To solve Systems (29)–(31) numerically, we rely on our calculations based on
fixed parameters obtained from the modeling literature; see Table 3.

Table 3. Parameters and their corresponding values (29)–(31).

Parameter Value References Parameter Value References Parameter Value Source

α1 10 [44–46] α2 0.03198 [31] ε1 0.2 [47]

γ1 0.01 [28,46,48] γ2 0.01 [33,34] ε2 1 Assumed

ϑ1 0.5 [24,27,49] ϑ2 0.1 [27] ε1 1 [32]

λ1 6 [32] λ2 6 [32] ε2 1 [32]

ϕ 2 [46]



Axioms 2023, 12, 617 20 of 28

4.1. Sensitivity Analysis

Especially in pathology and epidemiology, sensitivity analysis plays a crucial role
in modeling complicated interactions. By analyzing sensitivities, we can determine what
parameters work best to curb the spread of the disease or the crime. Calculating the sensi-
tivity indices can be done in three different ways: directly through direct differentiation, by
a Latin hypercube sampling method, or by linearizing the model and solving the obtained
linear algebraic equations.

In this study, direct differentiation is used since the indices can be expressed analyti-
cally. In cases where variables vary with respect to parameters, then the sensitivity index
can be determined by partial derivatives [50]. As a function of a parameter, the normalized
forward sensitivity index ofR0 is expressed as follows:

SR0
κ =

κ
R0

∂R0
∂κ , (49)

where κ is a given parameter. The sensitivity indices for each parameter included in R0
are calculated using Equation (49). For instance, the sensitivity index of a parameter value
with respect to β1 is computed as

SR0
β1

=
β1

R0

∂R0

∂β1
=

1
2

1
R0

φ̂b +

(
Φ̂− Ψ̂

)
φ̂b + 2φ̂bψ̂b√(

Φ̂− Ψ̂
)2

+ 4φ̂bψ̂b

.

The sensitivity index ofR0 is shown in Figure 2 and Table 4 based on the parameter
values in Table 3 and the values σ1 = 1, σ2 = 0.7, v1 = v2 = 0.2, β1 = 0.00003, β2 = 0.00003,
β̄1 = 0.0005, and β̄2 = 0.00001.

Clearly, α1, α2, β1, β2, β̄1, β̄2, λ1, and λ2 have positive indices. In terms of sensitivity,
α1 is the most important parameter and β̄2 is the least important. In this case, there is
a positive relationship between the persistence of the infection of the disease and the
increase in the values of the parameters α1, α2, β1, β2, β̄1, β̄2, λ1, and λ2 while keeping other
parameters constant. The remaining indices are negative, i.e., the value ofR0 decreases as
γ1, γ2, ϑ1, ϑ2,ϕ, ε1, ε2, ε1, ε2, σ1, σ2, v1, and v2 values increase.

Table 4. Sensitivity index ofR0.

Parameter Sensitivity Index Parameter Sensitivity Index Parameter Sensitivity Index

α1 0.999 α2 9.141× 10−6 ε2 −6.399× 10−6

γ1 −0.999 γ2 −9.141× 10−6 ε1 −1.373× 10−2

β1 6.864× 10−2 β2 9.140× 10−6 ε2 −1.828× 10−6

β̄1 9.313× 10−1 β̄2 1.651× 10−9 σ1 −2.000× 10−1

ϑ1 −9.313× 10−1 ϑ2 −1.651× 10−9 σ2 −6.399× 10−6

λ1 6.864× 10−2 λ2 9.140× 10−6 v1 −1.373× 10−2

ϕ −6.865× 10−2 ε1 −2.000× 10−1 v2 −1.828× 10−6
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Figure 2. Forward sensitivity analysis of the parameters onR0.

4.2. Stability of the Equilibria

We analyze in this part the dynamic behavior of Model (29)–(31) numerically using
MATLAB with the dde23 solver. In order to carry out the numerical simulation, we take
the following considerations:

- The chosen delay parameters are σ1 = 1, σ2 = 0.7, v1 = v2 = 0.2,
- We pick three different initial conditions for System (29)–(31):

I.1: (x1(ξ), y1(ξ), x2(ξ), y2(ξ), v(ξ)) = (700, 5, 1.5, 0.005, 15);
I.2: (x1(ξ), y1(ξ), x2(ξ), y2(ξ), v(ξ)) = (500, 3, 1, 0.02, 12);
I.3: (x1(ξ), y1(ξ), x2(ξ), y2(ξ), v(ξ)) = (300, 1.5, 0.5, 0.03, 8), where ξ ∈ [−max
{σ1, σ2, v1, v2}, 0].

By choosing different parameter values of the infection rates β1, β2, β̄1, and β̄2, we
have the following outcomes:

Scenario 1 (Stability of Π0): We select β1 = 0.00003, β2 = 0.0005, β̄1 = 0.00003,
β̄2 = 0.00001. This givesR0 = 0.1105 < 1, and the solution of system (29)–(31) converges
asymptotically to the IFE Π0 = (1000, 0, 3.198, 0, 0). Figure 3 shows that the concentrations
of both uninfected CD4+T cells and uninfected macrophages increase and reach healthy
values x1 = 1000, x2 = 3.198, while the concentrations of other compartments rapidly
decline and reach zero. This affirms the global stability of Π0, and the numerical results in
this scenario coincide with the result of Theorem 3. In this case, HIV-1 is cleared, and the
case simulates the state of a healthy person without HIV-1.

Scenario 2 (Stability of Π̃): We consider β1 = 0.0005, β2 = 0.005, β̄1 = 0.0002,
β̄2 = 0.0001 to obtainR0 = 1.3478 > 1. The solution of System (29)–(31) converges asymp-
totically to the IPE Π̃ = (747.095, 4.14, 0.899, 0.114, 5.110). In Figure 4, we can observe the
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existence and the stability of the equilibrium Π̃ that is proved in Lemma 7 and Theorem 4.
This point represents the situation of an HIV-1 patient; that is, HIV-1 infection will persist.
Accordingly, the infection rate is one of the main factors in disease control during HIV infection.

Effect of the time delay on the stability of the equilibria: The parameter R0, pro-
vided by Equations (39) and (40), depends on the time delay parameters σ` and v`, ` = 1, 2,
which can change the stability of equilibria. We select β1 = 0.0005, β2 = 0.005, β̄1 = 0.0002,
β̄2 = 0.0001 and σ1, σ2, v1, and v2 will be varied to show the impact of time delay parame-
ters. We examine the following cases:

Case I: σ1 = σ2 = v1 = v2 = 0;
Case II: σ1 = 0.3, σ2 = 0.5, v1 = 0.4, v2 = 0.2;
Case III: σ1 = 0.8, σ2 = 0.1, v1 = 0.3, v2 = 1.3;
Case IV: σ1 = 1.6, σ2 = 1.2, v1 = 1.4, v2 = 1.1.

In Case I,R0 becomes the form given by Equations (15),(16), and System (29)–(31) is
reduced to System (6)–(8). With the above values, we solve Model (29)–(31) with the initial
conditions I.1. Furthermore, the basic numberR0 is calculated, and the values are equal to
{1.9381, 1.3408, 1.2965, 0.5614} for each case, respectively. The impact of the time delay on
the solution of our system is shown in Figure 5; it is apparent that when time delays were
included, the number of uninfected cells of both CD4+T cells and macrophages increased,
while the number of other categories decreased.

Without loss of generality, suppose τ = σ1 = v1 = σ2 = v2; thenR0 can be expressed
as follows:

R0(τ) =
1
2

(
Φ̃ + Ψ̃ +

√(
Φ̃− Ψ̃

)2
+ 4φ̃bψ̃b

)
, (50)

where

Φ̃ = φ̃a + φ̃b, Ψ̃ = ψ̃a + ψ̃b,

φ̃a =
β̄1e−ε1τx0

1
ϑ1

, φ̃b =
β1e−(ε1+ε1)τx0

1λ1

ϕ
, ψ̃a =

β̄2e−ε2τx0
2

ϑ2
, ψ̃b =

β2e−(ε2+ε2)τx0
2λ2

ϕ
. (51)

Using the values of the parameters given in Table 3, we obtain the following:

(i) If τ ≥ 0.7035, thenR0(τ) ≤ 1, and the IFE Π0 is GAS;
(ii) If τ < 0.7035, thenR0(τ) > 1, and Π0 will become unstable.

The values ofR0 and the stability case of Π0 are shown in Table 5 for selected values
of time delay. Clearly, with increasing time delays,R0 decreases, which accords with the
findings of Section 4.1. As a result, the number of infected cells increases with decreasing
time delay and vice versa. For more investigation, with a small time delay, the contact
between virus or infected cells with healthy cells is faster and produces more infected cells.

Table 5. Values ofR0(τ) for System (29)–(31) with different values of the time delay τ.

τ R0(τ) Stability of Π0

0.0 1.9381 unstable

0.15 1.6684 unstable

0.3 1.4427 unstable

0.45 1.2535 unstable

0.6 1.0947 unstable

0.7035 1 stable

0.85 0.8838 stable

1.0 0.7831 stable

1.15 0.6978 stable
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Table 5. Cont.

τ R0(τ) Stability of Π0

2.0 0.4045 stable

5.0 0.1509 stable
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Figure 3. The numerical solutions of Model (29)–(31) for β1 = 0.00003, β2 = 0.0005 , β̄1 = 0.00003,
β̄2 = 0.00001 with three different initial conditions. The infection-free equilibrium Π0 =

(1000, 0, 3.198, 0, 0, 0) is GAS wheneverR0 ≤ 1. (a) Uninfected CD4+T cells; (b) Infected CD4+T cells;
(c) Uninfected macrophages; (d) Infected macrophages; and (e) HIV-1 particles.
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Figure 4. The numerical solutions of Model (29)–(31) for β1 = 0.0005, β2 = 0.005, β̄1 = 0.0002,
β̄2 = 0.0001 with three different initial conditions. The infection-present equilibrium Π̃ =

(747.095, 4.14, 0.899, 0.114, 5.110) is GAS wheneverR0 > 1. (a) Uninfected CD4+T cells; (b) Infected
CD4+T cells; (c) Uninfected macrophages; (d) Infected macrophages; and (e) HIV-1 particles.
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Figure 5. The numerical solutions of System (29)–(31) with four different sets of delay parameters and
with β1 = 0.0005, β2 = 0.005 , β̄1 = 0.0002, β̄2 = 0.0001. (a) Healthy CD4+T cells; (b) HIV-1-infected
CD4+T cells; (c) Healthy macrophages; (d) HIV-1-infected macrophages; and (e) Free HIV-1 particles.
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5. Conclusions

In this paper, two HIV-1 infection models with two types of target cells CD4+T cells
and macrophages cells and two modes of transmission VTC and CTC were considered. The
second model is a modification of the first one but incorporates four time delays. We proved
that the two proposed models’ solutions are non-negative and bounded. We proved that
each model has two possible equilibrium points: infection-free equilibrium (IFE), which
is always present, and infection-present equilibrium (IPE), which is present if the basic
reproduction numberR0 > 1. The basic numberR0 governs the dynamic behavior of the
model: ifR0 ≤ 1, then the IFE point is GAS, and ifR0 > 1, then the IPE point is GAS. In
order to verify the theoretical results and investigate how the time delay affects the model
solutions and the system’s dynamic behavior, we conducted some numerical computations.
From those computations, it was noticed that:

(i) The trajectory diagrams tend towards the IFE when the reproduction numberR0 ≤ 1,
as shown in Figure 3. One significant finding from these figures is that for different ini-
tial conditions assumed for the model categories, their trajectories still point towards
the IFE over the passage of time. These findings also confirm the global asymptotic
stability analysis results, which were presented in Section 3.3.

(ii) The trajectory diagrams tend towards the IPE for different initial conditions when the
reproduction number R0 > 1, as shown in Figure 4, which confirms that the point
IPE is GAS whenR0 > 1. Consequently, the model leads to an outcome in which the
person is infected with HIV-1.

(iii) From Figure 5 and Table 5, increasing the time delay causes a decrease in the re-
production number, resulting in an increase in uninfected CD4+ T cells, resulting
in a decrease in viral load. That is, time delay contributes a very significant effect
in governing the dynamic behavior of the system and should not be neglected in
HIV-1 modeling.

We also studied the sensitivity analysis to show how the values of all the parameters
of the suggested model affect R0 for given data, and we saw that the persistence of the
disease and the increase in the values of the parameters α1, α2, β1, β2, β̄1, β̄2, λ1, and λ2 are
positively correlated.

We assumed in this paper that: (i) the growth rate of uninfected cells is given in the
form U (x) = α without proliferation of uninfected cells. In many recent studies, it has
been suggested that the growth rate of uninfected cells can take several forms such as:
(a) growth rate with simple proliferation U (x) = α + sx

(
1− x

xmax

)
, where s is the rate of

growth and xmax is the maximum capacity of uninfected cells in the human body [27,51,52],
and (b) growth rate with a full proliferation U (x, y) = α + sx

(
1− x+y

xmax

)
[53]. On the other

hand, it has been reported in [44] that HIV may be able to infect cells in the thymus and
bone marrow and thus lead to reduced production of new uninfected cells. In this case, the
production of uninfected cells α is a decreasing function of the viral load as α(v) = kα

k+v ,
where k is a constant [44]. These forms add some difficulties to the analysis of the model;
therefore, we leave them to future work. We mention that our model can be extended in
different directions by (i) considering the mutations of HIV, (ii) including the stochastic
interaction, and (iii) considering the diffusion of cells and viruses.
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