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Abstract: Retinal blood vessels are affected by a variety of eye diseases, including hypertensive
retinopathy (HR) and diabetic retinopathy (DR). A person with HR needs to be sure to check their
eyes regularly, which requires the use of computer vision methods to analyze images of the back
of the eye and help ophthalmologists automatically. Automated diagnostic systems are useful for
diagnosing different retinal diseases for ophthalmologists and patients who need to establish an
automated HR detection and classification system using retinal images. In this work, a sliding
band filter was used to improve the back-of-the-eye images and small convex regions to develop
an automated system for detecting and classifying HR gravity levels. An image classification with
improved wolf optimization along Bayes algorithm was conducted. The current model was tested
using the publicly available dataset, and its results were compared to existing models. The results
mentioned that the model-improved Naïve Bayes model classified the different HR severity levels
on the optimized features and produced a maximum accuracy of 100% while being compared to
other classifiers.

Keywords: diabetic retinopathy; nature-inspired optimization; Naïve Bayes; wolf optimization

1. Introduction

Hypertension is caused primarily by blood pressure and leads to many cardiovascular
diseases. It is reported that high blood pressure expenses are expected to cost $274 billion
among the population of the United States in 2030 [1]. Complications caused by high blood
pressure put the patient’s health and life at serious risk. Hypertensive complications are a
significant cause of death, leading to organ injury and other complications [2–5].

While hypertensive retinopathy (HR) can cause a lot of disturbances on the ocular
retina, HR does not show any symptoms during the early stages, and more than 90% of HR
patients can prevent the disease from being vision threatening with the proper treatment
initiated at the right time. The only way to detect this disease is to carry out regular
eye examinations using color images of the fundus obtained by the fundus photograph.
Computational vision is one of the main tools used in the development of automation in
the diagnosis of many diseases. As the computer system ignores all factors unrelated to the
diagnosis of the disease, the possibility of error is reduced, and better diagnosis is offered
with great accuracy and agility [6]. It is impossible to derive the correct boundaries based
on image segmentation traits due to the lack of image detail information.

For fundus image segmentation, threshold segmentation is the best option, as it
offers benefits such as easy implementation, less computational complexity, and better
performance [7]. Additionally, fundus images can be classified based on threshold values
and can be segmented based on a single- or multi-threshold value. Using thresholding, the
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segmentation thresholds are determined by optimizing the criteria, such as the maximum
difference between the class variance and the various criteria [3].

When it comes to image segmentation, the thresholding technique shows remarkable
performance. When dealing with complex image segmentation issues, the high threshold
issue will increase the algorithm’s complexity. A multilevel threshold, using Kapur’s
entropy and the dragonfly optimization algorithm, optimized it to minimize computer
complexity [8]. A grey wolf optimizer for multilevel image thresholding was created by
adapting Kapur’s entropy and Otsu’s methods to determine segmentation thresholds [9].
For diagnosing hypertension, ophthalmologists use the ratio of arterial blood vessels of
the retina (ARVS) in order to determine the presence of hypertension. Changes in retinal
blood vessels may follow retinal disturbances over time, and the abnormal width of the
vein leads to a low ratio of the arterial–venous mean diameter (AVR). It has been reported
that fundus image segmentation helps in the provision of better treatment [10].

Existing literature has proposed systems for the early detection of HR, and they
segmented the vessels using multi-scale filtering [11,12]. Authors estimated the vessel
width in the region of interest, and AVR was calculated to detect HR and achieved an
accuracy of about 93.1–93.7% [11]. HR detection by segmenting the vessels using moment-
based and grey-level features and a support vector machine (SVM) for classification was
presented [12]. The segmentation of the blood vessels using top-hat transformation and a
double-ring filter produced 75% accuracy [13]. Similarly, another study segmented vessels
by extracting intensity- and color-based characteristics to classify vessels as arteries and
veins produced a maximum accuracy of 96% [14].

Despite the significant results generated by existing works, the discussed models are
complex, in that they are used to segment the grey-scale images instead of the color images
with low accuracy. This work presents a wolf optimization algorithm that reduces the
computational complexity and improves the segmentation accuracy. We have extracted
several prominent features to classify the severity levels of HR using the improved Naïve
Bayes classifier. These distinct features are detected based on repeated experiments and are
statistically significant in the classification task.

2. Materials and Methods

In this study, we aimed to present a classifier for the classification of HR with improved
wolf optimization for the segmentation of the fundus images. The image pre-processing
was conducted by applying a sliding band filter for the fundus image enhancement. In
the segmentation phase, we applied improved wolf optimization algorithms to the pre-
processed image and distinguished the candidate regions.

The block diagram of the experimental framework has been visualized in Figure 1. It is
decomposed into five stages, including (1) fundus image collection, (2) image preprocessing,
(3) image segmentation, (4) feature extraction, and (5) HR severity classification.
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Figure 1. Block diagram of the proposed system. 

2.1. Image Collection and Preprocessing 
Using the publicly available datasets ODIR [15], DRIVE [16], STARE [17], and 

VICAVR [18], 1200 fundus images were collected. The STARE dataset consists of 400 im-
ages, the DRIVE dataset consists of 40 fundal images, the VICAVR dataset consists of 58 
fundal images, and the ODIR dataset consists of 6426 fundal images. These images are 
categorized into six classes by classifiers trained according to international standards for 
the classification of hypertensive retinopathy. Images of poor quality that do not show 
clearly visible lesions are considered ungradable. Therefore, the six levels, i.e., normal, 
mild, moderate, severe, malignant, and ungradable, were included. In the present study, 
we focused solely on the five-class classification task for HR classification, i.e., we did not 
use images belonging to the ungradable class. Table 1 shows the breakdown of the collec-
tion of data by HR category. 

Table 1. Dataset Distribution for this study. 

Category Count 
Normal 200 

Mild 400 
Moderate 200 

Severe 200 
Malignant 200 

We used a sliding band filter to improve the fundus image, a multi-season segmen-
tation for feature extraction, followed by a multi-class Naïve Bayes classifier for image 
classification. If the retinal lesions could not be completely identified, regardless of the 
quality of the model, the missing lesion could not be detected at the final detection. Essen-
tially, non-linear gamma transformation was applied to each pixel of the fundus image, 
with the individual gamma parameter calculated from the pixel and the adjacent pixel. 
The process was wrapped in a multiscale approach to enhance the differently sized lesions 
in the fundus image. Sliding band filters (SBF) are found in retinal images. They rely on 

Figure 1. Block diagram of the proposed system.

2.1. Image Collection and Preprocessing

Using the publicly available datasets ODIR [15], DRIVE [16], STARE [17], and VI-
CAVR [18], 1200 fundus images were collected. The STARE dataset consists of 400 images,
the DRIVE dataset consists of 40 fundal images, the VICAVR dataset consists of 58 fundal
images, and the ODIR dataset consists of 6426 fundal images. These images are catego-
rized into six classes by classifiers trained according to international standards for the
classification of hypertensive retinopathy. Images of poor quality that do not show clearly
visible lesions are considered ungradable. Therefore, the six levels, i.e., normal, mild,
moderate, severe, malignant, and ungradable, were included. In the present study, we
focused solely on the five-class classification task for HR classification, i.e., we did not use
images belonging to the ungradable class. Table 1 shows the breakdown of the collection of
data by HR category.

Table 1. Dataset Distribution for this study.

Category Count

Normal 200
Mild 400

Moderate 200
Severe 200

Malignant 200

We used a sliding band filter to improve the fundus image, a multi-season segmen-
tation for feature extraction, followed by a multi-class Naïve Bayes classifier for image
classification. If the retinal lesions could not be completely identified, regardless of the
quality of the model, the missing lesion could not be detected at the final detection. Essen-
tially, non-linear gamma transformation was applied to each pixel of the fundus image,
with the individual gamma parameter calculated from the pixel and the adjacent pixel.
The process was wrapped in a multiscale approach to enhance the differently sized lesions
in the fundus image. Sliding band filters (SBF) are found in retinal images. They rely on
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gradient convergence, which identifies lighting changes and, finally, detects low contrast
candidates in the noisy retina image. This depends on maximizing the convergence index
at every point in the retinal image. An SBF filter eases the detection of the shape and size of
the candidates [19].

The mathematical representation of the SBF is:

Tm(p)=
1
N ∑N−1

t=0 max
Bn

min≤b≤Bn
max

(
1

k + 1 ∑b+(k/2)
b−(k/2) Conv(p, v)

)
; (1)

Conv(t, n) = cos(θt − α(θt, v)) (2)

θt =
2π
N

(t− 1) (3)

α(θt, v)= arctan
(

Gvc
GvR

)
(4)

where N represents the support region lines count; Bmin and Bmax represent the inner and
the outer sliding limits of the band; and θp,q represents the angle of the gradient vector.
GvC and GvR are the column and row gradients at fundus image position; k is the sliding
band width; b is the position of the band center in the support region line ranging from
Bmin to Bmax; and cos(θt − α(θt, v) is the angle between the gradient vector at (θt, v) and
the direction of θt. The experimental framework was implemented on a 2.2 GHz Intel Core
i7 processor with 16 GB RAM using Python 3.7.2.

2.2. Fundus Segmentation

Image segmentation is a critical technique in image processing that splits the given
fundus image into specific regions with unique features followed by the extraction of the
object of interest. Threshold-based segmentation extracts regions in accordance with pixel
intensity values. In [20], the authors’ white pixels are substituted for pixels with more sig-
nificant intensities than a threshold value. The kurtosis-based weighted whale optimization
(KMWWOA) selects the optimal n-level cut-off in the retinal image segmentation.

For instance, if there are M intensity levels for each channel in the input-enhanced RGB
image, and these levels are in the range of 0, 1, 2, . . . , M − 1. The probability distribution
is represented as

Ph
s =

Ih
s

N
(5)

∑s=1,h={R,G,B} Ph
s = 1 (6)

where s represents the number of specific intensity level that ranges from 0 to M − 1; h
represents the image channel; N represents the total number of pixels in the retina image;
and Ih

s represents the pixels count for the intensity level s in the channel h. The Kh
Q of each

image is represented as

Kh
Q= ∑kh

z
s=1,h={R,G,B}

ps −
(

sPh
s

Bzh

)2
2

(7)

The optimal threshold values on the retina image can be evaluated by maximizing the
kurtosis between any two classes, and it is represented as

Th
c= ∑z=1,h={R,G,B} Bh

z

(
Kh

z −Kh
Q

)
(8)
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where Kh
z and Bh

z represent the kurtosis and the probability of occurrences; and z represents
the class from the existing m classes.

The modelling of the occurrence of the probability Bh
z of m classes Ch

1 , . . . , Ch
m

Bh
z =


∑kh

z
s=1,h={R,G,B} Ph

s z = 1

∑kh
z

s=kh
z+1,h={R,G,B}

Ph
s 1 < z < m

∑L
s=kh

z+1,h={R,G,B} Ph
s z = m

(9)

The Kh
z of each class is computed as

Kh
z =



∑kh
z

s=1,h={R,G,B}

(
ps−

sPh
s

Bzh

)4

∑
khz
s=1,h={R,G,B}

(
ps−

(
sPh

s
Bzh

)2
)2 , z = 1

∑kh
z

s=kh
z+1,h={R,G,B}

(
ps−

sPh
s

Bzh

)4

∑
khz
s=1,h={R,G,B}

(
ps−

(
sPh

s
Bzh

)2
)2 , 1 < z < m

∑L
s=kh

z+1,h={R,G,B}

(
ps−

sPh
s

Bzh

)4

∑
khz
s=1,h={R,G,B}

(
ps−

(
sPh

s
Bzh

)2
)2 , z = m

(10)

The search space agents update the positions using the optimum value, and the
behavior of the agent is represented as

→
Y(i + 1) =

→
Y∗(i)−

→
G
→
C (11)

→
C = |

→
B.
→
Y∗(i)−

→
Y(i)| (12)

Here,
→
G and

→
B represent the coefficient vectors, and i represents the current iteration.

→
Y∗ represents the best obtained position vector.

→
G = 2

→
g
→
r − →g and

→
C = 2

→
r , where

→
g

represents the used vector, which decreases the iterations from 2 to 0; and
→
r represents a

random vector that makes the agent reach the position that ensures that the exploration
ranges from 0 to 1.

→
Y(i + 1) =

→
C′. efνCos (2πv) +

→
Y∗(i) (13)

Here,
→
C represents the distance between the whale and the prey; f represents the shape

of the spiral; and v represents a random value range from −1 to 1. For updating the whale
position, it is mathematically presented as

→
Y∗(i + 1) =

 P
→
Y∗(i)−

→
G
→
C if p < 0.5

→
C′. efν Cos(2πv) +

→
Y∗(i) if p ≥ 0.5

(14)

The search agent position is updated similar to as shown below

→
C = |

→
B.

→
xrand −

→
Y| (15)

→
Y(i + 1) =

→
xrand −

→
G
→
C (16)

where
→

xrand represents the random position vector.
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To evaluate the optimum thresholds, the equation represents as

ηh =
max

1 < kh
1 < . . . .kh

m−1 < L

(
Th

c

(
kh

z

))
(17)

The kurtosis-based, multi-thresholding whale optimization algorithm is presented in
Algorithm 1.

Algorithm 1: Kurtosis-based, multi-thresholding whale optimization algorithm.

Input: Enhanced retina Image
output: Segmented retina image

1. Initialize initial solution xi (i = 1, . . . , 250)

2. Evaluate the fitness value using equation
max

1 < kh
1 < . . . .kh

m−1 < L
(Th

c

(
kh

z

)
3. Initialize Y*

while (d < maximum iterations)
for each search agent
update a, A, C, l and p

4. if (p < 0.5); (|A| < 1)

Update the current search agent equation using the equation
→
Y(i + 1) =

→
Y∗(i)−

→
G
→
C

5. else if (|A| > 1)
select xrand and update the current search agent position using the equation

→
Y(i + 1) =

→
xrand −

→
G
→
C

6. else if (p ≥ 0.5)

update current search position using the equation
→
Y(i + 1) =

→
C′. efν Cos (2πv) +

→
Y∗(i)

repeat for all search space agents
7. Evaluate the search agent fitness for each and every search agent.
8. Segment the retina image with best value which maximizes the kurtosis

2.3. Feature Extraction and Selection

With CAD systems, features are combined to characterize lesions in a similar way
to traditional visual diagnosis, with high sensitivities and specificities of features. In
computational environments, background image pixels provide sufficient information.
Characteristic extraction methods based on color and texture are widely used to evaluate
candidates. It is possible to drastically reduce the amount of training data by selecting the
most powerful features and incorporating them into the learning algorithm. The types of
features were presented, including Hu’s [21], the gray level co-occurrence matrix (GLCM),
and sliding band features. Hu’s seven invariant moments of rotation, similarity, size, and
rotation are represented as

µx,y = ∑a,b

(
a− ap

)m(b− bp
)n (18)

where (ap, bp) in the object’s center.
ηxy =

µxy
µ00

and the evaluated seven moments listed below

(a) φ1 = η2,0 + η0,2

(b) φ2 =
(
η2,0 − η0,2

)2 + 4η1
1,1

(c) φ3 =
(
η3,0 − 3η1,2

)2 +
(
η3,0 − 3η2,1

)2

(d) φ4 =
(
η3,0 + 3η1,2

)2 +
(
η0,3 + η2,1

)2

(e) φ5 = (η3,0 − η1,2)(η3,0 + η1,2)[
(
η3,0 + η1,2

)2 − 3
(
η2,1 + η0,3

)2] + (3η2,1 − η0,3)(η2,1 +

η0,3)[3
(
η3,0 + η1,2

)2 −
(
η2,1 + η0,3

)2]
(f) φ6 = (η2,0 − η0,2)[

(
η3,0 + η1,2

)2 −
(
η2,1 + η0,3

)2] + 4η1,1(η)(η2,1 + η0,3)
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(g) φ7 = (3η2,1 − η0,3)(η3,0 + η1,2)[
(
η3,0 + η1,2

)2 − 3
(
η2,1 + η0,3

)2] + (η3,0 − η1,2)(η2,1 +

η0,3)[3
(
η3,0 + η1,2

)2 −
(
η2,1 + η0,3

)2]

GLCM highlights the texture information of an image since it computes the texture
features by considering the spatial relationship of the pixels. GLCM reduces time con-
sumption. Due to space constraints, we showcased only some of the features in this paper.
Table 2 presents the list of its features.

Table 2. GLCM feature lists.

N Feature Formula

F1 Angular Second Moment ∑
x

∑
y
[p(x, y)]2

F2 Contrast M−1
∑

q=0
q2[pi(q)]

F3 Correlation ∑x ∑y(x,y)p(x,y)−µiµj
σiσj

F4 Inverse difference moment ∑
x

∑
y

1
1+(x+y)2 P(x, y)

F5 Sum average 2K
∑

x=2
x
[
pi+j(x)

]
F6 Sum variance 2K

∑
x=2

(
x−

2K
∑

x=2
pi+j(x)

[
pi+j(x)

])2[
pi+j(x)

]
F7 Sum Entropy −

2K
∑

x=2
pi+j(x)

[
pi+j(x)

]
F8 Entropy −∑x ∑y P(x− y) log[P(x− y)]

F9 Difference variance Variance of px+y

F10 Difference entropy −
K=1
∑

x=0
pi−j log

[
pi−j(x)

]
F11 Info. Measure of correlation AIJ−AIJ1

max[AI−AJ]

F12 Max. corel.coefficient (Square of the eigen value B)1/2; B =∑k
P(xk)P(Jk)
Pi(x)Pj(k)

In addition to detecting all the candidates in a convex shape, SBF features can help
differentiate between vessels and arteries. The mean value of the SB filter was output inside
the feature (µsfeature

) and its neighborhood (µsneigh
). The difference between the mean and

the SB filter output inside the feature and its neighbor is

µsfeature
− µsneigh

. (19)

Due to the oxidized blood supply, arteries are thinner than veins and have a stronger
central reflex. There is less contrast and color variations between veins and arteries. Based
on color and statistical features, AVR classifies segmented vessels into arteries and veins.
For each segmented vessel, center line pixels were divided into features based on pixel
size, vessel profiles, and vessel segments. For AV classification, a total of 59 features were
extracted. The characteristic vector containing all the extracted features was created for each
central line in the segmented vessels and the surrounding pixels. The feature vector of each
pixel was entered into the proposed classifier that identified the vessel and whether it was
part of the arterial class or the vein class. This process was repeated for all vessel segments
in the fundus images. The classifications of the arterial vessel and the vascular segment
of the vein were represented as red and blue, respectively. Feature vectors were created
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by combining textual features, disc margin obscuration features, and vessel features from
segmented fundus images. The extracted features and the AVR value detect papilledema.

AVR =

√
0.87a2

w + 1.01b2
w − 0.22awbw − 10.76√

0.72a2
w + 0.91b2

w + 450.05
(20)

where aw is the smaller value; and bw is the larger value.
It was crucial to select the right features for classification in order to achieve successful

image recognition. When classifiers were trained with a limited set of learning samples, a
peaking phenomenon occurred; thus, feature selection was used. If the number of features
increased, the classification rate of the classifiers decreased [22]. An improved ant colony
optimization was used to select the features in this study [23].

2.4. Classification Using Improved Naïve Bayes Classifier

Once the affected region was segmented and its features were extracted, a decision
support system helped to group by hypertensive retinopathy. In the probabilistic classifier
category, the Naïve Bayes (NB) classifiers were independent of features. This has proved
effective in many practical applications, including medical diagnosis and system perfor-
mance management [24,25]. If a data point

→
x = {x1, x2, . . . , xm} of m features were given, an

improved NB classifier was proposed to predict the class Cq for
→
x based on probability,

and its mathematical representation is P(Cq
∣∣→x ) = P

(
Cq
∣∣x1, x2, . . . , xm

)
for q = 1, 2 . . . . . .

Q.
After applying the Bayes theorem, the mathematical representation of the above

equation is:

P (Cq
∣∣→x ) =p

(→
x
∣∣∣Cq

)
p
(
Cq
)

p
(→

x
) (21)

=
P(x1, x2, . . . , xm

∣∣Cq)p
(
Cq
)

P(x1, x2, . . . , xm)

The mathematical representation of the decomposition of the term P (x1, x2, . . . , xm
∣∣Cq)

is

P(x1, x2, . . . , xm
∣∣Cq) = P(x1

∣∣x2, . . . , xm, Cq) P(x2
∣∣x3, . . . , xm, Cq) . . . . . . . P

(
xn−1

∣∣xn, Cq
)

P
(
xn
∣∣Cq
)

(22)

Considering the Naïve Bayes’ conditional independence, and the features in
→
x are

independent to each other. The mathematical representation of the decomposition is:

P(x1, x2, . . . , xm
∣∣Cq)= P

(
xs
∣∣Cq ) => P(x1, x2, . . . , xm

∣∣Cq)= ∏m
s=1 p(xs|Ds); (23)

thus,
P
(
Cq
∣∣x1, x2, . . . , xm

)
α P
(
Cq, x1, x2, . . . , xm

)
α P
(
Cq
)

P(x1, x2, . . . , xm
∣∣Cq)

α P
(
Cq
)

P(x1
∣∣Cq) P(x1

∣∣Cq) , . . . . . . , P(xm
∣∣Cq)

α P
(
Cq
)

∏m
s=1 p(xs|Ds) (24)

where α dentoes proportionality. The distribution over the class Cq is represented as

P
(
Cq
∣∣x1, x2, . . . , xm

)
=

1
N

P
(
Cq
)

∏m
s=1 p(xs|Ds) (25)
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P (
→
x ) = P

(
Cq
)
P (
→
x
∣∣∣Cq ) represents the scaling factor, depending on x1, x2, . . . , xm.

The data point
→
x = {x1, x2, . . . , xm} of m features were assigned to the best relevant

class by evaluating P
(
Cq
)
= ∏m

s=1 p(xs|Ds) for q = 1, 2, . . . , Q, class Cq was assigned to
→
x

for the maximum value, and it was mathematically represented as

Ĉ = argmaxq∈{1Q}R(xs)P
(
Cq
) m

∏
s=1

p(xs|Ds) (26)

hereR(xs) =
1
M ∑M

k=1

(xk − 1
N ∑M

k=1 xk)
4

( 1
M′ ∑M

k=1 xk)
4

3. Results

The experiments were undertaken to assess the performance of the proposed seg-
mentation model for vessel segmentation. The proposed model was implemented with
different threshold levels, 2–5. In Table 3, we tabulated the results of different thresh-
olds their corresponding accuracies and noted that a higher threshold value led to more
accurate results.

Table 3. Accuracies and processing times of the proposed model for different segmentation results.

Threshold Accuracy Processing Time (ms)

2 98.67 0.2474
3 98.85 0.2479
4 99.04 0.2482
5 99.36 0.2485

The evaluation function was implemented in the proposed against different threshold
levels between 2 and 5. Table 4 compares the proposed values with various optimization
algorithms at various threshold levels. It was evident that the proposed model provided
more precise and robust segmentation and less computation time with an increase in the
number of thresholds.

Table 4. Comparison of average accuracy for different segmentation models at different thresh-
old levels.

Threshold Level PSO WOA KMWWOA

2 96.34 97.25 98.67
3 96.79 97.37 98.85
4 97.35 98.33 99.04
5 97.47 98.62 99.36

Table 5 presents population stability of 50–100 iterations, and the peak PSO model
reached stability [26]. In addition, the maximum level of exploration prevented the model
from dropping into local minima and allowed it to be more effective [27]. Compared
to the advanced model, it required fewer iterations to reach the best value. It was easy
to identify which algorithm converged quickly based on the number of iterations. For
iteration 50 and population size 100, the state-of-the-art model achieved stability faster
than the state-of-the-art model with the same threshold value.
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Table 5. Comparison of the performance of the proposed with the state-of-the-art models with effect
of iterations and population size.

PSO Proposed

Population
Size Iterations Avg

Threshold Value
Population
Size Iterations Best

Threshold Value

50

1
25
50
75
100
150
200

31
28
27
32
35
27
25

50

1
25
50
75
100
150
200

24
21
20
26
25
25
25

100

1
25
50
75
100
150
200

21
25
26
21
22
25
25

100

1
25
50
75
100
150
200

18
21
25
25
25
25
25

200

The parameter values chosen for the number of iterations and population size were
based on the findings of many search agents. Maximum iterations could approximate
the global optimum better for faster convergence, and any other value would weaken it.
From Figure 2, it is evident that we were achieving more accurate results by raising the
threshold value.
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Figure 2. Segmentation results with threshold levels from STARE dataset: (a) ground truth, (b) thresh-
old 2 segmented image, (c) threshold 3 segmented image, (d) threshold 4 segmented image, and
(e) threshold 5 segmented image.

Table 6 tabulated the performance of the proposed improved WOA compared to the
state-of-the-art models. Compared with other alternative models, it produced accurate,
detailed segmentation results with tiny vessels, making it a perfect choice for automatic
CAD systems that rely on vessel segmentation results to estimate their estimates.
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Table 6. Comparison of segmentation results with the state-of-the-art models.

Model Accuracy Sensitivity Specificity

GrasshopperOA [28] 95.24 82.64 97.42
AntCO [29] 94.63 79.46 97.21

Rider OA [30] 96.72 89.46 97.46
GreyWOA [31] 97.36 91.63 98.42

Proposed 99.36 93.56 99.85

Figure 3 shows the vessel segmentation and detection by the proposed model with
the STARE and DRIVE datasets. We used an improved Naïve Bayes classifier for HR
classification. To figure out the Bayes classifier’s performance, precision, recall, and F1
score, parameters were used. During the test time, we obtained a predictive posterior
distribution. By avoiding multiple training sessions, this method required less resources
and improved the accuracy of the classification and detection of hypertensive retinopathy.
Multi-class classifications require predicting the likelihood of several mutually exclusive
classes. Based on the clinical criteria applied, these classes represented pathology 4 or
5 [25,32].
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Figure 3. Vessel Segmentation using Improved WOA for STARE (left) and DRIVE (right) datasets.

A severity classification confusion matrix is shown in Figure 4, along with samples
that were correctly and incorrectly classified. Almost all sample classes (i.e., no HR, mild,
moderate, severe, and proliferative) were correctly classified. Once these statistical values
of the classifier were calculated, they were compared against the state-of-the-art models for
robustness and efficiency findings. Table 7 tabulates the comparison of the proposed with
the state-of-the-art model’s performance measures for multi-class classification in terms of
accuracy, precision, recall, and F1 score.
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Table 7. Performance measure for multi class classification.

Project Classifier Accuracy Precision Recall (%) F-Score (%) AUC Class

Agurto et al. [33] Partial Least
Squares

96 87 89 88 0.97 No HR
96 94 94 94 0.97 Mild
95 86 83 84 0.95 Moderate
95 83 87 85 0.95 Severe
96 89 84 87 0.96 Malignant

Irshad S et al. [34] SVM

98 94 95 95 0.97 No HR
97 95 97 96 0.97 Mild
97 92 89 90 0.98 Moderate
97 90 94 92 0.98 Severe
97 96 89 92 0.97 Malignant

Akbar et al. [35] SVM-RBF

99 99 97 96 0.98 No HR
99 99 99 99 0.98 Mild
99 97 95 96 0.98 Moderate
99 97 96 97 0.98 Severe
99 96 98 97 0.99 Malignant

Proposed Improved
Naïve Bayes

100 99 99 99 0.99 No HR
100 100 100 100 0.99 Mild
100 99 100 99 0.99 Moderate
100 99 99 99 0.99 Severe
100 100 99 100 0.99 Malignant

4. Discussion

Many people around the world suffer from HR disease, which is caused by high blood
pressure in the retinal blood vessels. However, HR patients are not aware of the disease,
and its severity can be detected by a patient’s eye ophthalmologic examination. Blindness
or vision loss often results from HR diagnosed at the last stage. This mainly focuses on
HR detection using a nature-inspired optimization algorithm. Hypertensive retinopathy
vessels are segmented more accurately by whale optimization. HR diagnosis requires
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a deep analysis of the retinal vasculature. A feature map that represents the maximum
features of retinal blood vessels is designed in this study to detect retinal blood vessels in
unconstrained scenarios.

We proposed an automated CAD system to detect and classify hypertensive retinopa-
thy. Starting with the contrast enhancement, performed using sliding band filtering, the
resulting output can be seen. In addition to enhancing and highlighting the legion region,
these preprocessing steps make it difficult to classify the region. We used the KMWWOA
algorithm to segment the vessels, which improved the segmentation by targeting small
vessels. As it was applied to different datasets with different conditions, it proved robust to
changes in the input fundus images. No matter if the entry image was normal or abnormal
with exudates or microaneurysms, the accuracy was preserved.

The number of iterations has an essential impact on the multi-thresholding model’s
performance. We tested the effect of iterations number on the best threshold level value and
convergence using both the proposed model as well as the state-of-the-art models, such
as PSO and WOA. The algorithm had a high level of exploration, which, in turn, allowed
one to search all over the search space. This prevented it from falling into local minima.
From the results, the proposed solution achieved the highest value with fewer iterations
than the PSO. In PSO, there was a better level of exploitation that may have fell within
local minima, and the proposed option would present a greater variety of exploration and
exploitation speeds. Depending on the number of iterations, when the number increased,
the thresholding level became better. This was until it reached an extent to which increasing
the number of iterations had not affected the most effective threshold level. From the
number of iterations, it could be determined that the suggested algorithm converged
faster. Both the proposed algorithm and the PSO almost reached the same highest intensity
threshold level of 25. The proposed method achieved faster convergence than PSO with
the same threshold level value.

This study used various features, and the developed model produced 96.7% accuracy,
a specificity of 0.935, and a sensitivity of 0.998 during feature extraction. Comparing
the performance of the developed model with the state-of-the-art models on the DRIVE,
STARE, and VICAVR datasets, it saved computational time and achieved accurate, detailed
segmentation results with tiny vessels. Consequently, this model was suitable for classifying
HR severity levels based on vessel segmentation and estimations. It exceeded most state-of-
the-art models in terms of overall accuracy, and the proposed classifier needed to produce
more misclassifications.

5. Conclusions

A novel vessel segmentation model for a kurtosis-based, multi-threshold WOA in
fundus images was presented in this study. Using KMWWOA, optimum n-level thresholds
were automatically selected for retinal image segmentation. According to the results, they
were identical to the ground truth, which was an indication of high accuracy compared
to state-of-the-art models. In this study, we detected and classified the five stages (i.e.,
no HR, mild, moderate, severe and malignant) of HR based on the improved segmen-
tation technique. The performance metrics were approximately reached 100% with the
proposed classifier.

Author Contributions: Conceptualization, N.C.; data curation, U.B.; funding acquisition, U.B. and
G.B.; investigation, U.B. and N.C.; methodology, U.B. and G.B.; resources, U.B. and G.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created.

Conflicts of Interest: No author has any conflict of interest.



Axioms 2023, 12, 625 14 of 15

References
1. Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.;

Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation
2015, 131, e29–e322. [CrossRef]

2. Mensah, G.A. Hypertension and Target Organ Damage: Don’t Believe Everything You Think! Ethn Dis. 2016, 26, 275–278.
[CrossRef] [PubMed]

3. Sundström, J.; Neovius, M.; Tynelius, P.; Rasmussen, F. Association of blood pressure in late adolescence with subsequent
mortality: Cohort study of Swedish male conscripts. BMJ 2011, 342, d643. [CrossRef] [PubMed]

4. Battistoni, A.; Canichella, F.; Pignatelli, G.; Ferrucci, A.; Tocci, G.; Volpe, M. Hypertension in young people: Epidemiology,
diagnostic assessment and therapeutic approach. High Blood Press. Cardiovasc. Prev. 2015, 22, 381–388. [CrossRef] [PubMed]

5. Mensah, G.A.; Croft, J.B.; Giles, W.H. The heart, kidney, and brain as target organs in hypertension. Cardiol. Clin. 2002, 20,
225–247. [CrossRef]

6. Rodrigues, M.B.; Da Nobrega, R.V.M.; Alves, S.S.A.; Reboucas Filho, P.P.; Duarte, J.B.F.; Sangaiah, A.K.; De Albuquerque, V.H.C.
Health of things algorithms for malignancy level classification of lung nodules. IEEE Access 2018, 6, 18592–18601. [CrossRef]

7. Wong, T.; Mitchell, P. The eye in hypertension. Lancet 2007, 369, 425–435. [CrossRef]
8. Sambandam, R.K.; Jayaraman, S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital

images. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 449–461. [CrossRef]
9. Khairuzzaman, A.K.M.; Chaudhury, S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst.

Appl. 2017, 86, 64–76. [CrossRef]
10. Usher, D.; Dumskyj, M.; Himaga, M.; Williamson, T.H.; Nussey, S.; Boyce, J. Automated detection of diabetic retinopathy in

digital retinal images: A tool for diabetic retinopathy screening. Diabet. Med. 2004, 21, 84–90. [CrossRef]
11. Manikis, G.C.; Sakkalis, V.; Zabulis, X.; Karamaounas, P.; Triantafyllou, A.; Douma, S.; Zamboulis, C.; Marias, K. An image analysis

framework for the early assessment of hypertensive retinopathy signs. In Proceedings of the 2011 E-Health and Bioengineering
Conference (EHB), Ias, i, Romania, 24–26 November 2011; IEEE: Ias, i, Romania, 2011; pp. 1–6.

12. Narasimhan, K.; Neha, V.C.; Vijayarekha, K. Hypertensive Retinopathy Diagnosis from Fundus Images by Estimation of Avr.
Procedia Eng. 2012, 38, 980–993. [CrossRef]

13. Muramatsu, C.; Hatanaka, Y.; Iwase, T.; Hara, T.; Fujita, H. Automated detection and classification of major retinal vessels for
determination of diameter ratio of arteries and veins. In Medical Imaging 2010: Computer-Aided Diagnosis; SPIE: Bellingham, WA,
USA, 2010; Volume 7624, pp. 153–160.

14. Mirsharif, Q.; Tajeripour, F.; Pourreza, H. Automated characterization of blood vessels as arteries and veins in retinal images.
Comput. Med. Imaging Graph. 2013, 37, 607–617. [CrossRef]

15. Kaggle. Available online: https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k (accessed on 4
February 2023).

16. DRIVE. Available online: https://drive.grand-challenge.org/ (accessed on 4 February 2023).
17. STARE. Available online: https://cecas.clemson.edu/~ahoover/stare/ (accessed on 4 February 2023).
18. VICAVR. Available online: http://www.varpa.es/research/ophtalmology.html#vicavr (accessed on 4 February 2023).
19. Quelhas, P.; Marcuzzo, M.; Mendonça, A.M.; Campilho, A. Cell nuclei and cytoplasm joint segmentation using the sliding band

filter. IEEE Trans. Med. Imaging 2010, 29, 1463–1473. [CrossRef]
20. Kulkarni, R.V.; Venayagamoorthy, G.K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes.

IEEE Trans. Syst. Man Cybern. Part C 2010, 40, 663–675. [CrossRef]
21. Krause, J.; Gulshan, V.; Rahimy, E.; Karth, P.; Widner, K.; Corrado, G.S.; Peng, L.; Webster, D.R. Grader variability and the

importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018, 125,
1264–1272. [CrossRef] [PubMed]

22. Binkley, K.J.; Hagiwara, M. Balancing exploitation and exploration in particle swarm optimization: Velocity-based reinitialization.
Inf. Media Technol. 2008, 3, 103–111. [CrossRef]

23. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Software 2016, 95, 51–67. [CrossRef]
24. Al Shalchi, N.F.A.; Rahebi, J. Human retinal optic disc detection with grasshopper optimization algorithm. Multimed. Tools Appl.

2022, 81, 24937–24955. [CrossRef]
25. Arnay, R.; Fumero, F.; Sigut, J. Ant colony optimization-based method for optic cup segmentation in retinal images. Appl. Soft

Comput. 2017, 52, 409–417. [CrossRef]
26. Jadhav, A.S.; Patil, P.B.; Biradar, S. Optimal feature selection-based diabetic retinopathy detection using improved rider optimiza-

tion algorithm enabled with deep learning. Evol. Intell. 2021, 14, 1431–1448. [CrossRef]
27. Chakraborty, S.; Pradhan, R.; Ashour, A.S.; Moraru, L.; Dey, N. Grey-Wolf-Based Wang’s Demons for retinal image registration.

Entropy 2020, 22, 659. [CrossRef] [PubMed]
28. Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al.

Feedback on a publicly distributed image database: The Messidor database. Image Anal. Stereol. 2014, 33, 231–234. [CrossRef]
29. Agurto, C.; Joshi, V.; Nemeth, S.; Soliz, P.; Barriga, S. Detection of hypertensive retinopathy using vessel measurements and

textural features. In Proceedings of the 2014 36th annual international conference of the IEEE engineering in medicine and biology
society, Chicago, IL, USA, 26–30 August 2014; IEEE: Chicago, IL, USA, 2014; pp. 5406–5409.

https://doi.org/10.1161/CIR.0000000000000152
https://doi.org/10.18865/ed.26.3.275
https://www.ncbi.nlm.nih.gov/pubmed/27440965
https://doi.org/10.1136/bmj.d643
https://www.ncbi.nlm.nih.gov/pubmed/21343202
https://doi.org/10.1007/s40292-015-0114-3
https://www.ncbi.nlm.nih.gov/pubmed/26153401
https://doi.org/10.1016/S0733-8651(02)00004-8
https://doi.org/10.1109/ACCESS.2018.2817614
https://doi.org/10.1016/S0140-6736(07)60198-6
https://doi.org/10.1016/j.jksuci.2016.11.002
https://doi.org/10.1016/j.eswa.2017.04.029
https://doi.org/10.1046/j.1464-5491.2003.01085.x
https://doi.org/10.1016/j.proeng.2012.06.124
https://doi.org/10.1016/j.compmedimag.2013.06.003
https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k
https://drive.grand-challenge.org/
https://cecas.clemson.edu/~ahoover/stare/
http://www.varpa.es/research/ophtalmology.html#vicavr
https://doi.org/10.1109/TMI.2010.2048253
https://doi.org/10.1109/TSMCC.2010.2049649
https://doi.org/10.1016/j.ophtha.2018.01.034
https://www.ncbi.nlm.nih.gov/pubmed/29548646
https://doi.org/10.1527/tjsai.23.27
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s11042-022-12838-8
https://doi.org/10.1016/j.asoc.2016.10.026
https://doi.org/10.1007/s12065-020-00400-0
https://doi.org/10.3390/e22060659
https://www.ncbi.nlm.nih.gov/pubmed/33286433
https://doi.org/10.5566/ias.1155


Axioms 2023, 12, 625 15 of 15

30. Irshad, S.; Akram, M.U. Classification of retinal vessels into arteries and veins for detection of hypertensive retinopathy. In
Proceedings of the 2014 Cairo International Biomedical Engineering Conference (CIBEC), Giza, Egypt, 11–13 December 2014;
IEEE: Giza, Egypt, 2014; pp. 133–136.

31. Akbar, S.; Akram, M.U.; Sharif, M.; Tariq, A.; ullah Yasin, U. Arteriovenous ratio and papilledema based hybrid decision support
system for detection and grading of hypertensive retinopathy. Comput. Methods Programs Biomed. 2018, 154, 123–141. [CrossRef]

32. Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29, 103–130.
[CrossRef]

33. Hellerstein, J.L.; Jayram, T.S.; Rish, I. Recognizing End-User Transactions in Performance Management; IBM Thomas J. Watson
Research Division: Hawthorne, NY, USA, 2000; pp. 596–602.

34. Jain, A.K.; Waller, W.G. On the optimal number of features in the classification of multivariate Gaussian data. Pattern Recognit.
1978, 10, 365–374. [CrossRef]

35. Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z. An improved feature selection algorithm based on ant colony optimization. IEEE Access
2018, 6, 69203–69209. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cmpb.2017.11.014
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1016/0031-3203(78)90008-0
https://doi.org/10.1109/ACCESS.2018.2879583

	Introduction 
	Materials and Methods 
	Image Collection and Preprocessing 
	Fundus Segmentation 
	Feature Extraction and Selection 
	Classification Using Improved Naïve Bayes Classifier 

	Results 
	Discussion 
	Conclusions 
	References

