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Abstract: In this paper, we propose a nonlinear regression model with exponentiated skew-elliptical
errors distributed, which can be fitted to datasets with high levels of asymmetry and kurtosis.
Maximum likelihood estimation procedures in finite samples are discussed and the information
matrix is deduced. We carried out a diagnosis of the influence for the nonlinear model. To analyze the
sensitivity of the maximum likelihood estimators of the model’s parameters to small perturbations in
distribution assumptions and parameter estimation, we studied the perturbation schemes, the case
weight, and the explanatory and response variables of perturbations; we also carried out a residual
analysis of the deviance components. Simulation studies were performed to assess some properties
of the estimators, showing the good performance of the proposed estimation procedure in finite
samples. Finally, an application to a real dataset is presented.
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1. Introduction

The linear model theory has been widely studied in the literature, for both symmetric and
asymmetric models. In either case, one of the main problems occurs when the distribution of the
residuals presents high levels of asymmetry and kurtosis. Various works have addressed this
situation, notably Cancho et al. [1] and Martínez-Flórez et al. [2]. A more complex situation
occurs when the systematic trend of the response variable is nonlinear, and the error
component presents high levels of asymmetry and kurtosis. The first approach used
by many investigators is to consider a model with error-multiplying effects and apply
a transformation to the response variable, such that the transformation applied to the
systematic part results in a linear relation between the transformed response and the set of
explanatory variables. In other cases, this linear relation is more easily reached by applying
the transformation to the explanatory variable; these models are known, in practice, as
intrinsically linear models. Although this practice is easily applied, it presents serious
problems in the interpretation of the model’s parameters, specifically with respect to the
original (untransformed) variables. In other cases, transformation is impossible, and the
only solution then is to use a nonlinear relation for the systematic component under certain
assumptions regarding error distribution. There are few works in the literature on nonlinear
cases, e.g., Cancho et al. [1], Martínez-Flórez et al. [2], and Lemonte and Cordeiro [3]. The
situation becomes even more complex when working with survival data, and when a
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nonlinear relation has to be fitted; for such cases, the most useful works in the literature
are those of Lemonte and Cordeiro [3], Lemonte [4], and Martínez-Flórez et al. [5]. Even in
these works, the problem of fitting the data when they present high levels of asymmetry
and kurtosis persists. There is, therefore, a need for new proposals for fitting nonlinear
relations under error distribution assumptions with high levels of asymmetry and kurtosis.
When the data distribution has tails heavier than the normal distribution, the family of
elliptical distributions offers an alternative solution for fitting the dataset. This family
corresponds specifically to symmetric-type distributions with a lower or higher kurtosis
than the normal distribution; see, for example, Cambanis et al. [6], Fang et al. [7], Gupta
and Varga [8], and Díaz-García and Leiva-Sánchez [9]. The probability density function
(pdf) of this family of distributions is given by:

f (x) = cg
(

x2
)

, (1)

for some non-negative functions g(z), z > 0, such that
∫ ∞

0 z−
1
2 g(z)dz = 1/c, with a

normalizing constant c. The function g(·) is known as the generating function. We denote
this as X ∼ EC(g). As a special case, this family contains the normal distribution when
g(z) = exp−

1
2 z, which leads to c = 1/

√
2π.

Other cases of X ∼ EC(g) distributions are represented, for example, by the Pearson
type VII, Student tν, Kotz, Cauchy, and normal distributions. The properties of this family
can be explored in studies by Kelker [10], Cambanis et al. [6], Fang et al. [7], and Gupta and
Varga [8] among others.

Although this model is a viable alternative for data with kurtosis that is either less or
greater than that of the normal distribution, it is not suitable for asymmetric distributions.

Generalization of the elliptic family to the asymmetric case is represented by the pdf
(see Lachos et al. [11])

hY(y; λ) = 2 f (y)F(λy), y, λ ∈ R, (2)

where f is given in (1), F is its corresponding cumulative distribution function (cdf), and λ
is an asymmetry parameter. This model is denoted by Y ∼ SE(g, λ). The cdf of this model
is given by

HY(y, λ) = 2
∫ y

−∞
f (t)F(λt)dt. (3)

Here, it can be seen that for λ = 0, the symmetrical elliptic family follows. A particular
case of model (2) is the skew-normal (SN) distribution (see Azzalini [12]) when f = φ and
F = Φ. Therefore, we have the pdf

φSN(y) = 2φ(y)Φ(λy), y ∈ R,

where λ is an asymmetry parameter. We denote this by SN(λ). The cdf of the SN model is
given by

ΦSN(y) = Φ(y)− 2T(y; λ), y ∈ R,

where T(·, ·) is Owen’s function (See [13]). For λ = 0, the standard normal model is
obtained. This distribution is widely used in different areas of data modeling with degrees
of asymmetry in the range of (−0.995, 0.995) and kurtosis in the range of (3, 3.869).

This model has been extended to many areas of statistics; the following regression
model, in particular, has been studied

Yi = xT
i β + εi, i = 1, 2, . . . , n,

where Yi is the i-th experimental unit, β = (β1, β2, . . . , βp)T is an unknown parameter
vector, xi = (xi1, xi2, . . . , xip)

T is a p-dimensional vector with the values of the explana-
tory variables, and εi are independent and identically distributed random variables with
εi ∼ SN(0, η, λ), i = 1, 2, . . . , n.
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A more general case of regression models was studied by Cancho et al. [1], who
introduced the nonlinear regression model with asymmetric errors; that is, the model

Yi = ψ(β, xi) + εi, i = 1, 2, . . . , n,

where Yi is the response variable, ψ(·) is an injective continuous function that is twice dif-
ferentiable with respect to the parameter vector β, xi is a vector of values of an explanatory
variable, and εi are independent and identically distributed random variables SN(0, η, λ).

Another asymmetric type of distribution was studied by Durrans [14]; this is called
the exponentiated distribution with pdf

ϕZ(z; α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R+,

where F is an absolutely continuous cdf with pdf f = dF and α is a shape parameter that
controls the amount of asymmetry in the distribution. We use the notation Z ∼ EXP(α).
Case F = Φ(·) is called the exponentiated normal distribution and is denoted as EXPn(α).
This is an alternative asymmetric model with asymmetry in the range of (−0.611, 0.900)
and kurtosis in the range of (1.717, 4.355) (see Pewsey et al. [15]), as is the case with the SN
distribution (Azzalini [12]).

Another asymmetric type of distribution that has been mainly used for modeling
the lifetimes of certain structures under dynamic loads was introduced by Birnbaum and
Saunders [16]. It is popularly known as the Birnbaum–Saunders (BS) distribution, and its
pdf is given by

fT(t) = φ(at)
t−3/2(t + τ)

2γ
√

τ
, t > 0,

with at = 1
γ

(√
t
τ −

√
τ
t

)
where γ > 0 is the shape parameter and τ > 0 is a scale

parameter. We shall use the notation T ∼ BS(γ, τ).
This model has been extended to a large number of distribution families. Initially,

the extension of this model to symmetric elliptic distributions was proposed by Díaz-
García and Leiva-Sánchez [9], while Castillo et al. [17] considered the asymmetric epsilon
Birnbaum–Saunders model, and Gómez et al. [18] considered an extension based on the
slash-elliptical family of distributions.

The BS model has also been used to study linear regression models, literally known as
the log–Birnbaum–Saunders (log–BS) model (see Rieck and Nedelman [19]). In this type
of model, it is assumed that Yi = log(Ti), where Ti ∼ BS(γ, τ) for i = 1, 2, . . . , n, and that
the linear model errors follow a sinh-normal (SHN) distribution (see [19]), with a vector of
parameters γ, 0, and 2. This is,

ϕ(εi) =
2
γ cosh

( εi
2
)

2
φ

(
2
γ

sinh
( εi

2

))
,

which is denoted by εi ∼ SHN(γ, 0, 2), i = 1, 2, . . . , n.
More recently, Barros et al. [20] extended this model to error distributions with heavier

tails, emphasizing the use of the Student-t distribution. They also conducted estimations
and diagnostic studies for the model studied. Extensions for the SHN model using an
asymmetric setup were found in the models studied by Leiva et al. [21], where a skewed-
sinh-normal model was developed and used in a study on air pollution in the city of
Santiago, Chile. Some other asymmetric extensions of the sinh-normal models were
reported in Barros et al. [20], Lemonte and Cordeiro [3], and Santana et al. [22], where a
study on the influence of observations was reported.

In nonlinear type models, few papers have been published for cases involving the BS
distribution. Among these are the works on nonlinear log–BS models studied by Lemonte
and Cordeiro [3] and the works on diagnosis and influence in the nonlinear log–BS skew-
normal (ssinh) model, see Lemonte [4].
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In this work, we propose a nonlinear model for datasets where the errors follow the
skew-elliptical alpha-power distribution; the ranges of asymmetry and kurtosis are greater
than those of SN (Azzalini [12]) and alpha-power models (Durrans [14]), and it contains
the SN, exponentiated, and normal distributions as special cases. In other words, it is much
more flexible than these models. We also include the inference of the model, a study of the
estimation process, the variance–covariance matrix of the estimator vector, a diagnostic
analysis of influence, and the residual analysis.

The paper is organized as follows. In Section 2, we present the nonlinear log–BS
exponentiated skew-elliptic regression model, study its properties, estimate its parameters,
and deduce the observed and expected information matrices. In Section 3, we present
diagnostic and residual analyses for the proposed model. In Section 4, we perform a
simulation study. In Section 5, a real dataset is analyzed using the proposed distribution to
illustrate its applicability.

2. New Model

In this section, we present the exponentiated skew-elliptical (EXPSE) distribution, some of
its properties, and the nonlinear transformation involved in the sinh-normal exponential skew-
elliptical distribution. Subsequently, we present the nonlinear skew-elliptical log–Birnbaum–
Saunders alpha-power regression model, study its properties and the parameter estimation
process, and deduce the observed and expected information matrices.

The EXP(α) and SN(λ) models were combined to obtain a new model studied by
Martínez-Flórez et al. [23], which they call the exponentiated SN model. We will denote
this by EXPsn(λ, α). They show that this model is more flexible (in terms of skewness and
kurtosis) than the EXPn and SN models.

Special cases of the EXPsn model occur with α = 1, so the SN model φSN(x), follows.
On the other hand, with λ = 0, the model with pdf ϕΦ(x), which is the Durrans generalized
normal model, follows. The ordinary standard normal model is also a special case that
follows by taking α = 1 and λ = 0, which is ϕ(z; 0, 1) = φ(x). Notice from Figure 1a,b
below that α and λ affect both the asymmetry and kurtosis of the distribution; hence,
the proposed model seems more flexible than the models proposed by Azzalini [12] and
Durrans [14].
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Figure 1. Plots of the EXPsn distribution. (a) α = 1.5 and λ = −0.75 (dotted dashed line), 0 (dotted
line), 1 (dashed line), 1.75 (solid line), (b) λ = 0.70, α = 0.50 (dotted-dashed line), 1.0 (dotted line),
2.0 (dashed line), and 5.0 (solid line).

The EXPsn(λ, α) model can be extended to a much more general family, which in-
cludes the EXP(α) and SE models given in (2) by the parameter λ and generator g.

Definition 1. The pdf of the exponentiated skewed-elliptical distribution is given by
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ϕ(z; λ, α) = αhZ(z; λ){HZ(z; λ)}α−1, z ∈ R. (4)

where h(·) is given in (2) and H is its cdf. We will denote it by Z ∼ EXPSE(g, λ, α).

Special cases of the EXPSE model occur with α = 1, so that the SE(g, λ) model follows.
On the other hand, with λ = 0, the EXP model of Durrans [14] follows.

The moments of the random variable Z do not have closed forms, but under a variable
change, the r-th moment of the random variable Z can be written as follows:

E(Zr) = α
∫ 1

0
[H−1

Z (z; λ)]rzα−1dz,

where H−1
Z is the inverse of the function HZ(z, λ). When hZ(z, λ) is the SN model of

Azzalini [12], we then have the EXPsn model of parameters λ and α. The transforma-
tion Y = ξ + ηZ leads to the location–scale model of the EXPsn model, denoted by
EXPsn(ξ, η, α). In other cases, the observation types lead to nonlinear transformations of
the variable under study; while the transformation Y = arcsinh(γZ/2)η + ξ leads to the
skewed sinh power-normal distribution, with the pdf given by

ϕSEXPsn(y) = α

2
γ cosh

(
y−ξ

η

)
η

φSN

(
2
γ

sinh
(

y− ξ

η

)){
ΦSN

(
2
γ

sinh
(

y− ξ

η

))}α−1
,

which we denote by Y ∼ SEXPsn(γ, ξ, η; g, λ, α). For more details on this model, see
Martínez-Flórez et al. [24].

Notice that when λ = 0, α = 1, and η = 2, we have the SHN model, so this special
case can be assessed by testing the hypothesis H0 : (λ, α) = (0, 1). On the other hand, with
α = 1, the skewed sinh-normal model follows; see Lemonte and Cordeiro [3].

The cdf of Y is given by

FSEXPsn(y; λ) =

{
ΦSN

[
2
γ

sinh
(

y− ξ

η

)]}α

.

From the random variable, T = exp(Y) follows the exponentiated BS asymmetric
distribution, with parameters γ, β = exp(ξ), λ, and α.

Nonlinear Log–BS Model

The nonlinear log–BS model is defined by

Yi = ψi(xi, β) + εi,

where εi ∼ SEXPsn(γ, 0, 2; φ, λ, α), yi = log(ti) is the logarithm of the observed lifetime,
ψi(xi, β) is a specified nonlinear function, which depends on a p-dimensional vector of
covariates (say xi) and the regression coefficients β = (β0, β1, . . . , βp)′, satisfying that it is a
continuous and twice differentiable function in relation to β.
Some properties are as follows:

1. The pdf and cdf:

ϕ(yi) = α

2
γ cosh

(
yi−ψ(xi ,β)

2

)
2

φSN

(
2
γ

sinh
(

y− ψ(xi, β)

2

)){
ΦSN

(
2
γ

sinh
(

yi − ψ(xi, β)

2

))}α−1

, (5)

which we denote by Yi ∼ SEXPsn(γ, ψ(xi, β), 2; φ, λ, α), and

FSEXPsn(yi; λ) =

{
ΦSN

(
2
γ

sinh
(

yi − ψ(xi, β)

2

))}α

. (6)

2. Percentiles:
If U ∼ U(0, 1), following the uniform distribution, then the random variable
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Yi = ψ(xi, β) + 2
[
arcsinh

{γ

2
Φ−1

SN(U
1/α)

}]
is distributed according to the SEXPsn distribution, with parameters γ, ψ(xi, β), 2, λ
and α, where Φ−1

SN is the inverse of the skew-normal distribution.
3. Flexibility:

(a) λ = 0 follows the power-normal (exponentiated-normal) nonlinear regression
model.

(b) α = 1 follows the skew-normal nonlinear regression model.
(c) λ = 0 and α = 1 follow the normal nonlinear regression model.

Hence, in terms of skewness and kurtosis, this model is more flexible than the power-
normal, skew-normal, and normal nonlinear models.

4. Let Yi ∼ SEXPsn(γ, ψ(xi, β), 2; φ, λ, α). Then, for constants σ0 ∈ R and σ1 ∈ R+,

V = σ0 + σ1Y ∼ SEXPsn(γ, σ0 + σ1ψ(xi, β), 2σ1; φ, λ, α).

5. If Yi ∼ SEXPsn(γ, ψ(xi, β), 2; φ, λ, α), then

V =
2
γ

sinh
(

Yi − ψ(xi, β)

2

)
∼ EXPSE(0, 1; φ, λ, α).

6. Let Yi ∼ SEXPsn(γ, ψ(xi, β), 2; φ, λ, 1). Then,

V2 =
4

γ2 sinh2
(

Yi − ψ(xi, β)

2

)
∼ χ2

1.

7. Expectation and variance:

E(Yi) = ψ(xi, β) + 2c1(γ, λ, α)

where
c1(γ, λ, α) =

∫ ∞

−∞
arcsinh

(γz
2

)
φSN(z){ΦSN(z)}α−1dz

and
Var(Yi) = 4Var(γ, λ, α),

with Var(γ, λ, α) representing the variance of the random variable W = arcsinh
(

γZ
2

)
,

where Z ∼ EXPSE(φ, λ, α).

Defining ξi1 = 2
γ cosh

(
yi−ψ(xi ,β)

2

)
and ξi2 = 2

γ sinh
(

yi−ψ(xi ,β)
2

)
for i = 1, 2, . . . , n, the

log-likelihood function for the parameter (γ, β, λ, α)> for a random sample
Yi ∼ SEXPsn(γ, ψ(xi, β), 2, λ, α), i = 1, . . . , n, up to an additive constant, is given by

`(γ, β, λ, α) = n log(α) +
n

∑
i=1

log(ξi1) +
n

∑
i=1

log(φSN(ξi2)) + (α− 1)
n

∑
i=1

log(ΦSN(ξi2)).

Denoting by WSN = φSN(ξ2)
ΦSN(ξ2)

, dj = ∂ψ(β,x)
∂β j

, WSN1 = φSN(
√

1+λ2ξ2)
φSN(ξ2)

, and

WSN2 = φSN2(
√

1+λ2ξ2)
ΦSN(ξ2)

, we have the following score functions

U(β j) =
n

∑
i=1

{
− ξi2

2ξi1
dij +

1
2

ξi1ξi2dij −
λ√
2π

ξi1dijWSN1 −
α− 1

2
ξi1dijWSN

}
, for j = 1, 2, . . . , p,

U(λ) =
n

∑
i=1

{√
2
π

ξi2WSN1 −
√

2
π

(α− 1)
(1 + λ2)

WSN2

}
, U(γ) =

1
γ

n

∑
i=1

{
−1 + ξi1ξi2 −

√
2
π

WSN1 − (α− 1)ξi2WSN

}
,
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U(α) =
n

∑
i=1

{
1
α
+ log(ΦSN(ξi2))

}
.

Setting these equations equal to zero, we obtain the score equations, whose solutions by
iterative numerical methods lead to the maximum likelihood (ML) estimators.

The elements of the observed information matrix are given by J(θ) = −H(θ), where
H(θ) is the Hessian matrix; that is, the second derivative, with respect to the parameters
of the log-likelihood function. We will denote the elements of the information matrix by
jγγ, jβ jγ, . . . , jαα, which can be found in Appendix A.

From these results, we obtain the Fisher information matrix, I(θ), the elements
of which are obtained by finding the expected elements of the observed information
matrix, i.e.,

iθjθj′
= E(jθjθj′

).

This information matrix is non-singular; thus, for large samples, we have that
√

n(θ̂− θ) ∼ Np+4(θ, I(θ)−1).

Therefore, the inverse of I(θ) is the covariance matrix of the vector of the ML estimators of
the model parameters.

3. Diagnostic Analysis

The verification of possible deviations from the assumptions made for the model, as
well as the existence of extreme observations and some interferences that may affect the
estimate parameters, can be studied using diagnostic methods similar to those employed by
Cook [25] for the normal model. Usually, these methods can be performed by eliminating
cases to assess the global influence and incorporating various types of perturbations to
assess the local influence. We denote the perturbation vector as ω = (ω1, ω2, . . . , ωn)′.

Now, we implement the perturbation schemes for the response variable, the explana-
tory variable, and the weighting of the cases; we also analyze the deviance component
residual to study possible departures from the model’s assumptions.

3.1. Local Influence

The main object of the local influence method is to evaluate changes in the results of
the analysis when small perturbations are incorporated into the model and/or the data. If
these perturbations cause disproportionate effects, it may be an indication that the model
is ill-fitted or that there may be serious departures from the assumptions made for it. We
are now going to apply this technique to the nonlinear regression model. We will use the
perturbed log-likelihood, as in Cook [25], to assess the local influence.

The influence of perturbation ω on the ML estimator can be evaluated based on the
analysis of the distance by likelihood

LD(ω) = 2{L(θ̂)− L(θ̂ω)}.

Cook [25] proposed studying the local behavior of LD(ω) around ω0, using the normal
curvature Cl in the unperturbed vector in one unit direction, where ‖l‖ = 1, considering
the graph of LD(ω0 + al) against a with a ∈ R. This graph is called the projected line. Each
projected line can be characterized by the normal curvature Cl(θ) around a = 0.

Cook shows that
Cl = 2

∣∣∣l′∆′ L̈−1∆l
∣∣∣,

with ‖l‖ = 1, where L̈ is the Hessian matrix and ∆ is a matrix (p + q)× n, which depends

on the perturbation scheme used, whose elements are ∆ij = ∂2`(θ|ω)
∂θj∂ωi

, j = 1, 2, . . . , p +

q and i = 1, 2, . . . , n, with all quantities evaluated at ω = ω0 and θ = θ̂.
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Let lmax be the direction of the maximum curvature, which is the direction that pro-
duces the greatest change in θ̂. The most influential element of the data can be identified
by the largest component of the vector lmax, corresponding to the largest eigenvalue of

B = −∆′ L̈−1∆,

(see Galea et al. [26]). If the interest is to evaluate the partial influence of a θ1 subset of
θ = (θ′1, θ′2)

′, then the normal curvature in the direction of the vector l is given by

Cl(θ1) = 2
∣∣∣l′∆′(L̈−1 − B1)∆l

∣∣∣,
with

B1 =

(
011 012
021 L̈−1

22

)
where L̈−1

22 = ∂2`(θ|ω)

∂θ′2∂θ2
|
θ=θ̂

. The graph of the eigenvector associated with the largest

eigenvalue of the matrix −∆′(L̈−1 − B1)∆ against the index of observations can reveal
which observations are influencing θ̂1. Similarly, if the interest is on θ2, then the normal
curvature in the direction of vector l is given by

Cl(θ2) = 2
∣∣∣l′∆′(L̈−1 − B2)∆l

∣∣∣,
with

B2 =

(
L̈−1

11 012
021 022

)
where L̈−1

11 = ∂2`(θ|ω)

∂ θ′1∂θ1
|
θ=θ̂

. The local influence of the observations on θ2 can be evaluated

considering the graph lmax for the matrix−∆′(L̈−1− B2)∆ against the index of observations.
The curvature in the direction of the i-th observation was suggested by Lesaffre and

Verbeke [27]; that is, to calculate the curvature in the direction of li, where li is an n× 1
vector of zeros with one in the i-th position. For ∆′i, denoting the i-th row of ∆, the total
local influence of the i-th case is given by

Ci = 2
∣∣∣∆′i L̈−1∆i

∣∣∣, i = 1, 2, . . . , n.

In the work by Verbeke and Molenberghs [28], it is proposed to consider cases as influential
when Ci ≥ 2C, where C = 1

n ∑n
i=1 Ci.

Poon and Poon [29] proposed a second alternative for studying influential points; they
introduced the conformal normal curvature, defined by

Bl = −
l′∆′(L̈−1)∆l√

tr
[
l′∆′(L̈−1)∆l

]2
∣∣∣∣∣∣
θ=θ̂, ω=ω0

,

where tr(A) is the trace of matrix A. Thus, the computation of Bl requires almost no more
effort than the computation of Cl . Furthermore, the conformal normal curvature enjoys
several interesting properties, among which we highlight:

1. The normal curvature, conforming in any direction to ω0, is invariant under reparametrization.
2. In any direction l, 0 ≤ |Bl | ≤ 1; therefore, Bl is a normalized measure, which will

allow comparisons of the curvatures.

3.2. Local Influence for the Nonlinear Log–BS Exponentiated Skew-Normal Model

Let us define θ = (θ1, θ2)′ with θ1 = β and θ2 = (γ, λ, α)′.
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3.2.1. Weighting Cases

For the nonlinear log–Birnbaum–Saunders exponentiated SN model, the perturbed
log-likelihood function is given by

`(θ|ω) =
n

∑
i=1

ωi`i(θ),

with 0 ≤ ωi ≤ 1, for i = 1, . . . , n, and ω0 = (1, 1, . . . , 1)′ is the vector of no perturbations.
The matrix ∆ is given by

∆ =

(
∆β

∆θ2

)
,

where ∆β is a matrix of size p× n, and ∆θ2 is a matrix of size 3× n, with elements

∆β = Ddiag{â1, â2, . . . , ân}

where ai = − ξi2
2ξi1

+ 1
2 ξi1ξi2 − λ√

2π
ξi1WSN1 − (α−1)

2 ξi1WSN with D = {dij} =
{

∂ψ(xi ,β)
∂β′

}
for

i = 1, 2, . . . , n and j = 1, 2, . . . , p while

∆θ2 = (b̂1, b̂2, . . . , b̂n),

where

bi =


1
γ

{
−1 + ξi1ξi2 −

√
2
π WSN1 − (α− 1)ξi2WSN

}
√

2
π ξi2WSN1 −

√
2
π

(α−1)
(1+λ2)

WSN2
1
α + log(ΦSN(ξi2))


i=1,2,...,n

and âi and b̂i are the estimates of ai and bi for i = 1, 2, . . . , n which are obtained by replacing
β j, γ, λ and α, by the respective ML estimates β̂ j, γ̂, λ̂ and α̂.

3.2.2. Perturbation in the Response Variable

Suppose yi presents a perturbation of the form yiω = yi + ωiSy, where Sy is a scale
factor that can be estimated as the standard deviation of Y and ωi ∈ R. Thus, the logarithm
of the perturbed likelihood function takes the form

`(θ|ω) = n log(α) +
n

∑
i=1

log(ξi1ω1) +
n

∑
i=1

log(φSN(ξi2ω1)) + (α− 1)
n

∑
i=1

log(ΦSN(ξi2ω1)),

where ξi1ω1 = 2
γ cosh

(
yiω1
−ψ(xi ,β)

2

)
and ξi2ω1 = 2

γ sinh
(

yiω1
−ψ(xi ,β)

2

)
for i = 1, 2, . . . , n.

The elements of the ∆ array are ∆β = SyDdiag{m̂i}, where

mi =

[
1

4ξ2
i2
(ξ2

i2 − ξ2
i1) +

(ξ2
i2 + ξ2

i1)

2
− λξi2√

2π
WSN1[1− ξ2

i1λ2] +
λ2ξi1

π
W2

SN1

]

− (α− 1)
4

[
WSN [ξ2i − ξ2

i1(ξi2 + WSN)] +

√
2
π

λξ2
i1WSN2

]

while ∆θ2 = sy(ĉ1, ĉ2, . . . , ĉn), where

ci =

 κ1i
κ2i

ξi1
2 WSN


i=1,...,n

,

κ1i and κ2i are defined in Appendix B.
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3.2.3. Perturbation in the Explanatory Variable

Let us now consider the case where an explanatory variable, xq, presents an additive
perturbation of the form xiqw = xiq + ωiSq, where Sq is a scale factor that can be estimated
by the standard deviation of xq and ωi ∈ R, q ∈ {1, 2, . . . , p}. Thus, the logarithm of the
perturbed likelihood function takes the form

`(θ|ω) = n log(α) +
n

∑
i=1

log(ξi1ω2) +
n

∑
i=1

log(φSN(ξi2ω2)) + (α− 1)
n

∑
i=1

log(ΦSN(ξi2ω2)),

where ξi1ω2 = 2
γ cosh

(
yi−ψ(xiω2

,β)
2

)
and ξi2ω2 = 2

γ sinh
(

yi−ψ(xiω2
,β)

2

)
for i = 1, 2, . . . , n.

The array elements ∆β are ∆βij = Sijwκ3i + SiwSijκ4i where κ3i and κ4i are defined in
Appendix B and

Sijw =
∂2ψ(xiw, β)

∂ω2∂β j

∣∣∣∣∣
θ=θ̂, ω=0

, Siw =
∂ψ(xiw, β)

∂ω2

∣∣∣∣
θ=θ̂, ω=0

, and Sij =
∂ψ(xiw, β)

∂β j

∣∣∣∣∣
θ=θ̂, ω=0

.

Even so, we have θ2
∆θ2 = (d̂1, d̂2, . . . , d̂n),

where

di =

 κ5i
κ6i

− 1
2 diwξi1wWSN


i=1,...,n

,

κ5i, κ6i, and diw are defined in Appendix B.

3.3. Residual Analysis

To analyze the existence of influential observations and high leverage points that
may be affecting parameter estimates, we define residual components and a matrix of
generalized leverage for the nonlinear log–BS exponentiated skew-normal.

3.3.1. Residual Components

Considering γ, λ, and α as fixed (known) quantities, according to Galea et al. [26], the
residual components are given by

rDCi = sgn(êi)
√

2

[
− log

(
cosh

(
êi
2

))
+

1
2

ξ̂2
i2 − log

{
2Φ
(
λξ̂i2

)}
− (α̂− 1) log

{
ΦSN(0)

ΦSN
(
ξ̂i2
)}]1/2

,

i = 1, 2, . . . , n, where sgn is the sign function and êi = yi − ψ(xi, β̂).

3.3.2. Standardized Residuals

The standardized residual components are given by

r∗DCi
=

rDCi√
1− GLii

,

where GLii is the i-th element of the main diagonal of the matrix of generalized leverage
(see Wei et al. [30]), as defined by

GL(θ) = Dθ(−L̈)−1 L̈θy,

where Dθ = ∂µ

∂θT = (D, 0), L̈ is the Hessian matrix and

L̈θy =

(
L̈βy
L̈θ2y

)
,
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with
L̈βyi

= Ddiag{νi}

where

νi =
1
4

[
2ξ2

i2 +
4

γ2 −
√

2
π

λξi2WSN1 −
1

γ2ξ2
i1
+

√
2
π

λξ2
i1ξi2WSN +

2
π

λ2ξ2
i1W2

SN1

]

− (α− 1)
4

[
ξi2WSN(1− ξ2

i1) +

√
2
π

λξ2
i1WSN2 − ξ2

i1W2
SN

]

for i = 1, 2, . . . , n, and

L̈θ2yi
=

 κ̂7i
κ̂8i

1
2 ξ̂i1 ˆWSN


i=1,...,n

,

where κ1i and κ2i are defined in Appendix B, θ2 = (γ, λ, α)′ and ξ̂i1, ξ̂i2 are the ML
estimators for ξi1 and ξi2.

4. Simulation Study

In this section, we present a simulation study in order to assess the properties of
the ML estimators. We consider that yi ∼ SEXPsn(γ, ψi, 2, λ, α), for i = 1, . . . , n and
ψi = β0 + β1xβ2

i , where xi is drawn from the U(0, 10) distribution. We consider two vectors
for β = (β0, β1, β2): (1.5,−0.5, 0.25) and (−2,−1.5, 0.5); two values for γ: 0.5 and 1.8,
and two vectors for (λ, α): (−1, 0.8) and (1, 1.25). In addition, we consider three sample
sizes: 50, 100, and 200. Each of the 24 different cases was replicated 1000 times. For
each replicate, we compute the ML estimator of (β0, β1, β2, γ, λ, α) and the corresponding
standard error. Table 1 summarizes the bias, the standard deviation of the estimators (SE1),
the mean of the estimated standard errors (SE2), and the 95% coverage probabilities (CP),
based on the asymptotic distribution for the ML estimators. We highlight that the bias
is acceptable and is reduced when n is increased. Moreover, the terms SE1 and SE2 are
closer when the sample size is increased, suggesting that the variances of the estimators are
also well estimated. Finally, the CP terms being closer to the nominal values used for their
construction suggest a good performance of the asymptotic normal distribution for the ML
estimators. In short, the estimators have desirable properties even in finite samples.
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Table 1. Simulation study for the ML estimators obtained from the SEXPsn(γ, ψi, 2, λ, α) model.

True Values n = 50 n = 100 n = 200
β> γ (λ, α)> param. bias SE1 SE2 CP bias SE1 SE2 CP bias SE1 SE2 CP 1.50
−0.50
0.25

 0.5
[
−1.0
0.8

]
β0 −0.168 0.372 0.269 0.940 −0.094 0.275 0.205 0.940 −0.038 0.066 0.055 0.949
β1 −0.069 0.648 0.467 0.927 −0.024 0.372 0.293 0.933 −0.013 0.120 0.100 0.947
β2 0.036 0.116 0.088 0.921 0.009 0.071 0.053 0.933 0.006 0.017 0.015 0.947
γ 0.491 0.880 0.523 0.872 0.138 0.514 0.402 0.910 0.071 0.144 0.128 0.945
λ −1.232 2.974 1.932 0.994 −0.455 1.584 1.270 0.978 −0.188 0.561 0.493 0.972
α −0.532 0.847 0.518 0.877 −0.155 0.454 0.348 0.891 −0.073 0.127 0.110 0.950[

1.00
1.25

]
β0 0.210 2.414 1.690 0.917 0.057 1.331 1.020 0.939 0.033 0.307 0.270 0.946
β1 0.079 0.507 0.383 0.935 0.030 0.339 0.281 0.940 0.013 0.082 0.072 0.946
β2 −0.037 0.171 0.120 0.902 −0.011 0.114 0.086 0.931 −0.004 0.037 0.032 0.948
γ −0.433 0.715 0.441 0.909 −0.125 0.336 0.268 0.935 −0.068 0.098 0.084 0.947
λ −1.437 3.754 2.454 0.972 −0.464 2.218 1.782 0.964 −0.229 0.821 0.685 0.959
α 0.816 2.157 1.347 0.894 0.269 1.241 1.006 0.909 0.113 0.438 0.395 0.947

1.8 [
−1.0
0.8

]
β0 0.208 3.244 2.259 0.933 0.071 2.144 1.688 0.938 0.045 0.692 0.613 0.949
β1 0.050 0.151 0.110 0.939 0.023 0.094 0.072 0.940 0.017 0.029 0.025 0.946
β2 −0.028 0.057 0.040 0.918 −0.010 0.036 0.029 0.938 −0.004 0.011 0.009 0.947
γ 1.649 7.589 4.563 0.873 0.525 4.481 3.374 0.896 0.282 0.982 0.871 0.948
λ −1.188 3.541 2.186 0.972 −0.391 2.024 1.503 0.963 −0.218 0.541 0.491 0.957
α −0.467 1.388 0.877 0.904 −0.171 0.912 0.700 0.928 −0.078 0.221 0.194 0.946[

1.00
1.25

]
β0 0.185 2.794 1.866 0.901 0.095 1.821 1.457 0.907 0.048 0.598 0.523 0.946
β1 −0.054 0.146 0.104 0.938 −0.029 0.106 0.080 0.939 −0.015 0.031 0.027 0.946
β2 0.024 0.262 0.201 0.906 0.009 0.185 0.152 0.937 0.006 0.070 0.060 0.947
γ 1.528 5.450 3.336 0.881 0.487 2.638 2.132 0.942 0.288 0.852 0.731 0.945
λ −1.273 4.803 2.862 0.975 −0.411 2.878 2.277 0.965 −0.223 0.778 0.679 0.965
α 0.780 2.230 1.435 0.878 0.284 1.244 1.018 0.894 0.125 0.314 0.271 0.949−2.0

−1.5
0.5

 0.5 [
−1.0
0.8

]
β0 −0.217 3.783 2.819 0.910 −0.102 2.437 1.980 0.912 −0.037 0.652 0.577 0.945
β1 −0.283 0.757 0.544 0.939 −0.060 0.505 0.402 0.939 −0.029 0.155 0.138 0.950
β2 −0.074 0.760 0.521 0.915 −0.027 0.502 0.374 0.923 −0.011 0.136 0.121 0.947
γ 0.437 0.826 0.497 0.894 0.163 0.436 0.348 0.943 0.074 0.149 0.125 0.947
λ −1.074 2.333 1.542 0.990 −0.379 1.344 1.044 0.976 −0.243 0.409 0.343 0.961
α −0.491 1.911 1.127 0.886 −0.140 1.117 0.856 0.890 −0.092 0.262 0.235 0.946[

1.00
1.25

]
β0 0.291 0.752 0.501 0.917 0.104 0.397 0.316 0.920 0.038 0.102 0.091 0.949
β1 0.283 1.584 1.204 0.919 0.084 0.977 0.733 0.928 0.050 0.294 0.253 0.949
β2 −0.061 0.872 0.633 0.903 −0.026 0.648 0.501 0.908 −0.009 0.219 0.192 0.949
γ −0.417 0.402 0.267 0.913 −0.151 0.251 0.207 0.935 −0.067 0.066 0.059 0.946
λ −1.036 2.627 1.618 0.993 −0.449 1.517 1.252 0.975 −0.181 0.494 0.447 0.967
α 0.684 2.730 1.713 0.893 0.286 1.763 1.316 0.909 0.133 0.469 0.398 0.950

1.8 [
−1.0
0.8

]
β0 −0.348 4.158 3.050 0.914 −0.119 2.869 2.321 0.940 −0.060 0.974 0.874 0.949
β1 0.224 1.438 1.050 0.916 0.087 0.837 0.664 0.935 0.028 0.308 0.263 0.945
β2 0.056 0.247 0.172 0.922 0.028 0.138 0.104 0.932 0.010 0.046 0.041 0.947
γ −1.511 4.382 2.688 0.888 −0.514 2.596 2.062 0.920 −0.259 0.716 0.611 0.947
λ −1.374 3.618 2.220 0.991 −0.417 1.956 1.480 0.975 −0.211 0.510 0.441 0.972
α −0.451 2.141 1.422 0.878 −0.139 1.278 0.987 0.936 −0.078 0.368 0.312 0.949[

1.00
1.25

]
β0 −0.361 3.658 2.741 0.915 −0.111 2.546 2.098 0.918 −0.046 0.747 0.654 0.946
β1 −0.249 2.080 1.443 0.931 −0.060 1.478 1.120 0.935 −0.047 0.420 0.370 0.947
β2 0.081 0.727 0.526 0.921 0.027 0.443 0.337 0.922 0.012 0.147 0.131 0.947
γ 1.476 5.614 3.382 0.885 0.546 3.224 2.541 0.902 0.277 0.835 0.756 0.950
λ −1.452 5.870 3.474 0.990 −0.436 2.751 2.237 0.979 −0.197 0.948 0.837 0.961
α 0.873 3.933 2.545 0.880 0.289 2.597 1.932 0.887 0.135 0.651 0.576 0.949

5. Application

This section illustrates the SEXPsn model using a real data application. We consider the
data of 202 athletes collected at the Australian Institute of Sport (AIS), which is available in
the sn package [31] of the R software, [32]. The data are intended to explain the hematocrit
(Hc) in terms of hemoglobin (Hg). Figure 2 shows the plot for Hg versus log(Hc).
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Figure 2. Plot for Hg versus log(Hc) in the AIS dataset.

Based on the figure, we consider that log(Hci) ∼ SEXPsn(γ, ψ(Hgi, β), 2, λ, α), where
we consider two proposals for the function ψ:

• A linear relation: ψ(Hgi, β) = β0 + β1 × Hgi; and

• A nonlinear relation: ψ(Hgi, β) = β0 × Hgβ1
i .

In both cases, we also consider particular models, α = 1 (ssinh model), α = 1,
and λ = 0 (nonlinear log–BS exponentiated, ssinh model). The results are presented in
Table 2. Note that the nonlinear relation provides better results than the linear relations
for the three models. To compare the fit of these models, we use the Akaike criterion (AIC)
see [33]. According to this criterion, the model that best fits the data is the one with the
lowest AIC value. The lowest AIC is achieved by the SEXPsn model with a nonlinear
relation. Note that all parameters are significant in this model. Moreover, Figure 3 shows
the rQR of the SEXPsn, ssinh, and sinh models using a nonlinear relation. Based on the
three normality tests presented, those residuals are random samples from the standard
normal distribution for the SEXPsn model, whereas those for the ssinh and sinh models are
not. Therefore, the SEXPsn model is appropriate for this dataset, while the ssinh and sinh
models are not.

Table 2. Estimates and standard errors (s.e.) for SEXPsn, ssinh, and sinh models in the AIS dataset.

Model
SEXPsn ssinh sinh

Relation Parameter Estimate s.e. Estimate s.e. Estimate s.e.

linear β0 2.9173 0.0193 2.9092 0.0212 2.8968 0.0199
β1 0.0596 0.0013 0.0593 0.0014 0.0592 0.0014
γ 0.0318 0.0075 0.0296 0.0049 0.0262 0.0013
λ 4.3979 1.8245 −0.7088 0.6070 0 -
α 0.0565 0.0318 1 - 1 -

log-
likelihood 452.16 448.82 448.73

AIC −894.31 −889.64 −891.46

nonlinear β0 2.0602 0.0247 2.0217 0.0279 2.0343 0.0282
β1 0.2274 0.0044 0.2302 0.0051 0.2296 0.0052
γ 0.0350 0.0090 0.0311 0.0037 0.0258 0.0013
λ 5.3683 2.3188 0.9722 0.4327 0 -
α 0.0489 0.0270 1 - 1 -

log-
likelihood 456.81 452.33 451.86

AIC −903.61 −896.65 −897.71
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(b) ssinh
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(c) sinh

Figure 3. QQ plots and p-values for three normality tests for rQR for SEXPsn, ssinh, and sinh models
in the AIS dataset, using a nonlinear relation.

For this reason, the local influence analysis will be performed only for the SEXPsn
model with the nonlinear regression. Figure 4 shows the local influence of the weight,
response, and covariate perturbation for the partition ψ> = (β>, θ>), where θ> = (γ, λ, α).
Note that only observations 68 and 169 are potentially influential. Table 3 shows the relative
changes (RC, in %) for the ML estimates in the model when observations 68 and 169 are
dropped (separately and jointly). Note that the major changes are given for α. However, in
all the cases, the significance for all parameters is maintained.
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Figure 4. Index plots of Ci for β (top) and θ (bottom) under the weight perturbation (left), response
perturbation (center), and covariate perturbation (right) schemes for SEXPsn nonlinear regression in
the AIS dataset.
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Table 3. RCs (in %) in the ML estimates and the corresponding SEs for the indicated parameters and
respective p-values for the SEXPsn nonlinear regression model in the AIS dataset when observations
68 and 169 are dropped.

Dropped Parameter
Cases β0 β1 γ λ α

68 RC 0.16 0.38 0.56 3.87 21.22
RCSE 5.91 6.25 7.44 6.15 25.23

p-value <0.0001 <0.0001 <0.0001 0.0130 <0.0001

169 RC 0.46 0.68 0.70 2.63 12.78
RCSE 2.58 2.66 5.05 4.40 14.41

p-value <0.0001 <0.0001 <0.0001 0.0135 <0.0001

68, 169 RC 0.33 0.33 1.44 7.23 41.67
RCSE 7.37 7.89 14.49 12.59 48.96

p-value <0.0001 <0.0001 <0.0001 0.0100 <0.0001

6. Conclusions

In the present work, we developed a new nonlinear regression model that is more
flexible in terms of asymmetry and kurtosis than asymmetric nonlinear regression models
known in the literature. This is an important contribution given the few models in the
literature, and it extends the study of nonlinear models to cases of symmetric and asym-
metric elliptic distributions. This new proposal also avoids the need for transformation to
obtain an intrinsically linear model. We studied the model’s properties and estimated its
parameters; we deduced its information matrix and the asymptotic distribution of the ML
estimator vector; moreover, we presented an analysis of its diagnostics and residuals.

More precisely, we presented the exponentiated skew-elliptical and the exponentiated
skew-elliptical sinh-normal families of distributions and studied some of their properties.
We proposed the nonlinear skew-elliptical log–BS exponentiated regression model and
discussed some particular cases of this model known in the literature. We discussed the
ML estimation procedures in finite samples for the parameters of the nonlinear skew-
elliptical log–BS exponentiated regression model, deducing the observed and expected
information matrices and covariance matrix of the estimated parameter vector. We studied
the diagnostic analysis of influence under some perturbation schemes and also addressed
the residual analysis of the deviance component. We carried out a simulation study to
assess some properties of the estimators, showing the good performance of the proposed
estimation procedure in finite samples. In the analysis of real data, the model produced a
better fit than other models known in the literature, measured by the AIC criterion.
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Appendix A. The Elements of the Information Matrix

The entries in the information matrix jγγ, jβ jγ, . . . , jαα can be written as:

jγγ = − 1
γ2

n

∑
i=1

1 + ξ2
i2(ξ

2
i2 − 3) +

√
2
π

λξi2WSN1[2− 2ξ2
i2(1 + λ2)]−

[
ξ2

i2 −
√

2
π

λξi2WSN1

]2
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∑
i=1
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2
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√
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∑
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2
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where gijk is the second partial derivative of ψ(xi, β) with respect to β j and βk.

Appendix B. Definitions of κji for j = 1, 2, · · · , 8

The expressions of the terms κ1i, κ2i, . . . , κ8i can be written as:

κ1i =
1
γ

[
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ξi1√
2π
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