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Abstract: The current study demonstrates the existence of solutions to a multidimensional functional
integral equation with multivalued feedback. We seek solutions for the multidimensional functional
problem that is defined, continuous, and bounded on the semi-infinite interval. Our proof is based on
the technique associated with measures of noncompactness by a given modulus of continuity in the
space in BC(R+). Also, some sufficient conditions are investigated to demonstrate the asymptotic
stability of the solutions to that multidimensional functional equation. Additionally, we give an
example and some particular cases to illustrate our outcomes.

Keywords: multidimensional integral equation; existence results; measure of noncompactness; Darbo
fixed-point theorem; multivalued feedback control
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1. Introduction

Fixed point theorems are an excellent tool [1–3] to discuss the solvability of problems of
differential equations and inclusions, which have been investigated in several monographs
and literature, especially those with multi-valued boundary conditions (see [4–9] and the
references therein).

Gasiński et al. [4] studied nonlinear second-order differential inclusions including the
ordinary vector p-Laplacian, a multivalued maximal monotone operator, and nonlinear
multivalued boundary conditions. They use a broad, unified framework that considers
boundary value problems’ evolutionary variational inequalities and gradient systems.

In a separable Banach space, a semi-linear differential inclusion that includes a Caputo
fractional derivative was examined by Kamenskii et al. [7]. They used the generalized
translation multi-valued operator approach and certain fixed point theorems to demonstrate
that this inclusion has a mild solution with a multivalued constraint by using the the multi-
valued operators’ Kakutani–Ky Fan fixed-point theorem [8].

The focus of the research [6] has been on whether there is a solution to the problem
of a hybrid differential inclusion of the second type involving two multi-valued maps.
Nonlocal multi-valued integral boundary conditions are also taken into consideration.

El-Sayed et al. [9], investigated a fractional-order nonlinear Riemann–Liouville hybrid
delay differential inclusion with a nonlinear set-valued nonlocal integral condition. After
establishing the existence and uniqueness of the two set-valued functions, the solutions’
continuous dependency on these two sets of selections gives the result in C(I,R).
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In this article, we prove the existence and asymptotic stability of solutions for a class
of a multidimensional functional equations with multivalued feedback,

x(τ) = f (τ, x(ϕ(τ))) (1)

× g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))dς, . . . , x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)
,

ui(τ) ∈ Vi(τ, ui(τ), x(τ)), i = 1, 2, . . . , k, τ ∈ J = [0,+∞) (2)

where hi, i = 1, 2, . . . , k and f satisfy some conditions and ui, i = 1, 2, . . . , k are the
control variables.

The importance of dealing with problems involving control variables is because
unforeseen factors continually upset ecosystems in the actual world, which can lead to
changes in biological characteristics like survival rates.

The disturbance functions are what we mean by control variables when we refer to
them. By developing an appropriate Lyapunov function (Lyapunov functional), Chen
in [10] was able to achieve certain averaging criteria for endurance and non-autonomous
feedback-controlled LotkaVolterra system’s global attractivity. There is a class of feedback-
controlled nonlinear functional-integral equations that are asymptotically stable and are
globally attractive due to Nasertayoob, using the measure of noncompactness in conjunction
with Darbo’s fixed point theorem [11]. Moreover, under appropriate circumstances, in [12],
the author investigated whether a nonlinear neutral delay population system with feedback
control has a positive periodic solution.

In this investigation, we have multivalued feedback control, and we introduce a
modified definition for the technique based on the method of measures of noncom-
pactness [13–15] to study the existence of solutions to the multidimensional functional
Equation (1) in BC(R+). The main tools in our studies are the fixed-point theorem of the
Darbo type [16].

J. Banaś successfully used the method connected to a measure of noncompactness in
the Banach space BC(R+) to discover the existence of asymptotically stable solutions to
many integral and quadratic integral equations (see [14,15]). Additionally, see [17–21] for
information on the solvability of certain problems in the half-line axis.

The rest of the article is structured as follows: In Section 1. We outline some results and
previous work to clarify our motivation and innovation. Section 2 states and demonstrates
an existence result for a multidimensional functional equation with multi-delays through
a direct application of Darbo’s fixed point theorem [16]. Additionally, the asymptotic
stability of the solution to our problem is studied. Finally, in Section 3, we will provide
an illustration of our main result with an example and discuss some special cases of the
studied problem.

In what follows, let us recall the definition of the measure of noncompactness in
BC(R+). Let us fix a nonempty and bounded subset X of BC(R+) and a positive number
T > 0. For x ∈ X and ε > 0 , we denote by w(x, ε) the modulus of continuity of the
function x [22],

i.e., ωT(x, ε) = sup { | x(t) − x(s) | : t, s ∈ [0, T], | t − s | ≤ ε },

and
ωT(X, ε) = sup { ω(x, ε) : x ∈ X },

ωT
0 (X) = lim

ε → 0
ω(X, ε), ω0(X) = lim

T → ∞
ωT

0 (X).

Moreover, we put

β(X) = lim
T→∞

{
sup
x∈X
{sup{|x(t)| : t ≥ T}}

}
.
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Finally, let us define the function µ on the family mBC(R+) with the formula

µ(X) = ω0(X) + β(X),

for a fixed ε > 0 and arbitrary x ∈ X.
In the next section, we shall introduce a modified definition of the measure of non-

compactness to establish the solvability of the multidimensional problem.

2. Fixed Point Results

Consider the multidimensional functional Equation (1) according to the following criteria:

(i) Let Vi(τ, ui, x) : J ×R+ ×R+ → 2R+ , (i = 1, 2, . . . , k) meet the following conditions:

(a) The set Vi(τ, ui, x) is a on-empty, closed, and convex subset for all
(τ, ui, x) ∈ J ×R+ ×R+.

(b) Vi(τ, ·, ·) is upper semicontinuous in ui, x ∈ R+ for each τ ∈ J.
(c) Vi(·, ui(·), x(·)) is measurable in τ ∈ J for each ui, x ∈ R+.
(d) There exist two measurable and bounded functions σi : [0, 1]→ R, with norm

‖σi‖, such that

|Vi(τ, ui(τ), x(τ))| = sup{|v| : v ∈ Vi(t, ui(τ), x(τ))} ≤ σi(τ), τ ∈ J,

with σ = max{‖σi‖}.

Remark 1. From assumption (i), we are able to conclude that the set of selections SVi
(i = 1, 2, . . . , k) of the set-valued function Vi is nonempty, and there exists a Carathéodory
function vi ∈ Vi (see [23]) which is measurable in τ ∈ J, for all ui, x ∈ R and continuous in
ui, x ∈ R, for all τ ∈ J

|vi(τ, ui(τ), x(τ))| ≤ σi(τ),

and satisfies the implicit equation

ui(τ) = vi(τ, ui(τ), x(τ)), i = 1, 2, . . . , k, τ ∈ J. (3)

Therefore, any solution of problem (1)–(3) is a solution of problem (1) and (2).

(ii) ϕ, φi, ψi : J → J, for i = 1, 2, . . . , k., are continuous, such that

ϕ(τ), φi(τ), ψi(τ) ≤ τ.

(iii) g : J ×Rk → R is a a continuous function, and there exists a positive constant l
such that

|g(τ, x1, x2, . . . ., xk)− g(τ, y1, y2, . . . ., yk)| ≤ l
k

∑
i=1
|xi − yi|,

for each τ ∈ R+, and for all xi, yi ∈ R. Moreover, the function t → g(t, 0, 0, , . . . ., 0)
belongs to the space BC(R+), and we have

|g(τ, x1, x2, . . . ., xk)| ≤ l
k

∑
i=1
|xi|+ M, where M = sup

t∈I
|{g(t, 0, 0, , . . . ., 0)| : τ ∈ R+} < +∞.

(iv) f : J ×R → R is a continuous function, and there exists a positive constant η such
that

| f (τ, x)− f (τ, y)| ≤ η |x− y|,
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for each τ ∈ R+ and for all x, y ∈ R. Moreover, the function t→ f (τ, 0) belongs to
the space BC(R+), and we have

| f (τ, x)| ≤ η |x− y|+ N, where N = sup
τ∈J
|{ f (τ, 0)| : τ ∈ R+} < +∞.

(v) hi : R+ ×R+ ×R×R→ R+, (i = 1, 2, 3, .., k) are a Carathéodory function and there
are functions ai, bi : R+ ×R+ → R+, that are measurable and bounded, with

|hi(τ, ς, ui, x)| ≤ ai(τ, ς) + bi(τ, ς)[|ui(ς)|+ |x(ς)|], τ, ς ∈ [0,+∞)

and
sup

τ∈[0,T]

∫ τ

0
ai(τ, ς) dς = ai(τ), lim

τ→∞

∫ τ

0
ai(τ, ς) dς = 0,

sup
τ∈[0,T]

∫ τ

0
bi(τ, ς) dς = bi(τ), lim

τ→∞

∫ τ

0
bi(τ, ς) dς = 0.

where a = sup{ai(τ) : τ ∈ J} and b = sup{bi(τ) : τ ∈ J}.
(vi) There exists r > 0, such that

η lkb r3 + (N b + n(a + b σ)l k r2 + (n M + lkN (a + b σ)− 1)r + NM = 0.

Definition 1. For the modulus of continuity of the function x, in the case of a multidimensional
functional equation, we introduce the following relations:

ωT(x, ε) = sup {
k

∑
i=1
| x(φi(t)) − x(φi(s)) | : t, s ∈ [0, T], | t − s | ≤ ε }

and
ωT(X, ε) = sup { ωT(x, ε) : x ∈ X }.

Next, let us put

ωT
0 (X) = lim

ε → 0
ωT(X, ε), ω0(X) = lim

T → ∞
ωT(X, ε).

Remark 2. Assumption (i) gives the result that φi(t) is continuous and φi(t) ≤ t, for i = 1, 2, 3.
From assumptions (ii) and (iii), we obtain

|g(t, x1, x2, . . . ., xk)− g(t, 0, 0, . . . ., 0)| ≤ l
k

∑
i=1
|xi|,

|g(t, x1, x2, . . . ., xk)| ≤ |g(t, 0, 0, . . . ., 0)|+ l
k

∑
i=1
|xi|,

and

| f (t, x)− f (t, 0)| ≤ η|x|
| f (t, x)| ≤ | f (t, 0)|+ η|x|

Theorem 1. Assume (i)–(vi) hold. If

η
[

M + l k r[a + b (σ + r)]
]
+ l [N + η r] k [a + b (σ + r)] < 1,

then the multidimensional functional problem (1) and (2) has at least one solution x ∈ BC(R+).
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Proof. Let the ball Br be defined by

Br = {x ∈ BC(R+) : ‖x‖ ≤ r}.

Define the operator F by

Fx(τ) = f (τ, x(ϕ(τ)))

× g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))ds, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)
.

Since by (iii) and (iv), functions f (τ, x) and g(τ, x1, x2, . . . , xk) are continuous. Thus,
it follows that Fx ∈ C(J, R).

We will demonstrate that FBr ⊂ Br exists for some r > 0, and then

| Fx(τ) |

=

∣∣∣∣ f (τ, x(ϕ(τ)))

× g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))dς, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)∣∣∣∣
≤ | f (τ, x(ϕ(τ)))|

×
∣∣∣∣g(τ, x(φ1(τ))

∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))dς, , . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)∣∣∣∣
≤ [ f (τ, 0)|+ n|x(ϕ(τ))|]

[
|g(τ, 0, 0, . . . ., 0)|+ l

k

∑
i=1
|x(φi(τ))|

∫ ψi(τ)

0
|hi(τ, ς, ui(ς), x(ς))|dς

]
≤ [| f (τ, 0)|+ n|x(ϕ(τ))|]

[
|g(τ, 0, 0, . . . ., 0)|

+ l
k

∑
i=1
|x(φi(τ))|

∫ ψi(τ)

0
[ai(τ, ς) + bi(τ, s)(|ui(ς)|+ |x(ς)|)]dς

]
≤ [| f (τ, 0)|+ n|x(ϕ(τ))|]

[
|g(τ, 0, 0, . . . ., 0)|

+ l
k

∑
i=1
|x(φi(τ))|

∫ τ

0
[ai(τ, ς) + bi(τ, ς)(|vi(ς, ui, x(ς))|+ ‖x‖)]dς

]
≤ [N + n‖x‖]

[
M + l

k

∑
i=1
‖x‖[ai + bi(|σi(ς)|+ ‖x‖]

]
≤ [N + η r][M + l r k(a + b (σ + r))] = r.

Putting assumption (vi) into consideration, using the estimate above, we deduce that
F makes the ball Br turn into itself, since there is the solution r = r0 > 0 of the equation

η lkb r3 + (N b + n(a + b σ)l k r2 + (n M + lkN (a + b σ)− 1)r + NM = 0,

with η
[

M + l k r[a + b (σ + r)]
]
+ l [N + η r] k [a + b (σ + r)] < 1.

We now demonstrate that F is continuous on the ball Br. To accomplish this, let us fix
ε > 0 and choose x, y ∈ Br such that ‖x− y‖ ≤ ε. Next, we obtain for τ ∈ R+
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| Fx(τ)− Fy(τ) |

=

∣∣∣∣ f (τ, x(ϕ(τ)))

× g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1, x(ς))dς, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk, x(ς))dς

)
− f (τ, y(ϕ(τ)))

× g
(

τ, y(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), y(ς))dς, . . . ., y(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), y(s))dς

)∣∣∣∣
≤ | f (τ, x(ϕ(τ)))− f (τ, y(ϕ(τ)))|

×
∣∣∣∣g(τ, x(φ1(τ))

∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))dς, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)∣∣∣∣
+

∣∣∣∣ f (τ, y(ϕ(τ)))|

× g
(

τ, x(φ1(τ)
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς))dς, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς))dς

)
− g
(

τ, y(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), y(ς))dς, . . . ., y(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), y(ς))dς

)∣∣∣∣
≤ η |x(ϕ(τ))− y(ϕ(τ))|

[
|g(τ, 0, 0, . . . ., 0)|+ l

k

∑
i=1
|x(φi(τ))|

∫ ψi(τ)

0
|hi(τ, ς, ui(ς), x(ς))|dς

]
+ l [| f (τ, 0)|+ η|y(ϕ(τ))|]

×
[ k

∑
i=1

∣∣x(φi(τ))
∫ ψi(τ)

0
hi(τ, ς, ui(ς), x(ς))dς− y(φi(τ)))

∫ ψi(τ)

0
hi(τ, ς, ui(ς), y(ς))dς

∣∣
≤ η |x(ϕ(τ))− y(ϕ(τ))| ]

[
(M + l

k

∑
i=1
|x(φi(τ))|)

∫ ψi(τ)

0
[ai(τ, ς) + bi(τ, ς)(|ui(ς)|+ |x(ς)|)]dς

]
+ l [N + η‖y‖]

[ k

∑
i=1

∣∣x(φi(τ))− y(φi(τ))
∣∣ ∫ ψi(τ)

0
|hi(τ, ς, ui(ς), x(ς))|dς

+
k

∑
i=1
|y(φi(τ))|

∫ ψi(τ)

0

∣∣ hi(τ, ς, ui(ς), x(ς))− hi(τ, ς, ui(ς), y(ς))
∣∣dς

]
≤ η |x(ϕ(τ))− y(ϕ(τ))| ]

×
[
(M + l

k

∑
i=1
|x(φi(τ)|)

∫ ψi(τ)

0
[ai(τ, ς) + bi(τ, ς)(|Vi(τ, ui(τ), x(τ))|+ ‖x‖)]dς

]
+ l [N + η‖y‖]

[ k

∑
i=1

∣∣x(φi(τ))− y(φi(τ))
∣∣ ∫ ψi(τ)

0
[ai(τ, ς) + bi(τ, ς)(|Vi(τ, ui(τ), x(τ))|+ ‖x‖)]dς

+
k

∑
i=1
‖yi‖

∫ τ

0

∣∣ hi(τ, ς, ui(ς), x(ς))− hi(τ, , ui(ς), y(ς))
∣∣dς

]
.

Take into account the next two cases:
(i*) Choose T > 0 such that for τ ≥ T the given inequalities are true:

r
∫ τ

0
[ai(τ, ς) + bi(τ, ς)(‖σi‖+ ‖x‖)]dς ≤ ε1 and r

∫ τ

0
[ai(τ, ς) + bi(τ, ς)(‖σi‖+ ‖y‖)]dς ≤ ε2.

Then
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| Fx(τ)− Fy(τ) |≤ η ‖x− y‖ ]
[
(M + l k r

∫ τ

0
[ai(τ, ς) + bi(τ, ς)(‖σi‖+ r)]dς

]
+ l [N + η r]k‖x− y‖

∫ τ

0
[ai(τ, ς) + bi(τ, ς) (‖σi‖+ r]dς

+ k r
∫ τ

0

[
(ai(τ, ς) + bi(τ, ς))[2‖σi‖+ ‖x‖+ ‖y‖]

]
dς

]
≤
(
η
[
M + lkr[ai + bi(‖σi‖+ r)]

]
+ l[N + η r]k[ai + bi(‖σi‖+ r]

)
ε + ε1 + ε2 ≤ ε + ε1 + ε2.

(ii*) For τ ≤ T. Define the function ωT(hi, ε), (i = 1, 2, .., k.) where, for ε > 0,
we denote

ωT(hi, ε) = sup{|hi(τ, ς, ui, x(ς))− hi(τ, ς, ui, y(ς))| : τ, ς ∈ [0, T], ‖x− y‖ ≤ ε}.

Note that function h is uniformly continuous; we conclude that ωT(hi, ε) → 0 as
ε → 0, (i = 1, 2, . . . , k). Therefore, using the above estimate in this case, we are able to
conclude that

| Fx(τ)− Fy(τ) | ≤ η ‖x− y‖
[

M + l k r[a + b (σ + r)]
]

+ l [N + η r]k
[
‖x− y‖[a + b (σ + r)] + k r ωT(hi, ε)

]
≤
[
η
[

M + l k r[a + b (σ + r)]
]
+ l [N + η r] k [a + b (σ + r)]

]
ε ≤ ε.

Finally, from the two cases (i*) and (ii*), considering the previous information, we
come to the conclusion that the operator F continuously maps the ball Br into itself.

Now take a nonempty subset of Br, denoted by X. Fix ε > 0 and choosing x ∈ X
and τ1, τ2 ∈ J such that |τ2 − τ1| ≤ ε. Without losing generality, we can suppose that
τ1 ≤ τ2. Then

| Fx(τ2)− Fx(τ1) | =

∣∣∣∣ f (τ2, x(ϕ((τ2))) g(τ2, x(φ1(τ2))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(t2)

0
hk(τ2, ς, uk(ς), x(ς))dς)

− f (τ1, x(ϕ((τ1))) g(τ1, x(φ1(τ1))
∫ ψ1(τ1)

0
h1(τ1, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(τ1)

0
hk(τ1, ς, uk(ς), x(ς))dς)

∣∣∣∣
≤

∣∣∣∣ f (τ2, x(ϕ((τ2))) g(τ2, x(φ1(τ2))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς)

− f (τ1, x(ϕ((τ1)))) g(τ2, x(φ1(τ2))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς)

∣∣∣∣
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+

∣∣∣∣ f (τ1, x(ϕ((τ1))) g(τ2, x(φ1(t2))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς)

− f (τ1, x(ϕ((τ1))) g(τ1, x(φ1(τ1))
∫ ψ(τ1)

0
h1(τ1, ς, u1(ς), x(ς))dς,

. . . ., x(φk(ς)))
∫ ψk(τ1)

0
hk(τ1, ς, uk(ς), x(ς))dς)

∣∣∣∣
≤

∣∣ f (τ2, x(ϕ((τ2)))− f (τ1, x(ϕ((τ1)))
∣∣∣∣g(τ2, x(φ1(τ2))

∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ)))
∫ ψk(τ)

0
hk(τ2, ς, uk(ς), x(ς))dς)

∣∣
+ | f (τ1, x(ϕ((τ1)))|

[∣∣g(τ2, x(φ1(τ2))
∫ ψ1(τ2)

0
h1(τ2, v, u1(v), x(ς))ds,

. . . ., x(φk(τ2)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς)

−g(τ1, x(φ1(τ1))
∫ ψ1(τ1)

0
h1(τ1, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ1)))
∫ ψk(τ1)

0
hk(τ1, ς, uk(ς), x(ς))dς)

∣∣ ].

Hence, we have

| Fx(τ2)− Fx(τ1) | ≤
[
| f (τ2, x(ϕ((τ2)))− f (τ1, x(ϕ((τ2)))|+ | f (τ1, x(ϕ((τ2)))− f (τ1, x(ϕ((τ1)))|

]
×

[
|g(τ2, 0, 0, . . . ., 0)|+ l

k

∑
i=1
|x(φi(τ2))|

∫ ψi(τ2)

0
|hi(τ2, ς, ui(ς), x(ς))|dς

]
+ [| f (τ1, 0)|+ η|x(ϕ((τ1))|]

[∣∣g(τ2, x(φi((τ2)))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ2)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς

− g(τ1, x(φi((τ2)))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ2)))
∫ ψk(τ2)

0
hk(τ2, ς, uk(ς), x(ς))dς)|

+ g(τ1, x(φi((τ2)))
∫ ψ1(τ2)

0
h1(τ2, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ2)))
∫ ψk(τ2)

0
hk(τ2, (ς, uk(ς), x(ς))dς)

− g(τ1, x(φi(τ1))
∫ ψ1(τ1)

0
h1(τ1, ς, u1(ς), x(ς))dς,

. . . ., x(φk(τ1)))
∫ ψk(τ1)

0
hk(τ1, ς, uk(ς), x(ς))dς)

∣∣ ]

Now, using condition (iii)–(v), we obtain
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≤ [θ f (δ) + η|x(ϕ(τ2))− x(ϕ(τ1))|]

×
[
M + l

k

∑
i=1
|x(φi(τ2))|

∫ ψi(τ2)

0
[ai(τ2, ς) + bi(τ2, ς)|(|ui(ς)|+ |x(ς)|)]dς

]
+ [N + η|x(ϕ(t1))|]

[
θg(δ) + l

k

∑
i=1

[|x(φi((τ2)
∫ ψi(τ2)

0
hi(τ2, ς, ui(ς), x(ς))dς

− x(φi((τ1)
∫ ψi(τ1)

0
hi(τ1, ς, ui(ς), x(ς))dς|]

≤ [θ f (δ) + η|x(ϕ(τ2))− x(ϕ(τ1))|]

×
[

M + l
k

∑
i=1
|x(φi(τ2))|

∫ ψi(τ2)

0
[ai(τ2, ς) + bi(τ2, ς)(|ui(ς)|+ |x(ς))|)]dς

]
[N + η|x(ϕ(τ1))|]

×
[
θg(δ) + l

k

∑
i=1
|x(φi(τ2))|

∫ ψi(τ2)

0
[hi(τ2, ς, ui(ς), x(ς))− hi(τ1, ς, ui(ς), x(ς))]dς

+ l
k

∑
i=1
|x(φi(τ2))− x(φi(τ1))|

∫ ψi(τ1)

0
|hi(τ1, ς, ui(ς), x(ς))|dς

+ l
k

∑
i=1

∣∣x(φi(τ2))
∣∣ ∫ ψi(τ2)

ψ(τ1)
|hi(τ1, ς, ui(ς), x(ς))|dς

]
.

Now, from condition (ii), we have

≤ [θ f (δ) + η|x(ϕ(τ2))− x(ϕ(τ1))|]

×
[

M + l
k

∑
i=1
|x(φi(τ2))|

∫ τ2

0
[ai(τ2, ς) + bi(τ2, ς)(|ui(ς)|+ |x(ς))|)]dς

]
+ [N + η|x(ϕ(τ1))|]

[
θg(δ) + l

k

∑
i=1
|x(φi(τ2))|

∫ ψi(τ2)

0
ωT

hi
(x, ε) dς

+ l
k

∑
i=1
|x(φi(τ2))− x(φi(τ1))|

∫ τ1

0
[ai(τ2, ς) + bi(τ2, ς)(|ui(ς)|+ |x(ς))|)]dς

+ l
k

∑
i=1

∣∣x(φi(τ1))
∣∣ ∫ τ2

τ1

[ai(τ2, ς) + bi(τ2, ς)(|ui(ς)|+ |x(ς))|)]dς

]
≤ [θ f (δ) + η|x(ϕ(τ2))− x(ϕ(τ1))|]

×
[

M + l
k

∑
i=1
‖x‖

∫ τ2

0
[ai(τ2, ς) + bi(τ2, ς)(|vi(τ, ui(ς), x(ς)|+ ‖x‖)]dς

]
+ [N + η‖x‖]

[
θg(δ) + l k r ωT

hi
(x, ε)

+ l
k

∑
i=1
|x(φi(τ2))− x(φi(τ1))|

∫ τ1

0
[ai(τ2, ς) + bi(τ2, ς)|(|vi(τ, ui(ς), x(ς)|+ ‖x‖)]dς

+ l
k

∑
i=1
‖x‖

∫ τ2

τ1

[ai(τ2, ς) + bi(τ2, ς)(|vi(τ, ui(ς), x(ς)|+ ‖x‖)]dς
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≤ [θ f (δ) + η|x(ϕ(τ2))− x(ϕ(τ1))|]

×
[

M + l
k

∑
i=1
‖x‖

∫ τ2

0
[ai(τ2, ς) + bi(τ2, ς)(|σi(ς)|+ ‖x‖)]dς

]
+ [N + η‖x‖]

[
θg(δ) + l k rωT

hi
(x, ε)

+ l
k

∑
i=1
|x(φi(τ2))− x(φi(τ1))|

∫ τ1

0
[ai(τ2, ς) + bi(τ2, ς)|(|σi(ς)|+ ‖x‖)]dς

+ l
k

∑
i=1
‖x‖

∫ τ2

τ1

[ai(τ2, ς) + bi(τ2, ς)(|σi(ς)|+ ‖x‖)]dς

≤ [θ f (δ) + η ωT(x, ωT(ϕ, ε))]
[

M + l r k [a + b(σ + r)]
]

+ [N + η r]
[
θg(δ) + l

k

∑
i=1

r ωT
hi
(x, ε) + l

k

∑
i=1

ωT(x, ωT(φi, ε)) [ai + bi(σi + r)]
]
,

where we used

θ f (δ) = sup{| f (τ2, x)− f (τ1, x)| : τ1, τ2 ∈ I, τ1 < τ2, |τ2 − τ1| < δ, |x| ≤ r},
θg(δ) = sup{|g(τ2, x1, .., xk)− g(τ1, x1.., xk)| : τ1, τ2 ∈ I, τ1 < τ2, |τ2 − τ1| < δ, |x| ≤ r}.

Therefore, we arrive at the following estimate

ωT(Fx, ε) ≤ [θ f (δ) + η ωT(x, ωT(ϕ, ε))]
[
M + l r k[a + b(σ + r)]

]
+ [N + ηr]

[
θg(δ) + l

k

∑
i=1

rωT
hi
(x, ε) + l

k

∑
i=1

ωT(x, ωT(φi, ε))[ai + bi(σi + r)]
]
.

Consequently, given that f and g have uniform continuity, and from conditions (iii)
and (iv), we may say θg(δ) θ f (δ)→ 0, as δ→ 0. Additionally, it is clear that ωT(φi, ε)→
0, (i = 1, 2, .., k) as ε→ 0. Thus,

wT
0 (FX) ≤

[
η ( M + lrk(a + b (σ + r))) + l k [N + η r](a + b (σ + r))

]
wT

0 (X).

Consequently, we obtain

w0(FX) ≤
[
η ( M + lrk(a + b r)) + l k [N + η r](a + b r)

]
w0(X). (4)

In the following, we take a non-empty set X ⊂ Br.Then for any x, y ∈ X, and fixed
τ ≥ 0, we obtain

| Fx(τ)− Fy(τ) |

≤ η|x(ϕ(τ))− y(ϕ(τ))||
[
(M +

k

∑
i=1

l‖x‖
∫ τ

0
[ai + bi‖x‖]ds

]
+ l[N + η‖y‖]

×
[ k

∑
i=1

l |x(φi(τ))− y(φi(τ))|
∫ τ

0
[ai + bi‖x‖]dς

+
k

∑
i=1
‖y‖

∫ τ

0

∣∣ hi(τ, ς, ui(ς), x(ς))− hi(τ, ς, ui(ς), y(ς))
∣∣dς

]
.

Hence, it is simple to arrive at the following inequality:

diam(FX)(τ) ≤ η diamX(τ)
[

M + l k r|[a + b (σ + r)]
]

+ l k [N + η r]
[
diamX(τ)[a + b (σ + r)] + k rωT(h, ε)

]
.
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Now, we deduce this estimate:

lim
τ→∞

sup diamFX(τ)

≤ (η
[

M + l k r|[a + b (σ + r)]
]
+ l k [N + η r][a + b (σ + r)]) lim

τ→∞
sup diamX(τ)

lim
τ→∞

sup diamFX(τ) ≤ c lim
τ→∞

sup diamX(τ), (5)

where we indicate

c = (η
[

M + l k r|[a + b (σ + r)]
]
+ l k [N + η r][a + b (σ + r)]).

From (vi), it is obvious that c < 1.
Finally, we obtain the following inequality by connecting (4) and (5) with the definition

of the measure of noncompactness provided in [13]

µ(FX) ≤ c µ(X). (6)

Now, taking into account the condition that c = η
[

M + l k r[a + b (σ + r)]
]
+ l k [N +

η r][a + b (σ + r)]) < 1 and Darbo’s fixed point theorem [16], we conclude that the
operator F has a fixed point x in the ball Br. Then, x is a solution to the multidimensional
problem (1) and (2).

Asymptotic Stability

Now, we are able to deduce the next result from the evidence of Theorem 1.

Corollary 1. The solution x ∈ BC(R+) to a multidimensional functional Equation (1) with
multivalued feedback control (2) is asymptotically stable.

Proof. Considering that the ball Br contains the image of the space BC(R+) under the
operator F, we conclude that Br contains the set FixF of all the fixed points of F. It is
evident that all solutions of the multidimensional problem (1) and (2) are included in
the set FixF. On the other hand, we determine that the family kerµ includes the set
FixF [22]. Now, consider the description of sets that belong to kerµ (the kernel kerµ of this
measure includes the nonempty and bounded subsets X of BC(R+) such that functions
from X are locally equicontinuous on R+, and the thickness of the bundle they produce
reduces to zero at infinity [20]). We obtain the conclusion that all of the multidimensional
problems’ (1) and (2) solutions are globally and asymptotically stable.

3. Discussions and Example

We now discuss some particular cases, which are useful for the theory of qualita-
tive analysis of some functional integral equations and important for some models and
real problems.

(1) Let f (τ, x) = 1, τ ∈ J; then, the quadratic multidimensional functional Equation (1) is
in the form

x(τ) = g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, x(ς)) dς, . . . ., x(φk(τ))

∫ ψk(τ)

0
hk(τ, ς, x(ς)) dς

)
, (7)

in the absence of the control variable ui, then, under the assumptions of Theorem 1,
the multidimensional functional Equation (7) has at least one asymptotically stable
solution x ∈ BC(R+).

(2) Recently, some cubic functional integral equations have received much attention,
particularly [24–28]. The investigation of these cubic problems can be considered as
extended results obtained for some quadratic integral equations.
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Furthermore, the solvability and asymptotic stability for a cubic functional integral
equation involving a control variable have been investigated in [29]. Now, letting
f (τ, x) = x, then, the multidimensional functional Equation (1) is reduced to a cubic
multidimensional functional equation with feedback control

x(τ) = x(τ) (8)

× g
(

τ, x(φ1(τ))
∫ ψ1(τ)

0
h1(τ, ς, u1(ς), x(ς)) dς, . . . ., x(φk(τ)))

∫ ψk(τ)

0
hk(τ, ς, uk(ς), x(ς)) dς

)
,

ui(τ) ∈ Vi(τ, ui(τ), x(τ)), i = 1, 2, . . . , k, τ ∈ J. (9)

The cubic integral inclusion (8) and (9) has at least one asymptotically stable solution,
x ∈ BC(R+), according to the hypotheses of Theorem 1.

(3) Let f (τ, x) = x(τ), g(τ, w1, w2, . . . , wk) = w1 + w2 + . . . + wk, i = 1, 2, . . . , k, τ ∈ J, ;
then, we have the multi-term cubic functional integral equation

x(τ) = x(τ).
k

∑
i=1

x(φi(τ))
∫ ψi(τ)

0
hi(τ, ς, ui(ς), x(ς)) dς, (10)

ui(τ) ∈ Vi(τ, ui(τ), x(τ)),

involving the control variables ui. Then, under the assumptions of Theorem 1, the
multidimensional functional Equation (10) has at least one asymptotically stable
solution x ∈ BC(R+). Moreover, when f (τ, x) = 1, we have the multi-term quadratic
functional integral equation

x(τ) =
k

∑
i=1

x(φi(τ))
∫ ψi(τ)

0
hi(τ, ς, ui(ς), x(ς)) dς,

with multivalued feedback control

ui(τ) ∈ Vi(τ, ui(τ), x(τ)), i = 1, 2, . . . , k, τ ∈ J.

(4) Let f (τ, x) = x(τ), g(τ, w1, w2, . . . , wk) = ∑k
i=1 wi, ψi(τ) = τ and hi(τ, ς, x(ς), ui(ς))

= τ
τ+ς x(ς)ui(ς) , i = 1, 2, . . . , k, τ ∈ J, then we have the multi-term cubic functional

integral equation of the Chandrasekhar type

x(τ) = x(τ).
k

∑
i=1

x(φi(τ))
∫ τ

0

τ

τ + ς
x(ς)ui(ς) dς, ui(τ) ∈ Vi(τ, ui(τ), x(τ)), (11)

involving the control variables ui. Then, under the assumptions of Theorem 1, the
multidimensional functional Equation (11) has at least one asymptotically stable
solution x ∈ BC(R+). Moreover, when f (τ, x) = 1, we have the multi-term quadratic
functional integral equation of the Chandrasekhar type

x(τ) =
k

∑
i=1

x(φi(τ))
∫ τ

0

τ

τ + ς
x(ς)ui(ς) dς,

with multivalued feedback control

ui(τ) ∈ Vi(τ, ui(τ), x(τ)), i = 1, 2, . . . , k, τ ∈ J.
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Example

Consider the next multidimensional functional problem

x(τ) =
τ

1 + τ2 arctan(τ + x(τ))

×
k

∑
i=1

1
1 + τ

cos
(
τ + xi(τ)

∫ τ

0
[
2τ − s
1 + τ4 +

τ(|ui(ς)|+ |xi(ς)|)
2π(τ2 + 1)(ς + 1)

]dς
)
, (12)

ui(τ) ∈ 0.2 ui(τ) +
1

800
e−τ sin(τ) + e

−3
2 τ x(τ), τ ≥ 0.

Consider that this multidimensional functional equation is a particular case of
Equation (1) with

f (τ, x(τ)) =
τ

1 + τ2 arctan(τ + x(τ)),

g(t, x1(τ), . . . , xk(τ)) =
k

∑
i=1

1
1 + t

cos(τ + xi(τ)),

hi(τ, ς, ui(ς), x(ς)) =
2τ − ς

1 + τ4 +
τ(|ui(ς)|+ |x(ς)|)
2π(τ2 + 1)(ς + 1)

.

Obviously, the function f is continuous. For any x, y ∈ R and τ ∈ [0, 1]

| f (τ, x(τ))− f (τ, y(τ))| ≤ 1
2

∣∣x(τ)− y(τ)|.

This shows that condition (iv) has been met with N = π
4 and η = 1

2 , where f (τ, 0) =
τ

1+τ2 arctan(τ). However, we also have

|g(τ, x1(τ), . . . , , xk(τ))− g(τ, y1(τ), . . . , yk(τ))| ≤
k

∑
i=1

1
1 + τ

|xi(τ)− yi(τ)|

≤
k

∑
i=1

|xi(τ)− yi(τ)|
2

,

where li = 1
2 and gi(τ, 0) = 1

1+τ sin(τ) with Mi =
1
2 . Observe further that assumption (v)

is satisfied by the function hi(τ, s, ui, x), where

|hi(τ, s, ui(s), x(s))| ≤ 2τ − s
1 + t4 +

τ(|ui(s)|+ |x(s)|)
2π(τ2 + 1)(s + 1)

.

Consequently, we can put ai(τ, s) = τ(2τ−s)
2(1+τ4)

and bi(τ, s) = τ
2π(τ2+1)(s+1) . To confirm

assumption (v), observe that

lim
τ→∞

∫ τ

0
ai(τ, s) = lim

τ→∞

∫ τ

0

τ(2τ − s)
2(1 + τ4)

ds = lim
τ→∞

3τ3

4τ4 + 4
= 0,

and

lim
τ→∞

∫ τ

0
bi(τ, s) = lim

τ→∞

∫ τ

0

τ

2π(τ2 + 1)(s + 1)
ds = lim

τ→∞

τ ln(τ + 1)
2π · (τ2 + 1)

= 0.

Moreover, we have ai = 0.14246919.. and bi = 0.0906987..
Finally, let us focus on the cubic equation of Theorem 1, which has the following root:

r1 = −8.65 81, r2 = 0.431989, and r3 = 4.79223,
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it is easily seen that the root r0 = 0.831459 of the previous equation satisfies the inequality

η
[

M + l k r[a + b (σ + r)]
]
+ l [N + η r] k [a + b (σ + r)] ' 0.048061056 < 1.

As a result, all requirements of Theorem 1 are met. Thus, we draw the conclusion that
Equation (12) has at least one solution in the space BC(R+).

4. Conclusions

Many researchers have investigated the solvability and asymptotic stability for dif-
ferent types of integral equations or systems of integral equations in various classes of
functions, for example, [30–32]. The main technique used in these papers is Darbo’s fixed
point theorem via the Concept of Measure of Noncompactness [17–22,33–35].

Moreover, the existence results of differential and integral equations involving some
constraints or control variables have been established and discussed in [10–12,29,36,37].

In [29,38], the existence of asymptotic stable solutions was established in the real
half-axis.

In this work, we extend these results and present a comprehensive study of multidi-
mensional functional integral equations that involves multivalued feedback control. This
study established the existence and the asymptotic stability of the solutions for (1) and (2)
on the real half-line by using the technique associated with a measure of noncompactness.
Our discussion is located in the class of bounded continuous functions BC(R+). Finally,
we introduce some remarks and an illustrative example.
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