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Abstract: Vibratory piling technology does not require analytical tools to predict displacement rates
and arising forces. The authors consider the problem of vibratory driving of a pile into a homogeneous
unsaturated sandy massif under the action of static and dynamic loads. The purpose of this study is to
develop a new analytical solution to the problem of the vibratory pile driving rate in a homogeneous
sand base taking vibration creep into account. The solution is provided for the quasi-dynamic
problem statement (inertial terms in equations of motion are neglected): the sand medium develops
viscous properties due to vibration under the action of the dynamic component of the load, and a pile
is driven into the viscous sand base due to the static component of the vertical load. The obtained
mathematical model converges with the results of laboratory flume and field experiments performed
by other researchers earlier, where the pile vibratory embedding rate increased along with an increase
in static loading, the amplitude of dynamic load, and vibration frequency. It can be used to predict
the pile or sheet pile driving rate into the unsaturated sand base under the action of vibration, and
also to evaluate the necessary parameters of pile driving to obtain the required value of the pile
embedding rate.

Keywords: vibratory pile driving; vibratory piling; vibrocreep of sandy soil; dynamic pile driving;
pile embedding rate

MSC: 74L10

1. Introduction

Vibratory piling technology, which is used to drive prefabricated piles under urban
development conditions, is a relevant method. It is less safe than the pile pressing tech-
nology and better than the pile driving technology [1], although vibratory piling can be
dangerously close to surrounding buildings [2]. The method of vibratory driving was
proposed by Professor Barkan D.D. [3], and it was first used during the construction of
Gorky HPP [4,5]. The vibration disturbs the structure of sandy soils. Hence, friction is
reduced to make pile driving simpler [6]. For less rigid elements (for example, sheet piles
or hollow elements), the technology of vibratory pile driving becomes particularly relevant,
as its efficiency is higher than that of the driving technology [1,4,7]. During the process of
vibratory driving of elements into the soil massif, the embedding rate and the vibration
amplitude are controlled [1].

The method of vibratory driving is widely used, and it has attracted the attention
of researchers. Theoretical problems of pile driving were solved by Neumark Yu.I. [8],
Shekhter O.Ya. [9], Savinov O.A. [10,11], and others. Large-scale field studies of vi-
bratory piles driving into a sand base were conducted by Preobrazhenskaya N.A. [12].
Within the framework of the research project, measurements of 153 piles with different
diameters (15, 20, and 25 cm) and two types of sheet piles were taken during pile driving
and extraction at different vibration frequencies of the vibratory pile driver, amplitudes of
dynamic loading, and static loading. The results of the experimental studies were used to
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evaluate the correctness of the obtained theoretical solution in terms of each parameter of
the calculation scheme (static load, amplitude of the dynamic load, frequency of vibrations,
pile radius, and embedment depth). Sobolev E.S. and Sidorov V.V. [13] provided a calcula-
tion model for predicting pile embedding under the action of dynamic loading. The article
written by Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., and Sobolev E.S. [14] provided a
solution to the problem of dynamic pile driving and the simulation of friction on the lateral
surface and elastoplastic resistance under the bottom tip of a pile.

During vibratory driving, mechanical vibrations propagate from the construction site,
and this phenomenon harms the surrounding development. Therefore, the evaluation
of vibrations propagating during vibratory pile driving is a very relevant problem that
has been solved in numerous studies. Mangushev R.A., Gursky A.V., and Polunin V.M.
published relevant research work on the propagation of vibrations during vibratory driving
and extracting sheet piles, as well as their effect on the supplementary settlement. The study
encompasses field measurements and numerical calculations [15–18]. A similar study is
presented by Colaço A., Costa P.A. et al. [19], in which a computational model of vibration
propagation during dynamic pile driving is proposed. This model takes into account the
nonlinear behavior of soil during the transmission of mechanical vibrations, which consists
of the shear modulus reduction accompanied by an increase in angular deformation. The
resulting comparison between the field measurements and the solution obtained using
the numerical method is also presented in the study. Colaço A., Ferreira M.A. et al. [20]
compare the results of the numerical solution to the problem of vibration propagation,
triggered by dynamic pile driving, with the analytical solution and field monitoring data.
The authors demonstrate the effect of taking into account the nonlinear behavior of soil in a
pile-driving area, namely, large angular deformations and a decrease in the shear modulus.

Wang S. and Zhu S. provide the results of the monitored propagation of vibrations
during the vibratory driving of a sheet pile [21]. Susila E. and Siahaan S. [22] address the
study of vibration propagation during dynamic pile driving. The results of monitored
vibratory pile driving are compared with the results of numerical simulation in the study by
Bielefeld M., Moscoso N., and Verbeek G. [23]. The article, written by Turkel B. and Orozco
Herrera J., also compares the results of monitored vibratory pile driving with a numerical
solution to the problem, in which the near-pile zone of reduced stiffness and strength
is simulated [24]. The above studies, containing dependencies of vibration propagation
during dynamic pile embedment, are useful for solving the problem because the intensity
of vibration has an immediate effect on the viscosity coefficient of soil, which determines
the rate of angular deformation.

Scientists Schönit M. and Reusch D. describe the laboratory simulation of pile driving
methods, including vibratory driving and other techniques, and compare their findings with
field testing results. The bearing capacity of a pile in the process of driving is evaluated
using the impact energy criterion [7]. The article by Zheng H., Chen L. et al. [25] describes
an experimental facility for vibratory pile driving, which the authors used to study the effect
of soil properties (density, moisture content, etc.) on the effectiveness of vibratory driving.
The article by Wong D., O’Neill M., and Vipulanandan C. [26] compares the results of in
situ measurements, taken during pile driving, with the results of numerical calculations, and
demonstrates the effect of the soil particle size, relative density, and stresses. Lee S.-H., Kim, B.,
and Han J.-T. [27] provide field results of the vibratory driving of a sheet pile. The field results
of the vibratory driving of sheet piles with different lengths and cross-sections (Larssen-III,
Larssen-IV, and Larssen-V) are addressed by Qin Z., Chen L.Z. et al. [28]. The article by Ngoc
N.A., Nang T.D. et al. [29] presents the results of studying the driving of an open-end pile
and demonstrates the effect of the static driving force. The effects of various parameters
of a vibrating pile hammer on the pile driving efficiency are studied by Verbeek G., Dorp
R. et al. [30]. The article by Moriyasu S., Kobayashi S., and Matsumoto T. [31] presents the
results of field studies of vibratory pile driving for different loading parameters (variable
frequency, amplitude of dynamic loading, and amplitude of vibration). An experimental
laboratory study on vibratory pile driving in sandy soil at different loading parameters and



Axioms 2023, 12, 629 3 of 17

soil properties is described in the publication by Machaček J., Staubach P. et al. [32]. The results
of vibratory pile driving in the sand base and measurements of stresses and strains in the
base are provided by Stein P., Hinzmann N., and Gattermann J. [33]. In particular, the authors
prove that the stresses near the pile decreased by up to 50% due to the effect of vibration. The
study on vibratory pile driving, based on the results of dynamic probing, is addressed in the
article by Al-Sammarraie D., Kreiter S. et al. [34].

Wei J., Wang W., and Wu J. proposed a computational model to evaluate the pore
pressure in the soil base during dynamic pile driving. This work demonstrates satisfactory
convergence with field measurements [35]. A numerical solution to the pile driving problem
and an evaluation of vibration acceleration and settlement around the pile are presented
by Orozco Herrera J., Turkel B. et al. [36]. The article by Li X., Duan Z. et al. [37] also
presents a numerical simulation of the pile-driving process. Fall M., Gao Z., and Ndiaye
B.C. offer a numerical solution to the problem of the effect of dynamic pile driving on the
existing pile [38].

Current studies on vibratory pile driving in sandy bases are quite advanced. Despite
a large number of theoretical and experimental studies in the subject area, there is no
generally accepted method of analytical evaluation of the rate of vibratory pile driving
in an unsaturated sand base, taking into account the manifestation of vibrocreep. The
majority of studies have used numerical calculations, as well as analytical solutions based
on reduced deformation characteristics. However, no calculation schemes use rheological
models that allow the prognostication of the vibratory pile embedment process over time,
taking into account vibrocreep. This paper attempts to present an analytical calculation that
can predict the intensity of the vibratory pile driving process by using simple mathematical
relationships and taking into account the main loading factors and elastic and rheological
properties of the sand base.

2. Materials and Methods

The solution is provided for the quasi-dynamic statement of the problem (neglecting
inertial terms in equations of motion) [39]: sand develops viscosity due to vibration under
the action of the dynamic component of loading [40–43], and a pile is driven into the
viscous sand base due to the static component of vertical loading (Figure 1d).
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The solution to the problem of static loading and settlement of a pile is known [44].
Having solved this problem, we can proceed to the base model in which sandy soil,
subjected to vibration, is considered a viscous medium whose viscosity coefficient depends
on the amplitude of vibration acceleration [41–43]. The computational model designed for
this kind of axisymmetric problem represents a cylindrical cell [44], with diameter 2b and
height L, and fixity on its bottom and lateral surfaces. The fixity is designated for pile fixing
in vertical and horizontal directions. The pile with diameter 2a and length lc is placed in the
fixity and subjected to vertical static force N. The radius of computational cell b depends on
the axial distance a between the piles (b = 0.525·a if the piles are staggered); the depth of
computational cell L takes into account depth Hc of the compressible thickness (L = lc + Hc).
The upper surface of the cell is free from fixities and loads, and the pile is considered
rigid and non-deformable. The cell medium is elastic and has the following mechanical
characteristics: modulus of elasticity E and Poisson’s coefficient ν (the alternatives are shear
modulus G and bulk modulus K) [45]. A cylindrical coordinate system with the origin in
the center of the top surface of the cell, the top-to-bottom direction of the z-axis, and the
radial direction of the r-axis are adopted for the mathematical description. The graphical
representation of the design scheme for the static problem is shown in Figure 1a below.

The equality of displacements of the pile toe and its lateral surface, as well as the
static equilibrium of the system as the distribution of load between the resistance on the
lateral surface and under the pile toe allowed obtaining the following solution to the static
problem (1) [44].

s0 =
N·(1− ν)·ln

(
b
a

)
·k1

2G·
[
2a·ln

(
b
a

)
+ π·(1− ν)·k1·lc

] (1)

The design model of the interaction of the pile and the base, subjected to compulsive
harmonic load N(t) = ∆N·sin(ωt), is a ro with mass M distributed along its length. Its
bottom has a tie with stiffness KR, modeling the behavior of the soil under the pile toe,
and the lateral surface has ties with stiffness Kf, modeling the behavior of the soil on the
lateral surface of the pile. The design scheme for this problem is shown above in Figure 1b.
The results of the experimental studies prove that this model accurately describes the real
behavior of a pile foundation [42,46]. For practical purposes, one can simplify this model
to vibrations of the system with one degree of freedom using the Rayleigh method with
reduced mass and stiffness parameters [47], as shown in Figure 1c.

The formula for the reduced stiffness of ties Kred is provided below (2) [10,42,47].

Kred =
(

KR + K f

)
·ν1 (2)

where KR is the stiffness coefficient of soil under the pile toe;
Kf is the stiffness coefficient of soil interacting with the massif along the lateral faces;
N1 is the coefficient depending on the stiffness coefficient of soil under the pile toe KR,

on the stiffness coefficient of soil interacting with the massif along lateral faces Kf, on pile
rigidity in compression Ec·Ac, and on pile length lc, and this coefficient equals one for a
rigid pile.

Below are the formulas for calculating the stiffness coefficient of soil under the pile
toe KR (3) and the stiffness coefficient of soil interacting with the massif along lateral faces
Kf (4) [1,10,42,47].

KR = CR·Ac (3)

where CR is the elastic compression coefficient of the base under the pile toe;
Ac is the cross-sectional area of the pile

K f = C f ·Ff = 0, 3·CR·4·lc·
√

Ac (4)

where Cf is the coefficient of elastic shear of the massif on the lateral surfaces;
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Ff is the design value of the lateral surface of the pile.
Elastic compression coefficient CR is determined using Formula (5), which is close to

the results of experimental studies [1,42,48].

CR = b·E·
(

1 +
√

10/F
)

(5)

where b is the coefficient that equals 1.5 for clays, 1.2 for loams and sandy loams, and 1.0
for sands;

E is the modulus of elasticity of soil;
F is the area of the foundation bottom.
The pile–soil base interaction is described in Formula (6), proposed by Pavlyuk

N.P. [49]. This dependence demonstrates positive convergence with the results of ex-
perimental studies [42]. In addition to the elastic deformation, represented by the first
summand in Formula (6), this dependence, describing the base response Rz, also takes into
account its damping by introducing the second summand that contains constant coefficient
(decay module) Φz, which characterizes vibration decay properties in the base for the case
of vertical displacements.

Rz = Kz·
(
z + Φz·

.
z
)

(6)

where Kz is the elastic base stiffness coefficient;
Φz is the decay modulus.
The value of the decay modulus Φz can be sourced from the reference tables depending

on the type of soil [42] or identified using Formula (7) [47].

Φz =
2ξz

λz
=

4
√

M√
pcp·Kz

(7)

The differential equation of harmonic vibrations of a pile, with mass M, is provided
in (6) for the base behavior described in (8) [42,47].

..
z + Φred·λ2

red·
.
z + λ2

red·z =
∆N
M
·sin(ωt) (8)

where Φred is the reduced decay modulus;
λred is the reduced frequency of free vibrations of a pile;
M is the pile mass.
In this case, the vibration equation is as follows (9) [42,47]:

z = Az·sin(ωt + δz) (9)

where Az is the amplitude of forced vibrations;
δz is the phase difference between vibrations and the applied force.
The value of δz has no practical relevance for the problem to be solved because values

of amplitudes and vibration accelerations, which affect the stress–strain state and properties
of soils, are of practical interest. The value of vibration amplitude Az is determined using
Formula (10) [42].

Az =
∆N
Kred
· 1√(

1− ω2

λ2
red

)2
+ (Φred·ω)2

(10)

The value of λred is the frequency of free vibrations of a body which is determined
using Formula (11) [1,42,47].

λred =

√
Kred
M

(11)
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By substituting the above expressions (3)–(7) into (10), we obtain a general expression
for the vibration amplitude of the pile being driven (12).

Az =
∆N

CR·Ac + 0, 3·CR·4·lc·
√

Ac
· 1√(

1− ω2·M
Kred

)2
+

(
4
√

M√
pcp·CR ·Ac

·ω
)2

(12)

It is noteworthy that the value of mass M above includes full values of masses of the
pile and pile driving machinery vibrating together with it, while the value of pile length
lc includes only the part of the pile lun embedded in the soil, which resists driving and
vibrations at the control point in time.

The amplitude of vertical vibrations of soil Az(r) at distance r from the center of the
pile toe, which is the source of vibrations, is determined using Formula (13) [1,6,47,50].

Az(r) = Az,0·

 1

δ·
[
1 + (δ− 1)2

] + δ2 − 1√
3δ(δ2 + 1)

 (13)

where Az,0 is the amplitude of vertical vibrations of the foundation determined in the
process of solving the pile vibration problem, given that the foundation is the source of
vibrations;

δ = r/r0 is a parameter equal to the ratio of distance r from the center of the toe area of
the vibration source to the reduced radius of the bottom of the foundation of the vibration
source.

The distribution of vibrations along depth z follows a particular regularity (14) [6,42,47].
It is noteworthy that for harmonic vibrations with constant frequency, the amplitude of
vibrations is directly proportional to the acceleration of vibrations as the second derivative
of displacement. Therefore, the following dependence (14) is also valid for the depth-wise
distribution of vibration amplitudes.

w = w0·e−βz (14)

where w is the acceleration of vibrations at depth z;
w0 is the acceleration of vibrations in the base at the level of the foundation bottom;
β is the decay coefficient, whose value is 0.07–0.10 m−1 for sandy soils.
The above-mentioned dependencies between vibration intensity propagation in plan

and depth in the direction from the pile allow for a transition from the vibration ampli-
tude Az to the coefficient of viscosity of sandy soil η, using dependencies obtained by
Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., and Sobolev E.S. [43,51], as well as other de-
pendencies derived by Barkan D.D. [40,41], because vibration amplitude Az and vibration
accelerations a are in direct proportion if the value of vibration frequency ω is the same.

As for the model of the pile driving into the viscous medium (Figure 1d), this model
should preserve the condition by which pile displacement is linked to the equilibration of
external loading and soil resistance, while conditions of normal stress distribution under
the pile toe σR and shear stresses on its lateral surface τ(a) must be reconsidered by taking
into account a viscous medium.

The mechanism of soil deformation near the pile toe during dynamic driving was
discovered during flume tests conducted by Machaček J. et al. [32]. These tests visually
demonstrated soil extrusion from under the pile toe to the sides, followed by resistance
arising on the lateral surface. To simplify the mathematical expressions, the rate of the pile
toe embedded into the viscous medium
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𝑏

𝑎

= ∫
𝜏(𝑟)

𝜂(𝑟)
𝑑𝑟

𝑏

𝑎

= ∫
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟2
𝑑𝑟

𝑏

𝑎

= −2 ∙
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟3
|
𝑎

𝑏

= 

= −2 ∙
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟3
∙ (

1

𝑏3
−

1

𝑎3
) = 2 ∙

𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎
2

𝛽 ∙ 𝑟3
∙ (

1

𝑎3
−

1

𝑏3
) 

(20) 

By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

R can be calculated using Stokes’ law [52] (15).

.
sR =

R
6π·a·η0

=
σR·π·a2

6π·a·η0
=

σR·a
6η0

(15)
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where R is the force of normal resistance under the pile toe;
a is the pile radius;
η0 is the soil viscosity coefficient under the pile toe;
σR is the normal pressure under the pile toe.
The pile embedding rate along the lateral surface
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The expression for the amplitude and vibration acceleration propagation (13) is mas-

sive for integration, which can be simplified to (17) with a sufficient degree of accuracy. 
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where w0 is the amplitude of the pile vibration acceleration; 

a is the pile radius. 

By taking dependence (18) obtained by Barkan D.D., which links the vibration accel-

eration amplitude w to sandy soil viscosity coefficient η, we obtain expression (19) to de-

scribe the value of viscosity coefficient η(r) around the vibrating pile. 

1

𝜂(𝑟)
=
1

𝛽
∙ 𝑤(𝑟) → 𝜂(𝑟) =

𝛽

𝑤(𝑟)
 (18) 

where η(r) is the viscosity coefficient of sandy soil; 

w(r) is the vibration acceleration amplitude of soil vibrations; 

β is the proportionality coefficient between the coefficient of viscosity of sandy soil 

and the amplitude of vibration acceleration. 

𝜂(𝑟) =
𝛽 ∙ 𝑟

𝑤0 ∙ 𝑎
 (19) 

The final form of the expression describing the pile embedding rate along the lateral 

surface ṡf (20) is given below. 
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By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

f can be determined using the
solution to the A. Nadai’s problem of pulling a rigid rod through a viscous medium [52].
However, A. Nadai’s solution is obtained for the medium with a constant viscosity factor η,
while in the problem being solved, the viscosity coefficient depends on vibration accelera-
tion; therefore, it changes along with the radius and depends on the mean stress value and
the shear stress intensity, as was experimentally found in the present work. The expression
for shear stresses τ(r) is provided in (16).

τ(a)·2πa·∆z = τ(b)·2πb·∆z→ τ(b) = τ(a)·a
b τ(r) = τ(a)·a

r (16)

The expression for the amplitude and vibration acceleration propagation (13) is mas-
sive for integration, which can be simplified to (17) with a sufficient degree of accuracy.

w(r) =
w0·a

r
(17)

where w0 is the amplitude of the pile vibration acceleration;
a is the pile radius.
By taking dependence (18) obtained by Barkan D.D., which links the vibration acceler-

ation amplitude w to sandy soil viscosity coefficient η, we obtain expression (19) to describe
the value of viscosity coefficient η(r) around the vibrating pile.

1
η(r) =

1
β ·w(r) → η(r) = β

w(r) (18)

where η(r) is the viscosity coefficient of sandy soil;
w(r) is the vibration acceleration amplitude of soil vibrations;
β is the proportionality coefficient between the coefficient of viscosity of sandy soil

and the amplitude of vibration acceleration.

η(r) =
β·r

w0·a
(19)

The final form of the expression describing the pile embedding rate along the lateral
surface
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By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

f (20) is given below.

.
s f =

b∫
a

.
γ(r)dr =

b∫
a

τ(r)
η(r)dr =

b∫
a

τ(a)·w0·a2

β·r2 dr = −2· τ(a)·w0·a2

β·r3

∣∣∣b
a

= −2· τ(a)·w0·a2

β·r3 ·
(

1
b3 − 1

a3

)
= 2· τ(a)·w0·a2

β·r3 ·
(

1
a3 − 1

b3

) (20)

By combining the equations for the pile toe embedding rate
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By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

R (15) and the pile lateral
surface embedding rate
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By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

f (20) stemming from the condition of equal settlements along the
entire pile length, one can express stresses σR and τ(a) (21).

.
s = σR ·a

6η0
= σR ·a·w0

6β = 2· τ(a)·w0·a2

β·r3 ·
(

1
a3 − 1

b3

)
τ(a) = σR

12a·
(

1
a3−

1
b3

) σR = 12a·τ(a)·
(

1
a3 − 1

b3

) (21)
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By equalizing the expressions with respect to τ(a) from (21) and the static equilibrium
condition, we obtain the final expression for stresses σR (22).

τ(a) =
σR

12·a·
(

1
a3 − 1

b3

) =
N − π·a2·σR

2π·a·lc
σR =

6·N·
(

1
a3 − 1

b3

)
π·lc + 6π·a2·

(
1
a3 − 1

b3

) (22)

At the same time, we equalize the expressions concerning σR from (21) and the static
equilibrium condition and obtain the final expression for stress τ(a) (23).

σR = 12·τ(a)·a·
(

1
a3 − 1

b3

)
= N−2π·a·τ(a)·lc

π·a2

τ(a) = N
12π·a3·

(
1

a3−
1

b3

)
+2π·a·lc

(23)

By substituting the value of τ(a) from (23) into (20), we obtain an expression for the
embedding rate of the lateral pile surface
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By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

f (24).

.
s f = 2·τ(a)·w0·a2

β
·
(

1
a3 −

1
b3

)
=

N·w0·a·
(

1
a3 − 1

b3

)
π·lc·β + 6π·β·a2·

(
1
a3 − 1

b3

) (24)

Likewise, by substituting the value of σR from (22) into (15), we obtain an identical
expression for the pile toe embedding rate
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The expression for the amplitude and vibration acceleration propagation (13) is mas-

sive for integration, which can be simplified to (17) with a sufficient degree of accuracy. 

𝑤(𝑟) =
𝑤0 ∙ 𝑎

𝑟
 (17) 

where w0 is the amplitude of the pile vibration acceleration; 

a is the pile radius. 

By taking dependence (18) obtained by Barkan D.D., which links the vibration accel-

eration amplitude w to sandy soil viscosity coefficient η, we obtain expression (19) to de-

scribe the value of viscosity coefficient η(r) around the vibrating pile. 

1

𝜂(𝑟)
=
1

𝛽
∙ 𝑤(𝑟) → 𝜂(𝑟) =

𝛽

𝑤(𝑟)
 (18) 

where η(r) is the viscosity coefficient of sandy soil; 

w(r) is the vibration acceleration amplitude of soil vibrations; 

β is the proportionality coefficient between the coefficient of viscosity of sandy soil 

and the amplitude of vibration acceleration. 

𝜂(𝑟) =
𝛽 ∙ 𝑟

𝑤0 ∙ 𝑎
 (19) 

The final form of the expression describing the pile embedding rate along the lateral 

surface ṡf (20) is given below. 

�̇�𝑓 = ∫ �̇�(𝑟)𝑑𝑟

𝑏

𝑎

= ∫
𝜏(𝑟)

𝜂(𝑟)
𝑑𝑟

𝑏

𝑎

= ∫
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟2
𝑑𝑟

𝑏

𝑎

= −2 ∙
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟3
|
𝑎

𝑏

= 

= −2 ∙
𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎

2

𝛽 ∙ 𝑟3
∙ (

1

𝑏3
−

1

𝑎3
) = 2 ∙

𝜏(𝑎) ∙ 𝑤0 ∙ 𝑎
2

𝛽 ∙ 𝑟3
∙ (

1

𝑎3
−

1

𝑏3
) 

(20) 

By combining the equations for the pile toe embedding rate ṡR (15) and the pile lateral 

surface embedding rate ṡf (20) stemming from the condition of equal settlements along the 

entire pile length, one can express stresses σR and τ(a) (21). 

R, which serves as the verification of the
solution.

Hence, the equation for pile embedding rate ϑ under the action of normal static
force N and dynamic component ∆N, causing vibration acceleration w0, is provided
below in (25).

ϑ =
.
s f =

.
sR =

N·w0·a·
(

1
a3 − 1

b3

)
π·lc·β + 6π·β·a2·

(
1
a3 − 1

b3

) (25)

Plots of functions were constructed using the Mathcad software. The following input
data were taken to describe and calculate pile loading: N = 100 kN, ∆N = 40 kN, ω = 20 rad/s,
M = 4 t, and a = 0.2 m. The base has a layer of unsaturated fine sand with the following princi-
pal characteristics: γ = 19.6 kN/m3; E = 30.2 MPa; ν = 0.3; η0 = 2.76× 105 Pa·s. Information
about the particle size distribution is provided in Figure 2 below.
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Figure 2. The curve shows the particle size distribution in a specimen of sand.

3. Results

As the embedded pile length lun increases, the resistance of the pile’s lateral sur-
face to vibrations increases, and the amplitude of the pile vibrations decreases, although
it increases at a certain depth due to resonance. Figure 3 shows the dependence be-
tween the amplitude of the vertical vibrations of the pile Azi (i = 1, 2, 3) and the depth
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of the embedded part of the pile lun for different values of the dynamic component of
loading ∆Ni.
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Figure 3. Dependence between the amplitude of the vertical vibrations of the pile Azi (i = 1, 2, 3) [m]
depending on the pile embedding depth lun [m] for various values of the dynamic component of
loading: ∆N1 = 10 kN (
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The breakdown of the specific values of vertical vibrations Az
′ is shown in Figure 4.

This breakdown is provided in fractions of the absolute value of Az, depending on the
depth z and radius r.
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The graph showing the dependence of the pile embedding rate ϑ on embedding depth
lun for different values of the vibration frequency ωi is provided in Figure 7.
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Figure 8 shows the dependence of the pile embedding rate ϑ on embedding depth lun
for different values of the pile radius ai.
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4. Discussion

The proposed analytical solution is new and, unlike the existing solutions, explicitly
takes into account the manifestation of the viscoplastic properties of sandy soil under
the action of vibration in an explicit form. The majority of studies involve numerical
calculations, and the published analytical solutions contain some simplifications with
the introduction of non-standard deformation characteristics into the calculation [7,31,34];
however, the novelty of the proposed solution lies in the introduction of the calculation of
ordinary deformation characteristics: sand develops viscosity due to vibration under the
action of the dynamic component of loading, and a pile is driven into the viscous sand base
due to the static component of vertical loading.

Figure 3 shows a steep increase in the amplitude of vibrations at a certain depth.
This resonance is triggered by the coincidence between the frequency of an external effect
and the eigenfrequency of the “pile-soil” system because the stiffness of the base is also
explained by the behavior of the pile’s lateral surface, which intensifies along with the pile
embedment depth. A higher frequency of vibrations at a certain depth in the course of
vibratory pile driving in soil was registered by Preobrazhenskaya N.A. during field studies
in [12], and by Qin Z. et al. [28], Moriyasu S. et al. [31], Lee S.-H. et al. [27], and it was also
mentioned in the analytical solution proposed by Goant,ă A.M. et al. [53]. Even though pile
embedment accelerates in the area of resonant behavior, and it could be possible to select
the frequency of vibration so that the rate was maximum in the resonance mode throughout
the embedment, the studies by Goant,ă A.M., Bratu P., and Drăgan N. [53] show that the
operation of a vibration pile driver in pre-resonance and resonance modes is unstable and
uncontrollable.

On the whole, the vibration amplitude distribution pattern provided in Figure 4
is consistent with the analytical solution of Susila E et al. [22] and the findings of field
observations reported by Polunin V.M. [15–18].

The above graphs (Figures 5–8) are consistent with the findings of the field studies.
Field studies by Preobrazhenskaya N.A. [12], Lee S.-H. et al. [27], and Moriyasu S. et al. [31]
also demonstrate a reduction in the pile embedding rate with depth and an increase in
the pile embedding rate with an increase in the dynamic component of loading ∆N. Field
studies by Preobrazhenskaya N.A. [12], and Schönit M., Reusch D. [7] report an increase in
the pile embedding rate with an increase in the vibration frequency ω. The influence of
the cross-section size of an embedded element on its embedding rate is also addressed in
the field measurements taken by Preobrazhenskaya N.A. [12], and Qin Z. et al. [28]. The
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static embedding load N is of great importance for the pile embedding rate, as found by
O.A. Savinov [10,54], and this was also recorded in the field tests by Qin Z. et al. [28], and
Ngoc N.A. et al. [29].

Figure 9 shows the dependence of the pile embedding depth on time in pile vibrations,
obtained by combining elastic pile vibrations (12) with the rate of its viscous embedding (25).
The nature of the dependence of the embedding depth on time corresponds to the results
of the field studies and numerical simulations provided by Turkel B. et al. [24]. The scale of
Figure 9a does not allow conveying the feature of this graph. It is not a regular curve, but its
shape is sinusoidal (Figure 9b); i.e., it accumulates the deformation triggered by each vibration
cycle, which corresponds to the results of flume tests conducted by Machaček J. et al. [32] and
field observations by Lee S.-H. et al. [27]. The “variable thickness” of the curve in Figure 9a
indicates a large value of the vibration amplitude at a small depth of the pile embedding and
a decrease in the vibration amplitude at a greater depth, which is explained by an increase
in the depth-wise resistance and stiffness of the base along the lateral surface of the pile,
according to the field studies by Moriyasu S. et al. [31]. In addition, according to the graphs of
the vibration amplitude (see Figure 5), at a certain depth there occurs “the thickening of the
curve”, i.e., an increase in the vibration amplitude due to resonance, as it was observed in the
measurements taken by N.A. Preobrazhenskaya [12], Qin Z. et al. [28], Moriyasu S. et al. [31],
and Lee S.-H. et al. [27]. The same section, featuring an increase in the vibration amplitude, is
characterized by a steeper slope of the curve, i.e., an increase in the embedding rate, which
is explained by a decrease in the coefficient of the viscosity of soil due to an increase in the
amplitude of vibrations and vibration acceleration. This aspect also converges with the results
of field observations of vibratory piles driven into a sand base [12].
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The vibratory pile driving model proposed by the authors is based on the rheological
model of sandy soil under the action of vibration. This model includes a viscosity coefficient,
which has not been determined in engineering practice. Despite the absence of information
about the viscosity coefficient in other publications on vibratory pile driving, the authors
tried to make a comparison with previously conducted experimental studies.

Figures 10 and 11 show a comparison of the solution obtained using the proposed
analytical model with the results of full-scale field experiments by Preobrazhenskaya
N.A. [12] and Moriyasu S. et al. [31] on the example of a graph of the depth of pile loading
with time z(n). As can be seen in the graphs, the analytical model of vibratory pile driving
shows satisfactory qualitative convergence with the experimental results.
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In practice, for the operation of some types of vibratory pile drivers, the task is to keep
the pile embedding rate constant, while the value of the static longitudinal load is preset.
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One can use expression (25) to derive the equation of the static load N depending on the
pile embedding depth z at the required embedding rate ϑ (26).

N =
ϑ·
[
π·lc·β + 6π·β·a2·

(
1
a3 − 1

b3

)]
w0·a·

(
1
a3 − 1

b3

) (26)

As seen in the above expression (26), the pile vibration acceleration w0 is a function of
N (to be more precise, it is a function of pm (12)), and the N function is not explicit, so this
equation can be solved using an iterative process in Mathcad. The expression to be used to
find function N in Mathcad is provided in Figure 12, where the pile embedding depth is set
using iteration n = 0.01 m. The graph showing the dependence between the required static
load N and depth n at different values of embedding rate ϑ is shown in Figure 13 below.
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It follows from the analysis of this graph that the required static force N increases
linearly with an increase in depth if the embedding rate ϑ remains the same, but if the
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values of embedding rates are greater, the value of the required static force N increases
as well.

5. Conclusions

This article presents a new analytical solution to the problem of vibratory pile driv-
ing in a homogeneous unsaturated sandy base, taking into account the manifestation of
vibrocreep of sandy soil under vibration.

The analytical solution to the problem of vibratory pile driving into the sand base
provided that the problem statement is quasi-dynamic and takes into account the manifesta-
tion of vibrocreep. It was found that the pile embedding rate decreases with depth because
resistance to embedding increases along with the pile’s lateral surface, and the viscosity
coefficient decreases due to a reduction in vibration acceleration caused by an increase in
the stiffness of the base. During pile embedding up to a certain depth, resonance occurs in
the system. This resonance causes an increase in the amplitude of vibrations. According to
the solution obtained by the authors, the pile embedding rate increases with an increase in
the static load N. The correlation between the static load and the pile embedding rate is
explained by an increase in the intensity of the shear stresses, which leads to an increase
in the rate of angular deformations. As the dynamic load on the pile ∆N and vibration
frequency ω increases, the pile embedding rate increases as well. An increase in these
parameters leads to an increase in the vibration acceleration and a decrease in the viscosity
coefficient, thus contributing to more intense angular deformations. The dependences
identified in this study using an analytical solution to the problem are consistent with the
results of earlier experimental studies implemented by other researchers and can be used
in engineering practice to predict the vibratory pile driving rate.
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