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Abstract: The current study attempts to identify a new generalized metric space structure, referred to
as partial modular b−metric, that extends both partial modular metric space via b−metric space and
explains the topological aspects of the new space implementing examples. In addition, a new contrac-
tion mapping referred to as modified interpolative almost E−type contraction is determined, which is
an interpretation of interpolative contraction bestowed with almost contraction and E−contraction as
well as a simulation function and a fixed point theorem that encompass such mappings in the context
of partial modular b−metric space is demonstrated. In conclusion, an example and an application
that endorse the main theorem’s outcomes are offered.

Keywords: interpolative contraction; simulation function; partial modular b−metric space
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1. Introduction

Fixed point theory in metric structure provides a broad occasion for researchers. The
most notable outcome of this theory is Banach contraction maps, which were pioneered by
S. Banach [1] and have undergone several generalizations and expansions.

The metric function and the metric space structure are effective due to obtaining
different generalized distance functions by adding new features to this function, changing
some of the metric ones, or both. Numerous experts have achieved new topological
structures and brought them to the literature. One of the most basic generalizations of
metric space obtained with a general triangle inequality regarding a constant greater or
equal than one is the b−metric function, which was acquainted by primarily Bakhtin [2] in
1989 and then, mainly, by Czerwik [3,4] in 1993 and 1998.

In 1994, Matthews [5] offered up a partial metric space structure with an aspect of the
self-distance of each point in space that may not be zero. Furthermore, this space has various
application areas and allows researchers to study in both subsections of mathematics as well
as many other fields, such as computer domain and semantics. Mustafa et al. [6] established
a new generalized distance function called partial b−metric in 2013 by integrating the ideas
of partial metric and the b−metric function. Subsequently, in 2014, Shukla [7] modified the
concept of partial b−metric by changing the first definition’s last assumption.

Any distance function’s physical meaning is fundamentally understandable and easily
described. However, in this regard, the idea of modular metric, which Chistyakov [8]
suggested in 2010, has a distinct appeal from metric one, and numerous useful discoveries
connected to this function have been produced since this year. Following that, the concept
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of modular metric has been expanded to the notion of modular b−metric claimed by Ege
and Alaca [9] in 2018.

In addition, Hosseinzadeh and Parvaneh [10] developed an innovative generalized
metric function entitled partial modular metric space and provided some new insights on
this space, considering modular metric and partial metric functions. However, to remove
inconsistency in non-zero self-distance and triangular inequality, Das et al. [11] modified
the notion of partial modular metric in 2022.

As a result, more general metric function structures exist in addition to the above structures.
Throughout the research, the symbol N represents the set of all positive natural

numbers, whereas R+ represents the set of all non-negative real numbers.

2. Preliminaries

In this section, we provide reminders of some fundamental concepts and characteristics
that will be useful in the outcome of our work.

Definition 1. Let ρ : M×M→ R+ be a function on a non-empty setM and s ≥ 1 be a real
valued constant. Thereupon, for all x , y , z ∈ M, we listed the below circumstances:

(ρ1) ρ(x , x ) = ρ(x , y) = ρ(y , y)⇔ x = y ;
(ρ2) ρ(x , x ) ≤ ρ(x , y);
(ρ3) ρ(x , y) = ρ(y , x );
(ρ4) ρ(x , y) ≤ ρ(x , z) + ρ(z, y)− ρ(z, z);
(ρ4
′)ρ(x , y) ≤ s[ρ(x , z) + ρ(z, y)− ρ(z, z)] + 1−s

2 (ρ(x , x ) + ρ(y , y));
(ρ4
′′) ρ(x , y) ≤ s[ρ(x , z) + ρ(z, y)]− ρ(z, z).

Taking the above axioms into consideration, we conclude that

• the axioms (ρ1 − ρ4) are satisfied⇒ ρ is a partial metric function w.r.t. [5].
• the axioms (ρ1 − ρ3, ρ4

′) are satisfied⇒ ρ is a partial b−metric function w.r.t. [6].
• the axioms (ρ1 − ρ3, ρ4

′′) are satisfied⇒ ρ is a partial b−metric function w.r.t. [7].

Chistyakov [8] identified the modular metric function as the one below.

Definition 2 ([8]). Let ω : (0, ∞)×M×M → [0, ∞] be a function defined by ωλ(x , y) =
ω(λ, x , y) on a non-empty setM. If, for all x , y , z ∈ M, the circumstances

(ω1)ωλ(x , y) = 0, ∀λ > 0⇔ x = y ;
(ω2)ωλ(x , y) = ωλ(y , x ), ∀λ > 0;
(ω3)ωλ+µ(x , y) ≤ ωλ(x , z) + ωµ(z, y), ∀λ, µ > 0

are fulfilled, then the function ω is called modular metric.
If we consider the below axiom with a constant s ≥ 1 instead of (ω3), then we achieve that ω

is a modular b−metric acquainted by Ege and Alaca [9]:

(ω3
′) ωλ+µ(x , y) ≤ s

[
ωλ(x , z) + ωµ(z, y)

]
, ∀λ, µ > 0.

Further, it seems that the modular b−metric space and modular metric space coincide in case of
s = 1, and the sets

M∗
ω = {x ∈ M : ∃λ = λ(x ) > 0 such that ωλ(x , x0) < ∞} (x0 ∈ M)

are mentioned as an modular b−metric space (around x0).

Furthermore, for additional details, see [12–15].

Definition 3 ([10]). Let v : (0, ∞)×M×M → [0, ∞] be a function defined by vλ(x , y) =
v(λ, x , y) on a non-empty setM. For all x , y , z ∈ M, if the conditions

(v1)vλ(x , x ) = vλ(x , y) = vλ(y , y)⇔ x = y , ∀λ, µ > 0;
(v2)vλ(x , x ) ≤ vλ(x , y), ∀λ > 0;
(v3)vλ(x , y) = vλ(y , x ), ∀λ > 0;
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(v4) vλ+µ(x , y) ≤ vλ(x , z) + vµ(z, y)− vλ(x ,x )+vλ(z,z)+vµ(z,z)+vλ(y ,y)
2 , ∀λ, µ > 0

are provided, then the function v is termed a partial modular metric.

Subsequently, the notation of the partial modular metric function was redefined by
Das et al. [11] in 2022 by considering the below conditions instead of the (v1) and (v4) of
Definition 3:

(v1
′) vλ(x , y) = vµ(x , y) and vλ(x , x ) = vλ(x , y) = vλ(y , y)⇔ x = y , ∀λ, µ > 0.

(v4
′) vλ+µ(x , y) ≤ vλ(x , z) + vµ(z, y)−vλ(z, z), ∀λ, µ > 0.

We utilize the definition of partial modular metric as defined by Das et al. [11] throughout
the study.

On the other hand, researchers have used some auxiliary functions to achieve more
diverse results in fixed point theory. In this context, we use the new control functions
identified by Khojasteh et al. [16] entitled simulation functions, as noted below.

Definition 4 ([16]). A function ξ : [0, ∞)× [0, ∞) → R is a simulation function provided that
the subsequent requirements are met:

(ξ1) ξ(0, 0) = 0,
(ξ2) ξ(ι, ν) < ν− ι for all ι, ν > 0,
(ξ3) if {ιz}, {νz} are sequences in (0, ∞) such that lim

z→∞
ιz = lim

z→∞
νz > 0

lim sup
z→∞

ξ(ιz, νz) < 0.

In the sequel, Z indicates the collection of all simulation functions. Further, from (ξ2),
it follows that ξ(ι, ν) < 0 for all ι ≥ ν > 0.

Definition 5 ([16]). A mapping Y : M→M is referred to as Z-contraction on a metric space
(M, d), according to ξ ∈ Z if the inequality

ξ(d(Yx ,Yy), d(x , y)) ≥ 0

is fulfilled, for all x , y ∈ M.

Furthermore, choosing ξ ∈ Z as ξ(ι, ν) = qν− ι for all ι, ν ∈ [0, ∞), the prominent
contraction, entitled Banach contraction, is attained.

Remark 1 ([16]). Presume thatY is a Z-contraction. For all ι ≥ ν > 0, the statement ξ(ι, ν) < 0 is
true, and also, d(Yx ,Yy) < d(x , y). In turn, we deduce that Z-contraction mapping is contractive,
and eventually, continuous.

Moreover, the notation of the simulation function has been generalized in many
directions. For some of them, see [17–24].

Let Ψ∗ be denoted as the set of all ψ self-mappings on [1,+∞) such that ψ(a) = 1 ⇔
a = 1, which own non-decreasing properties.

In 2018 and 2022, S. H. Cho [25,26] identified the specification of simulation functions,
as stated beneath.

Definition 6 ([25,26]). Consider η is a real-valued mapping on [1, ∞)2, which satisfies the ensuing
circumstances.

(η1) η(1, 1) = 1;
(η2) η(ι, ν) < ν/ι , ∀ι, ν > 1;

(η′2) η(ι, ν) <
ψ(ν)
ψ(ι)

, ∀ι, ν > 1, where ψ ∈ Ψ∗;
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(η3) for any sequence {ιz}, {νz} ⊂ (1, ∞) with ιz ≤ νz , ∀z = 1, 2, 3, ...

lim
z→∞

ιz = lim
z→∞

νz > 1 ⇒ lim sup
z→∞

η(ιz, νz) < 1.

If the requirements (η1)− (η2)− (η3) are met, η is called an L-simulation function. Besides, η is
Lψ−simulation whenever the conditions of (η1)− (η′2)− (η3) hold.

Also, note that η(ι, ι) < 1 , ∀ι > 1.

L stands for the class of all L-simulation functions η, and Lψ stands for the collection
of all Lψ−simulation functions η : [1, ∞)2 → R.

Example 1 ([25,26]). The functions ηk, ηφ, ηz : [1, ∞)× [1, ∞) → R that are identified below,
belong to Lψ.

(i) ηk(ι, ν) =
[ψ(ν)]k

ψ(ι)
, ∀ι, ν > 1; k ∈ (0, 1);

(ii) ηφ(ι, ν) =
ψ(ν)

ψ(ι)φ(ψ(ν))
, ∀ι, ν ≥ 1, where φ : [1, ∞)→ [1, ∞) is non-decreasing and lower

semi-continuous self-mapping on [1, ∞), that fulfills φ−1({1}) = 1;
(iii)

ηp(ι, ν) =


1, if (ι, ν) = (1, 1),
ψ(ν)
2ψ(ι)

, if ν < ι,
[ψ(ν)]λ

ψ(ι)
, otherwise,

∀ι, ν ≥ 1, where λ ∈ (0, 1).

Note that if ψ(ι) = ι for ι ≥ 1, then ηk, ηφ, ηp ∈ L.

Jleli and Samet [27] proposed an intriguing idea termed O−contraction and verified
the subsequent theorem in 2014.

Theorem 1 ([27]). The self-mapping Y on a complete metric space (M, d), is referred to as
O−contraction, which means that, a constant k ∈ (0, 1) exists such that the expression

d(Yx ,Yy) 6= 0 ⇒ O(d(Yx ,Yy)) ≤ [O(d(x , y))]k

is provided for each x , y ∈ M, while O : (0, ∞)→ (1, ∞) is subject to the succeeding circumstances

(O1)O is non-decreasing;
(O2) for each sequence {ιz} ⊂ (0, ∞), lim

z→∞
O(ιz) = 1⇔ lim

z→∞
ιz = 0+;

(O3) the terms r ∈ (0, 1) and q ∈ (0, ∞] exist such that lim
ι→0+

O(ι)−1
ιr = q.

Thereupon, Y owns a unique fixed point.

Next, Liu [28] added the following new criteria instead of the condition (O3) and
reproved the same theorem under new conditions.(
O3
′)O is continuous.

Define Θ =
{
O : (0, ∞)→ (1, ∞) : O holds (O1), (O2) and

(
O3
′)}.

E. Karapınar [29] (also, improved version [30]) recently proposed a new idea indicated
as interpolative contraction and derived a fixed point theorem that included interpolative
Kannan-type contraction mapping, as stated below:

Theorem 2 ([29,30]). A self-mapping Y :M→M, on a complete metric space (M, d), meeting
the inequality

d(Yx ,Yy) ≤ δ[d(x ,Yx )]α[d(y ,Yy)]1−α
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with constants δ ∈ [0, 1) and α ∈ (0, 1), for all x , y ∈ M− Fix(Y), wherein Fix(Y) signifies the
set of fixed point of Y , enjoys a unique fixed point.

3. Partial Modular b−Metric Spaces and Some Topological Characteristics

In this section, the construction of a new structure using a new distance function and
the investigation of various topological properties are proposed.

Definition 7. Consider a non-empty set M and a real-valued constant s ≥ 1. A map ṽ :
(0, ∞) ×M×M → [0, ∞] is regarded as a partial modular b−metric (briefly Partial

m[m
) if the

subsequent terms are met: for all x , y , z ∈ M,

(ṽ1) ṽλ(x , x ) = ṽµ(x , x ) and ṽλ(x , x ) = ṽλ(x , y) = ṽλ(y , y)⇔ x = y , ∀λ, µ > 0;
(ṽ2) ṽλ(x , x ) ≤ ṽλ(x , y), ∀λ > 0;
(ṽ3) ṽλ(x , y) = ṽλ(y , x ), ∀λ > 0;
(ṽ4) ṽλ+µ(x , y) ≤ s

[
ṽλ(x , z) + ṽµ(z, y)

]
− ṽλ(z, z), ∀λ, µ > 0.

Then,Mṽ is a partial modular b−metric space, which is abbreviated with Partial
m[ms .

Definition 8. In addition to the axioms ṽ1, ṽ2, and ṽ3, a Partial
m[m

ṽ on M is regarded to be
convex if it meets the condition specified below:

(ṽ5) ṽλ+µ(x , y) ≤ s
[

λ
λ+µ ṽλ(x , z) + µ

λ+µ ṽµ(z, y)
]
− λ

λ+µ ṽλ(z, z),

for all x , y , z ∈ M and for all λ, µ > 0.

Definition 9. Regard ṽ be a Partial
m[m

on a setM. For a given x0 ∈ M, we set up

• Mṽ(x0) =

{
x ∈ M : lim

λ→∞
ṽλ(x0, x ) = c

}
, for some c ≥ 0 and

• M∗
ṽ(x0) = {x ∈ M : ∃λ = λ(x ) > 0, ṽλ(x0, x ) < ∞}.

Then,Mṽ andM∗
ṽ are called Partial

m[ms centered at x0.

Every partial modular space is undoubtedly a Partial
m[ms with the parameter s = 1, and

every modular b−metric space is a Partial
m[ms with the same parameter and zero self-distance.

However, the contrary of these facts does not have to be accurate.
As a Partial

m[m
is a partial modular when s = 1, the class of Partial

m[ms is larger than the
class of partial modular metric spaces. We illustrate how a Partial

m[ms onM∗
ṽ may be neither a

partial metric nor a modular b−metric.

Example 2. LetM = R and ṽ : (0, ∞)×M×M→ [0, ∞] be characterized as

ṽλ(x , y) = e−λ|x − y |2

for all λ > 0 and for all x , y ∈ M. Then, ṽ is a Partial
m[m

onM. We currently possess, in fact,

• (ṽ1) :


ṽλ(x , x ) = e−λ|x − x |2 = 0 = e−µ|x − x |2 = ṽµ(x , x ),
e−λ|x − x |2 = e−λ|x − y |2 = e−λ|y − y |2 = 0,
e−λ|x − y |2 = 0⇒ |x − y | = 0⇒ x = y .

• (ṽ2) : ṽλ(x , x ) = e−λ|x − x |2 ≤ |x − y |2 ≤ e−λ|x − y |2 = ṽλ(x , y), for all λ > 0.
• (ṽ3) : ṽλ(x , y) = e−λ|x − y |2 = e−λ|y − x |2 = ṽλ(y , x ), for all λ > 0.

• (ṽ4) : By considering the inequality (x − y)2 ≤ 2
[
(x − z)2 + (z − y)2

]
, we have

e−λ|x − y |2 ≤ 2e−λ
[
|x − z|2 + |z − y |2

]
= 2

[
e−λ.|x − z|2 + e−λ.|z − y |2

]
,

that is to say |x − y |2 ≤ 2
(
|x − z|2 + |z − y |2

)
. Thereupon, we get
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ṽλ+µ(x , y) = e−(λ+µ)|x − y |2 = e−(λ+µ)|x − z + z − y |2 − e−λ|z − z|2

≤ e−λ.e−µ.2
[
|x − z|2 + |z − y |2

]
− e−λ|z − z|2

= 2.e−λ.e−µ|x − z|2 + 2.e−λ.e−µ|z − y |2 − e−λ|z − z|2

≤ 2.e−λ.1|x − z|2 + 2.1.e−µ|z − y |2 − e−λ|z − z|2

= 2.
[
ṽλ(x , z) + ṽµ(z, y)

]
− ṽλ(z, z).

ṽ is a Partial
m[m

onM with s = 2.

Example 3. ConsiderM = R and ṽ : (0, ∞)×M×M→ [0, ∞] to be regarded as

ṽλ(x , y) =
|x − y |q

λ
+ max{x , y}, q > 1,

for all λ > 0 and for all x , y ∈ M. Then, ṽ is a Partial
m[m

with s = 2q−1.

Definition 10. LetM∗
ṽ be a Partial

m[ms and {xz}z∈N be a sequence inM∗
ṽ. Then:

(i) the sequence {xz}z∈N is termed ṽ−convergent to x ∈ M∗
ṽ if and only if ṽλ(xz, x ) →

ṽλ(x , x ), as z→ ∞. Also, the point x is termed the ṽ−limit of {xz}z∈N.
(ii) {xz}z∈N is termed ṽ−Cauchy if

lim
m,z→∞

ṽλ(xm, xz) = lim
m,z→∞

ṽλ(xm, xm) = lim
m,z→∞

ṽλ(xz, xz).

(iii) M∗
ṽ is entitled ṽ−complete if every Cauchy sequence inM∗

ṽ is ṽ−convergent to an element
x ∈ M∗

ṽ wherein lim
z→∞

ṽλ(xz, x ) = ṽλ(x , x ).

(iv) A function Y :M∗
ṽ →M∗

ṽ is called ṽ−continuous inM∗
ṽ if the sequence {xz}z∈N ⊂M∗

ṽ

satisfying xz
ṽ→ x as z→ ∞, whenever Yxz

ṽ→Yx .

Lemma 1. Every Partial
m[m

ṽ defines a modular b−metric ω, where

ωλ(x , y) = 2ṽλ(x , y)− ṽλ(x , x )− ṽλ(y , y). (1)

Proof. Owing to the fact that ṽ is a Partial
m[m

, ṽ fulfills (ṽ1)− (ṽ4). We shall now demon-
strate that the axioms (ω1, ω2, ω3

′) of Definition 2 are met.

(ω1) If x = y , from (1), the expression ωλ(x , y) = 0, ∀λ > 0 is attained. Suppose that
ωλ(x , y) = 0, ∀λ > 0, then 2ṽλ(x , y)− ṽλ(x , x )− ṽλ(y , y) = 0, which yields that
2ṽλ(x , y) = ṽλ(x , x ) + ṽλ(y , y). By (ṽ1), we achieve

2ṽλ(x , x ) ≤ 2ṽλ(x , y) = ṽλ(x , x ) + ṽλ(y , y)⇒ ṽλ(x , x ) ≤ ṽλ(y , y),

and similarly

2ṽλ(y , y) ≤ 2ṽλ(x , y) = ṽλ(x , x ) + ṽλ(y , y)⇒ ṽλ(y , y) ≤ ṽλ(x , x ).

Consequently, we gain ṽλ(x , y) = ṽλ(x , x ) = ṽλ(y , y), which means that x = y .
(ω2)ωλ(x , y) = 2ṽλ(x , y) − ṽλ(x , x ) − ṽλ(y , y) = 2ṽλ(y , x ) − ṽλ(y , y) − ṽλ(x , x ) =

ωλ(y , x ).
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(ω3
′)From (ṽ1), we get ṽλ+µ(x , x ) = ṽλ(x , x ) and ṽλ+µ(y , y) = ṽλ(y , y), ∀x , y ∈ M and
∀λ, µ > 0. Hence, we have

ṽλ(x , x ) ≤ ṽλ(x , y)⇒ 0 ≤ ṽλ(x , y)− ṽλ(x , x ) ≤ s(ṽλ(x , y)− ṽλ(x , x )),

and

ṽλ(y , y) ≤ ṽλ(x , y)⇒ 0 ≤ ṽλ(x , y)− ṽλ(y , y) ≤ s(ṽλ(x , y)− ṽλ(y , y)),

which implies that

2ṽλ(x , y)− ṽλ(x , x )− ṽλ(y , y) ≤ s(2ṽλ(x , y)− ṽλ(x , x )− ṽλ(y , y)).

Now, considering (ṽ4) and the above inequality, we obtain

ωλ+µ(x , y)

= 2ṽλ+µ(x , y)− ṽλ+µ(x , x )− ṽλ+µ(y , y)

= 2ṽλ+µ(x , y)− ṽλ(x , x )− ṽµ(y , y)

≤ 2
(
s
[
ṽλ(x , z) + ṽµ(z, y)

]
− ṽµ(z, z)

)
− ṽλ(x , x )− ṽµ(y , y)

=
(
2sṽλ(x , z)− ṽµ(x , x )− ṽλ(z, z)

)
+
(
2sṽµ(z, y)− ṽλ(z, z)− ṽµ(y , y)

)
≤ s
(
2ṽλ(x , z)− ṽµ(x , x )− ṽλ(z, z)

)
+ s
(
2ṽµ(z, y)− ṽλ(z, z)− ṽµ(y , y)

)
= s
((

2ṽλ(x , z)− ṽµ(x , x )− ṽλ(z, z)
)
+
(
2ṽµ(z, y)− ṽλ(z, z)− ṽµ(y , y)

))
= s
(
ωλ(x , z) + ωµ(z, y)

)
.

Accordingly, it appears that the proof is completed.

Lemma 2. Consider ṽ is a partial modular metric onM and {xz}z∈N is a sequence inM∗
ṽ.

(i) {xz}z∈N is a ṽ−Cauchy sequence in the Partial
m[ms if and only if it is an ω−Cauchy sequence in

the modular b−metric spaceM∗
ω induced by Partial

m[ms ṽ.
(ii) A Partial

m[ms M∗
ṽ is complete if and only if the modular b−metric spaceM∗

ω induced by Partial
m[ms

ṽ is complete. Furthermore,

lim
z→∞

ωλ(xz, x ) = 0⇔ lim
z→∞

[2ṽλ(xz, x )− ṽλ(xz, xz)− ṽλ(x , x )] = 0

or

lim
z→∞

ωλ(xz, x ) = 0⇔ lim
z→∞

ṽλ(xz, x ) = lim
z→∞

ṽλ(xz, xz) = ṽλ(x , x ), ∀λ > 0.

(iii) {xz}z∈N is ṽ−convergent to x ∗ ∈ M∗
ṽ if and only if lim

z→∞
ṽλ(xz, x ∗) = lim

z,m→∞
ṽλ(xz, xm) =

ṽλ(x ∗, x ∗), ∀λ > 0, as z→ ∞.

Proof. We begin by emphasizing that every ṽ−Cauchy sequence in the Partial
m[ms M∗

ṽ is
an ω−Cauchy sequence in modular b−metric space M∗

ω. Let {xz}z∈N be a ṽ−Cauchy
sequence in Partial

m[ms M∗
ṽ. A point h̄ ∈ R exists such that, for any ε > 0, there is a natural

number zε fulfilling |ṽλ(xz, xm)− h̄| < ε
4 for all z, m ≥ zε. Thence,
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|ωλ(xz, xm)|

= 2ṽλ(xz, xm)− ṽλ(xz, xz)− ṽλ(xm, xm)

= |ṽλ(xz, xm)− h̄ + h̄− ṽλ(xz, xz) + ṽλ(xz, xm)− h̄ + h̄− ṽλ(xm, xm)|

≤ |ṽλ(xz, xm)− h̄|+ |h̄− ṽλ(xz, xz)|+ |ṽλ(xz, xm)− h̄|+ |h̄− ṽλ(xm, xm)|

< ε
4 + ε

4 + ε
4 + ε

4 = ε,

for all z, m ≥ zε. As a result {xz}z∈N is an ω−Cauchy sequence inM∗
ω.

Subsequently, we attest that ω−completeness ofM∗
ω entails ṽ−completeness ofM∗

ṽ .
Indeed, if {xz}z∈N is a ṽ−Cauchy sequence inM∗

ṽ , according to above discussion, {xz}z∈N
is an ω−Cauchy sequence inM∗

ω , too. Due to the fact that modular b−metric spaceM∗
ω is

v−complete, we infer that an element y belongs toM∗
ω exists such that lim

z→∞
ωλ(xz, y) = 0.

Hence,
lim
z→∞

[2ṽλ(xz, y)− ṽλ(xz, xz)− ṽλ(y , y)] = 0

which implies

lim
z→∞

[ṽλ(xz, y)− ṽλ(xz, xz) + ṽλ(xz, y)− ṽλ(y , y)] = 0.

Thereupon, lim
z→∞

[ṽλ(xz, y)− ṽλ(y , y)] = 0. Further, we attain

lim
z→∞

[ṽλ(xz, y)− ṽλ(xz, xz)] = 0.

Consequently, lim
z→∞

ṽλ(xz, y) = ṽλ(y , y) = lim
z→∞

ṽλ(xz, xz). Also, from (ṽ2), we achieve

ṽλ(y , y) ≤ lim
z,m→∞

ṽλ(xz, y) = lim
z,m→∞

ṽλ(xz, xz) ≤ lim
z,m→∞

ṽλ(xz, xm). (2)

On the other hand, ṽλ(xz, xm) ≤ s
[
ṽ λ

2
(xz, y) + ṽ λ

2
(y , xm)

]
− ṽ λ

2
(y , y). Letting n, m→ ∞

lim
z,m→∞

ṽλ(xz, xm) ≤ lim
z,m→∞

sṽ λ
2
(xz, y) + lim

z,m→∞
sṽ λ

2
(y , xm)− lim

z,m→∞
ṽ λ

2
(y , y)

= ṽλ(y , y).
(3)

From (2) and (3), we obtain lim
z,m→∞

ṽλ(xz, xm) = ṽλ(y , y); that is, {xz}z∈N is a ṽ−convergent

sequence inM∗
ṽ.

It will be demonstrated that every ω−Cauchy sequence that belongs to M∗
ω is a

ṽ−Cauchy sequence inM∗
ṽ. Consider ε = 1

2 . Then, a natural number z0 ∈ N exists such
that ωλ(xz, xm) <

1
2 for all z, m ≥ z0. Because

ṽλ(xz, xz) ≤ ṽλ(xz, xz0)⇒ −ṽλ(xz, xz0) ≤ −ṽλ(xz, xz),

which follows

ṽλ(xz, xz0) = 2ṽλ(xz, xz0)− ṽλ(xz, xz0) ≤ 2ṽλ(xz, xz0)− ṽλ(xz, xz)

and
ṽλ(xz, xz0)− ṽλ(xz0 , xz0) ≤ 2ṽλ(xz, xz0)− ṽλ(xz, xz)− ṽλ(xz0 , xz0)

≤ ωλ(xz, xz0) <
1
2 .
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Hence, the inequality

ṽλ(xz, xz) ≤ ṽλ(xz, xz0) ≤ ωλ(xz, xz0) + ṽλ(xz0 , xz0) <
1
2
+ ṽλ(xz0 , xz0)

indicates that the sequence {ṽλ(xz, xz)} is bounded in R and an element h̄ ∈ R exists such
that a subsequence

{
ṽλ

(
xnk , xnk

)}
of {ṽλ(xz, xz)} is convergent to h̄ ∈ R, which means,

lim
k→∞

ṽλ

(
xnk , xnk

)
= h̄.

Now, we prove that {ṽλ(xz, xz)} is a Cauchy sequence in R. Since {xz}z∈N is an
ω−Cauchy sequence in M∗

ω, for given ε > 0, there is a natural number zε such that
ωλ(xz, xm) < ε for all z, m ≥ zε. Thus, for all z, m ≥ zε, we have ṽλ(xz, xz) ≤ ṽλ(xz, xm) and
thereby,

ṽλ(xz, xz)− ṽλ(xm, xm) ≤ ṽλ(xz, xm)− ṽλ(xm, xm)

≤ ωλ(xz, xm) < ε.

Therefore, we achieve lim
z→∞

ṽλ(xz, xz) = h̄.

On the other hand, for all z, m ≥ zε, we have

|ṽλ(xz, xm)− h̄| = |ṽλ(xz, xm)− ṽλ(xz, xz) + ṽλ(xz, xz)− h̄|

≤ |ṽλ(xz, xm)− ṽλ(xz, xz)|+ |ṽλ(xz, xz)− h̄|

≤ ωλ(xz, xm) + |ṽλ(xz, xz)− h̄|.

Hence, lim
z,m→∞

ṽλ(xz, xm) = h̄ and consequently, {xz}z∈N is a ṽ−Cauchy sequence inM∗
ṽ.

Conversely, consider that {xz}z∈N is an ω−Cauchy sequence inM∗
ω . Then, {xz}z∈N is

a ṽ−Cauchy sequence belongs toM∗
ṽ and so it is convergent to a point x ∈ M∗

ṽ with

lim
z→∞

ṽλ(xz, x ) = lim
z,m→∞

ṽλ(xz, xm) = ṽλ(x , x ), ∀λ > 0.

For a given ε > 0, a natural number zε exists such that ṽλ(x , xz)− ṽλ(x , x ) < ε
4 and

ṽλ(xz, xz)− ṽλ(x , x ) ≤ ṽλ(xm, xz)− ṽλ(x , x ) <
ε

4
.

Thereupon, we obtain

|ωλ(xz, x )|

= |2ṽλ(xz, x )− ṽλ(xz, xz)− ṽλ(x , x )|

= |ṽλ(xz, x )− ṽλ(xz, xz) + ṽλ(xz, x )− ṽλ(x , x )|

= |ṽλ(xz, x )− ṽλ(x , x ) + ṽλ(x , x )− ṽλ(xz, xz) + ṽλ(xz, x )− ṽλ(x , x )|

≤ |ṽλ(xz, x )− ṽλ(x , x )|+ |ṽλ(x , x )− ṽλ(xz, xz)|+ |ṽλ(xz, x )− ṽλ(x , x )|

< 3ε
4 < ε,

whenever z ≥ zε. Therefore,M∗
ω is ω−complete. Finally, lim

z→∞
ωλ(xz, x ) = 0 and so,

lim
z→∞

[ṽλ(xz, x )− ṽλ(xz, xz)] + lim
z→∞

[ṽλ(xz, x )− ṽλ(x , x )] = 0.
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Furthermore, we have the following statement for all z, m ≥ zε

lim
z,m→∞

[ṽλ(xz, xm)− ṽλ(x , x )]

≤ lim
z→∞

[
s
[
ṽ λ

2
(xz, x ) + ṽ λ

2
(x , xm)

]
− ṽ λ

2
(x , x )− ṽλ(x , x )

]
≤ lim

z→∞

[
sṽ λ

2
(xz, x )− ṽ λ

2
(x , x )

]
+ lim

m→∞

[
sṽ λ

2
(x , xm)− ṽλ(x , x )

]
= 0.

Given that the b−metric is discontinuous in general, the partial modular b−metric is
not continuous. As a result, the ensuing critical lemma plays a vital role in establishing our
key findings.

Lemma 3. M∗
ṽ is a Partial

m[ms with the parameter s > 1. Presume that {xz}z∈N and {yz}z∈N are
ṽ−convergent to x and y , respectively. The following expression is acquired.

1
s2 ṽλ(x , y)− 1

s ṽλ(x , x )− ṽλ(y , y) ≤ lim
z→∞

inf ṽλ(xz, yz) ≤ lim
z→∞

sup ṽλ(xz, yz)

≤ sṽλ(x , x ) + s2ṽλ(y , y) + s2ṽλ(x , y).

In particular, if ṽλ(x , y) = 0, then we have lim
z→∞

ṽλ(xz, yz) = 0. Moreover, for each z ∈ M∗
ṽ , the

subsequent expression is met

1
s ṽλ(x , z)− ṽλ(x , x ) ≤ lim

z→∞
inf ṽλ(xz, z) ≤ lim

z→∞
sup ṽλ(xz, z)

≤ sṽλ(x , x ) + sṽλ(x , z).

Also, in case of ṽλ(x , x ) = 0, we get

1
s

ṽλ(x , z) ≤ lim
z→∞

inf ṽλ(xz, z) ≤ lim
z→∞

sup ṽλ(xz, z) ≤ sṽλ(x , z).

Proof. Considering the statement (ṽ4), we achieve

ṽλ(x , y) ≤ s
[
ṽ λ

2
(x , xz) + ṽ λ

2
(xz, y)

]
− ṽ λ

2
(xz, xz)

≤ sṽ λ
2
(x , xz) + sṽ λ

2
(xz, y)

≤ sṽ λ
2
(x , xz) + s

[
s
(

ṽ λ
4
(xz, yz) + ṽ λ

4
(yz, y)

)
− ṽ λ

4
(yz, yz)

]
≤ sṽ λ

2
(x , xz) + s2ṽ λ

4
(xz, yz) + s2ṽ λ

4
(yz, y).

Since ṽλ(x , x ) ≤ ṽµ(x , x ) for µ < λ, we have

ṽλ(x , y) ≤ sṽλ(x , xz) + s2ṽλ(xz, yz) + s2ṽλ(yz, y),

which yields
ṽλ(x , y)− sṽλ(x , xz)− s2ṽλ(yz, y) ≤ s2ṽλ(xz, yz). (4)

Likewise,
ṽλ(xz, yz) ≤ sṽλ(xz, x ) + s2ṽλ(x , y) + s2ṽλ(y , yz). (5)
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If the lower limit is applied as z→ ∞ on both sides of inequality (4), considering xz → x
and yz → y , we acquire

1
s2 ṽλ(x , y)− 1

s
ṽλ(x , x )− ṽλ(y , y) ≤ lim

z→∞
inf ṽλ(xz, yz).

Also, taking the upper limit as z→ ∞ in (5), we gain

lim
z→∞

sup ṽλ(xz, yz) ≤ sṽλ(x , x ) + s2ṽλ(x , y) + s2ṽλ(y , y).

Since lim
z→∞

inf ṽλ(xz, yz) ≤ lim
z→∞

sup ṽλ(xz, yz), we achieve the first desired result. If ṽλ(x , y) =

0, via the triangle inequality, we procure ṽλ(x , x ) = 0, and ṽλ(y , y) = 0. Therefore, we
have lim

z→∞
ṽλ(xz, yz) = 0 since ṽλ(x , y) = ṽλ(x , x ) = ṽλ(y , y) = 0. Moreover, for each

z ∈ M∗
ṽ, we obtain

ṽλ(x , z) ≤ s
[
ṽ λ

2
(x , xz) + ṽ λ

2
(xz, z)

]
− ṽ λ

2
(xz, xz)

≤ s[ṽλ(x , xz) + ṽλ(xz, z)],

such that it follows that

1
s

ṽλ(x , z)− ṽλ(x , x ) ≤ lim
z→∞

inf ṽλ(xz, z).

Similarly
ṽλ(xz, z) ≤ s

[
ṽ λ

2
(xz, x ) + ṽ λ

2
(x , z)

]
− ṽ λ

2
(x , x )

≤ s[ṽλ(xz, x ) + ṽλ(x , z)].

Owing to ṽλ(x , x ) ≤ ṽµ(x , x ) for µ < λ and taking the upper limit as z→ ∞ with xz → x ,
we conclude

lim
z→∞

sup ṽλ(xz, z) ≤ sṽλ(x , x ) + sṽλ(x , z).

Further, since lim
z→∞

inf ṽλ(xz, z) ≤ lim
z→∞

sup ṽλ(xz, z), we achieve the desired result.

The following outcomes are critical in our future thoughts, and the proofs can be
completed with respect to [31,32].

Lemma 4. Consider M∗
ṽ is a Partial

m[ms . Then, a sequence {xz}z∈N on M∗
ṽ is 0 − ṽ−Cauchy

if lim
z,m→∞

ṽλ(xz, xm). Moreover, M∗
ṽ is said to be 0− ṽ−complete if for each 0− ṽ−Cauchy

sequence inM, there is u ∈ M, such that

lim
z→∞

ṽλ(xz, xm) = lim
z,m→∞

ṽλ(xz, u) = ṽλ(u, u) = 0. (6)

Lemma 5. If Partial
m[ms M∗

ṽ is ṽ−complete, then it is 0− ṽ−complete.

Lemma 6. ConsiderM∗
ṽ is a Partial

m[ms , Y :M∗
ṽ →M∗

ṽ is a mapping and c ∈ [0, 1). If {xz}z∈N
is a sequence inM∗

ṽ, where xz+1 = Yxz and

ṽλ

(
xz, xz+1

)
≤ cṽλ

(
xz−1, xz

)
(7)

for each z ∈ N, then the sequence {xz}z∈N is 0− ṽ−Cauchy.
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4. Some Fixed Point Results in the Context of Partial Modular b−Metric Spaces

This section puts forward a new contraction mapping termed as modified interpolative
almost E−type contraction, as well as a new fixed point theorem using such mappings
within the context of Partial

m[ms .
Initially, let ∆ϕ represent the set of all ϕ self-mappings on [1,+∞) satisfying

the conditions

• ϕ is a non-decreasing mapping,
• ϕ(a) ≤ a, for all a > 0.

Definition 11. Consider thatM∗
ṽ is a Partial

m[ms with a parameter s > 1. A mapping Y :M∗
ṽ →

M∗
ṽ is referred to as a modified interpolative almost E−type contraction if α, β ∈ (0, 1) exist with

α + β < sp and α + 2β > sp and also, η ∈ LΨ, O ∈ Θ and ϕ ∈ ∆ϕ such that

η
(
O
(
sp+1ṽλ(Yx ,Yy)

)
,O(C(x , y))

)
≥ 1, (8)

where
C(x , y) = αṽλ(x , y) + β|ṽλ(x ,Yx )− ṽλ(y ,Yy)|

+(sp − α− β)ϕ
(

1
s ṽ2λ(x ,Yy)

)
,

(9)

for all distinct x , y ∈ M∗
ṽ − Fix(Y) and for all λ > 0.

Theorem 3. LetM∗
ṽ be a ṽ−complete Partial

m[ms with s > 1 and Y : M∗
ṽ → M∗

ṽ be a modified
interpolative almost E−type contraction mapping. Then, Y admits exactly one fixed point.

Proof. Assume v0 ∈ M∗
ṽ is an initial point and we shall construct {xz}z∈N by:

xz+1 = Yxz, for all z ∈ N.

If there exists some z0 ∈ N such that xz0 = xz0+1, then z0 becomes a fixed point of Y .
Consequently, we presume that xk 6= xk+1 for all k ∈ N. By using (8) and (η′2), we obtain

1 ≤ η
(
O
(
sp+1ṽλ

(
Yxz,Yxz+1

))
,O
[
C
(

xz, xz+1
)])

<
ψ(O[C(xz,xz+1)])

ψ(O(sp+1ṽλ(Yxz,Yxz+1)))
,

that is,
ψ
(
O
(
sp+1ṽλ

(
Yxz,Yxz+1

)))
< ψ

(
O
[
C
(

xz, xz+1
)])

.

Because O ∈ Θ and also given features of the function ψ, the above inequality gives

spṽλ

(
xz+1, xz+2

)
≤ sp+1ṽλ

(
xz+1, xz+2

)
< C

(
xz, xz+1

)
, (10)

where
C
(

xz, xz+1
)
= αṽλ

(
xz, xz+1

)
+ β

∣∣ṽλ(xz,Yxz)− ṽλ

(
xz+1,Yxz+1

)∣∣
+ (sp − α− β)ϕ

(
1
s ṽ2λ

(
xz,Yxz+1

))
= αṽλ

(
xz, xz+1

)
+ β

∣∣ṽλ

(
xz, xz+1

)
− ṽλ

(
xz+1, xz+2

)∣∣
+ (sp − α− β)ϕ

(
1
s ṽ2λ(xz, xz+2)

)
.

From (ṽ4), we have

ṽ2λ(xz, xz+2) ≤ s
[
ṽλ

(
xz, xz+1

)
+ ṽλ

(
xz+1, xz+2

)]
− ṽλ

(
xz+1, xz+1

)
.
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Now, we utilize the representation κz instead of ṽλ

(
xz, xz+1

)
. Thereupon, we conclude that

C
(

xz, xz+1
)
= ακz + β

∣∣κz − κz+1
∣∣+ (sp − α− β)ϕ

(
κz + κz+1 −

ṽλ

(
xz+1, xz+1

)
s

)

and so, by using ϕ ∈ ∆ϕ, the inequality (10) becomes

spκz+1 < ακz + β
∣∣κz − κz+1

∣∣+ (sp − α− β)ϕ

(
κz + κz+1 −

ṽλ(xz+1,xz+1)
s

)
< ακz + β

∣∣κz − κz+1
∣∣+ (sp − α− β)

(
κz + κz+1

)
.

(11)

If we assume κz ≤ κz+1, then, we deduce that
∣∣κz − κz+1

∣∣ = κz+1 − κz, thereby, from (11),
we achieve that

spκz+1 < ακz + β
(
κz+1 − κz

)
+ (sp − α− β)

(
κz + κz+1

)
,

and by simple calculations, we get κz+1 < sp−2β
α κz. Since α + 2β > sp, this causes a con-

tradiction due to our assumption. Hence, we yield that κz+1 < κz such that
∣∣κz − κz+1

∣∣ =
κz − κz+1. By (11), we get

spκz+1 < ακz + β
(
κz − κz+1

)
+ (sp − α− β)

(
κz + κz+1

)
which implies that

κz+1 <
sp

α + 2β
κz.

Denoting sp

α+2β by δ and as α + 2β > sp, we have ṽλ

(
xz+1, xz+2

)
< δṽλ

(
xz, xz+1

)
with

0 ≤ δ < 1. Thus, by Lemma 6, {xz}z∈N is a 0−vρb−Cauchy sequence on the vρb−complete
Partial
m[ms . Owing to Lemma 5, the space is also 0− vρb−complete; it entails that u ∈ M∗

ṽ
exists such that

lim
n,m→+∞

ṽλ(xz, xm) = lim
n→+∞

ṽλ(xz, u) = ṽλ(u, u) = 0. (12)

Thus, {xz}z∈N, that implements

η
(
O
(
sp+1ṽλ

(
Yxz(l),Yu

))
,O
[
C
(

xz(l), u
)])
≥ 1,

has a subsequence
{

xz(l)
}

. Taking (η′2) with ψ ∈ Ψ∗, O ∈ Θ and ϕ ∈ ∆ϕ into account, the
above inequality gives

sp+1ṽλ

(
xz(l)+1,Yu

)
≤ C

(
xz(l), u

)
= αṽλ

(
xz(l), u

)
+ β

∣∣∣ṽλ

(
xz(l),Yxz(l)

)
− ṽλ(u,Yu)

∣∣∣
+ (sp − α− β)ϕ

(
1
s ṽ2λ

(
xz(l),Yu

))
≤ αṽλ

(
xz(l), u

)
+ β

∣∣∣ṽλ

(
xz(l), xz(l)+1

)
− ṽλ(u,Yu)

∣∣∣
+ (sp − α− β)ṽλ

(
xz(l),Yu

)
.
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Thereby, letting l → +∞ and considering (12), we achieve

spṽλ(u,Yu) ≤ sp+1ṽλ(u,Yu) ≤ lim
n→+∞

sp+1ṽλ(Yxz,Yu)

< lim
n→+∞

C(xz, u)

≤ (sp − α)ṽλ(u,Yu) ≤ spṽλ(u,Yu)

which implies
lim

l→+∞
C
(

xz(l), u
)
= spṽλ(u,Yu). (13)

Moreover, we presume that xz 6= u, for infinitely many z ∈ N, without losing generality. So,
utilizing (8), we have

η
(
O
(
sp+1ṽλ(Yxz,Yu)

)
,O[C(xz, u)]

)
≥ 1.

Likewise, by (η′2), we obtain

ψ
(
O
(
sp+1ṽλ(Yxz,Yu)

))
< ψ(O[C(xz, u)]).

Owing to ψ ∈ Ψ∗ and O ∈ Θ, we procure

sp+1ṽλ(Yxz,Yu) < C(xz, u).

Further,

spṽ2λ(u,Yu) ≤ sp+1[ṽλ(u,Yxz) + ṽλ(Yxz,Yu)]− ṽλ(Yxz,Yxz)

≤ sp+1ṽλ(u,Yxz) + sp+1ṽλ(Yxz,Yu)

< sp+1ṽλ(u,Yxz) + C(xz, u).

In the above expression, taking the limit as n tends to ∞ by considering (12) and (13), we
attain

spṽλ(u,Yu) ≤ lim
n→+∞

sp+1ṽλ(Yxz,Yu) < lim
n→+∞

C(xz, u) = spṽλ(u,Yu).

Thereupon, we obtain lim
n→+∞

sp+1ṽλ(Yxz,Yu) = spṽλ(u,Yu). Thus, letting

ιz = O
(
sp+1ṽλ(Yxz,Yu)

)
and

νz = O(C(xz, u)).

By (η3), we have lim
z→∞

ιz = lim
z→∞

νz = O(spṽλ(u,Yu)) such that lim sup
z→∞

η(ιz, νz) < 1.

However, this causes a contradiction. Thus, ṽλ(u,Yu) = u = ṽλ(u, u) for all λ > 0, that is
to say u is a fixed point of Y .

As a final case, to obtain the uniqueness of fixed point, we need to accept that another
fixed point u∗ ∈ M∗

ṽ with u 6= u∗ exists such that Yu∗ = u∗. Utilizing (8), we write

1 ≤ η
(
O
(
sp+1ṽλ(Yu,Yu∗)

)
,O[C(u, u∗)]

)
<

ψ(O[C(u, u∗)])
ψ
(
O
(
sp+1ṽλ(Yu,Yu∗)

)) ,
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owing to the fact that ψ and O are nondecreasing functions, the above expression entails

sp+1ṽλ(Yu,Yu∗) < αṽλ(u, u∗) + β|ṽλ(u,Yu)− ṽλ(u∗,Yu∗)|

+ (sp − α− β)ϕ
(

1
s ṽ2λ(u,Yu∗)

)
< αṽλ(u, u∗) + β|ṽλ(u, u)− ṽλ(u∗, u∗)|

+ (sp − α− β)ṽλ(u, u∗)

< (sp − β)ṽλ(u, u∗),

which causes a contradiction. We gain that u is a unique fixed point of Y .

4.1. Consequences

In this subsection, we initially recall the concept of E−type or E−contraction, which
was put forward by Fulga and Proca [33] in 2017, involving the term

E(x , y) = d(x , y) + |d(x ,Yx )− d(y ,Yy)|.

If we select α = β in Theorem 3, then we achieve the ensuing result.

Corollary 1. Consider thatM∗
ṽ is a ṽ−complete Partial

m[ms with s > 1 and Y : M∗
ṽ → M∗

ṽ is
a mapping. Presume that α ∈ (0, 1) with 2α < sp < 3α, η ∈ LΨ, O ∈ Θ and ϕ ∈ ∆ϕ exist
such that

η

(
O
(
sp+1ṽλ(Yx ,Yy)

)
,O
[

αE(x , y) + (sp − 2α)ϕ

(
1
s

ṽ2λ(x ,Yy)
)])

≥ 1,

where
E(x , y) = ṽλ(x , y) + |ṽλ(x ,Yx )− ṽλ(y ,Yy)|, (14)

for all distinct x , y ∈ M∗
ṽ − Fix(Y) and for all λ > 0. Thereupon, Y owns a unique fixed point.

If s = 1, our results obtained from Theorem 3 are valid in the context of partial modular
metric space.

Corollary 2. Let v
ρ
λ be a partial modular metric and M∗

vρ be a v−complete partial modular
metric space, and Y : M∗

vρ →M∗
vρ be a mapping. Presume that α, β ∈ (0, 1) with α + β < 1

and α + 2β > 1, η ∈ LΨ and O ∈ Θ exist such that

η
(
O
(

v
ρ
λ(Yx ,Yy)

)
,O(Cs(x , y))

)
≥ 1,

where

Cs(x , y) = αv
ρ
λ(x , y) + β

∣∣∣vρ
λ(x ,Yx )−v

ρ
λ(y ,Yy)

∣∣∣+ (1− α− β)v
ρ
2λ(x ,Yy),

for all distinct x , y ∈ M∗
vρ − Fix(Y) and for all λ > 0. Thereupon, Y owns a unique fixed point.

Proof. As well as s = 1, we consider ϕ ∈ ∆ϕ as ϕ(t) ≤ t for t > 0, then, we achieve the
desired consequence.

We procure the subsequent result if we choose α = β in Corollary 2.
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Corollary 3. Let v
ρ
λ be a partial modular metric and M∗

vρ be a v−complete partial modular

metric space. Also, Y :M∗
vρ →M∗

vρ is a mapping. Further, let there exist α ∈
(

1
3 , 1

2

)
, η ∈ LΨ

and O ∈ Θ such that

η(O(ṽλ(Yx ,Yy)),O[αE(x , y) + (1− 2α)ṽ2λ(x ,Yy)]) ≥ 1,

where E(x , y) is defined as (14), for all distinct x , y ∈ M∗
vρ − Fix(Y) and for all λ > 0. Thereupon,

Y owns a unique fixed point.

Following that, we provide some additional corollaries concerning η depending on
the selection of LΨ.

Corollary 4. LetM∗
ṽ be a ṽ−complete Partial

m[ms with s > 1 and Y :M∗
ṽ →M∗

ṽ be a mapping.
Presume that k ∈ (0, 1) and α, β ∈ (0, 1) with α + β < sp and α + 2β > sp and also, ψ ∈ Ψ∗,
O ∈ Θ and ϕ ∈ ∆ϕ exist such that

ψ
(
O
(
sp+1ṽλ(Yx ,Yy)

))
≤ [ψ(O(C(x , y)))]k

where C(x , y) is defined as (9), for all distinct x , y ∈ M∗
ṽ − Fix(Y) and for all λ > 0. Thereupon,

Y owns a unique fixed point.

Proof. Assume that ηk ∈ LΨ, that is, ηk(ι, ν) = [ψ(ν)]k

ψ(ι)
with k ∈ (0, 1), the proof can be

easily obtained.

Corollary 5. LetM∗
ṽ be ṽ−complete Partial

m[ms with s > 1 and Y : M∗
ṽ → M∗

ṽ be a mapping.
Presume that k ∈ (0, 1) and α ∈ (0, 1) with 2α < sp < 3α and α + 1 > sp and also, ψ ∈ Ψ∗,
O ∈ Θ and ϕ ∈ ∆ϕ exist such that

ψ
(
O
(
sp+1ṽλ(Yx ,Yy)

))
≤ [ψ(O(C∗(x , y)))]k

where
C∗(x , y) = αṽλ(x , y) + α|ṽλ(x ,Yx )− ṽλ(y ,Yy)|

+(sp − 2α)ϕ
(

1
s ṽ2λ(x ,Yy)

)
,

(15)

for all distinct x , y ∈ M∗
ṽ − Fix(Y) and for all λ > 0. Thereupon, Y owns a unique fixed point.

Proof. Considering α = β in the expression of C(x , y), the proof follows Corollary 4.

Corollary 6. LetM∗
ṽ be a ṽ−complete Partial

m[ms with s > 1 and Y :M∗
ṽ →M∗

ṽ be a mapping.
Presume that α, β ∈ (0, 1) with α + β < sp and α + 2β > sp and also, ψ ∈ Ψ∗, O ∈ Θ and
ϕ ∈ ∆ϕ exist such that

ψ
(
O
(
sp+1ṽλ(Yx ,Yy)

))
≤ ψ(O(C(x , y)))

φ(ψ(O(C(x , y))))
,

where C(x , y) is defined as (9) and φ is a non-decreasing and lower semi-continuous self-mapping
on [1, ∞), satisfying φ−1({1}) = 1, for all distinct x , y ∈ M∗

ṽ − Fix(Y) and for all λ > 0.
Thereupon, Y owns a unique fixed point.

Proof. Contemplating the function η as ηφ ∈ LΨ, i.e., ηφ(ι, ν) = ψ(ν)
ψ(ι)φ(ψ(ν))

, the proof
follows as in Theorem 3.
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Remark 2. Corollary (6) can be redefined by considering α = β in the expression C(x , y). Moreover,
as in Corollaries (2) and (3), by taking s = 1 in Corollaries (4) and (6), various consequences can be
achieved in the context of partial modular metric space, too.

Example 4. LetM∗
ṽ = [0, 1] and consider the partial modular b−metric by

ṽλ(x , y) =
|x − y |2

λ
+ max{x , y}

for all x , y ∈ M∗
ṽ − Fix(Y) and for all λ > 0. Bear in mind thatM∗

ṽ is a ṽ−complete Partial
m[ms

with the parameter s = 2.
Moreover, let the mapping Y :M∗

ṽ →M∗
ṽ be verified with Yx = x

4 . Now, we demonstrate
the contractivity conditions of Corollary 1, that is, the conditions

η
(
O
(
sp+1ṽλ(Yx ,Yy)

)
,O[C∗(x , y)]

)
≥ 1, (16)

where C∗(x , y) as defined in (15), the constants α = 1
2 ∈ (0, 1) and ∃p > 0 such that sp = 11

10 ,

which satisfying the statement 2α < sp < 3α, and contemplating the η = ηk, i.e., η(ι, ν) =
[ψ(ν)]k

ψ(ι)

with k = 9
10 ∈ (0, 1) satisfied x , y ∈ M∗

ṽ − Fix(Y) and for all λ > 0. In reality, we also yield to
maintain the criteria of the Corollary 5. For this, we select ψ ∈ Ψ∗ as ψ(a) = a2 and further, the
function O : (0, ∞)→ (1, ∞) by O(a) = ea.

Without disregarding the broader case, we believe that x > y >
√

10,887
10,968 x .

Thereupon, denoting f = sp+1ṽλ(Yx ,Yy) and g = C∗(x , y), from (16), we achieve

η(O( f ),O[g]) =
[ψ(O(g))]

9
10

ψ(O[ f ])
=

[ψ(eg)]
9
10

ψ
(
e f
) =

(
e2g) 9

10

e2 f = e2( 9
10 g− f ) (17)

where

f = sp+1ṽλ(Yx ,Yy) =
21
10

∣∣ x
4 −

y
4

∣∣2
λ

+
21
10

max
{ x

4
,

y
4

}
=

21(x − y)2

160λ
+

21x
40

and, by considering ϕ ∈ ∆ϕ,

g = C∗(x , y) = αṽλ(x , y) + α|ṽλ(x ,Yx )− ṽλ(y ,Yy)|

+(sp − 2α)ϕ
(

1
s ṽ2λ(x ,Yy)

)
,

= 1
2

[
|x−y |2

λ + max{x , y}+
∣∣∣∣ |x− x

4 |
2

λ + max
{

x , x
4
}
− |y−

y
4 |

2

λ −max
{

y , y
4
}∣∣∣∣]

+
(

11
10 − 2 1

2

)
ϕ

(
1
2
|x− y

4 |
2

2λ + 1
2 max

{
x , y

4
})

= 1
2

[
|x−y |2

λ + x +
∣∣∣ x 2−y2

16λ + x − y
∣∣∣]+ |4x−y |2

640λ + x
20

=
356x 2−648xy+301y2

640λ + 21x−10y
20 .

Thereby, (17) turns into
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η(O( f ),O[g]) = e
2
[

9
10

(
356x 2−648xy+301y2

640λ +
21x−10y

20

)
− 21(x−y)2

160λ − 21x
40

]

≥ e
2
(
−5196x 2+10,968xy−5691y2

6400λ +
9(11x−10y)2

200λ

)

≥ e
2
(

10,968y2−10,887x 2

6400λ +
9(11x−10y)2

200λ

)
≥ 1,

that is to say that all the terms of Corollary 1 are fulfilled. It is obvious that Fix(Y) = {0}. On the
other hand, if we select the constant k much closer to point 1, then one can achieve a wider interval
for the x and y .

4.2. An Application to Homotopy Theory

This section includes an application of homotopy theory that supports the validity of
our results.

Theorem 4. Regard (M, ṽ) as a ṽ−complete Partial
m[ms , and Υ, Λ is an open and closed subset of

M, respectively. ConsiderH : Λ× [0, 1]→M to be an operator fulfilling the ensuing terms.

(a) x 6= H(x , ι) for every x ∈ Λ\Υ and ι ∈ [0, 1).
(b) For all x , y ∈ Λ and ι, k ∈ [0, 1), we have

ψ
(
O
(
sp+1ṽλ(H(x , ι),H(y , ι))

))
≤ [ψ(O(C(x , y)))]k

where
C(x , y) = αṽλ(x , y) + α|ṽλ(x ,H(x , ι))− ṽλ(y ,H(y , ι))|

+(sp − 2α)ϕ
(

1
s ṽ2λ(x ,H(y , ι))

)
,

(c) ψ : [0, 1]→ R is continuous and holds the subsequent inequality

sṽλ(H(x , ι),H(x , ι∗)) ≤ |ψ(ι)− ψ(ι∗)|

for all ι, ι∗ ∈ [0, 1) and ∀x ∈ Λ.

H(·, 0) admits a fixed point⇔H(·, 1) admits a fixed point.

Proof. Construct the ensuing set

X = {ι ∈ [0, 1] : x = H(x , ι) for some x ∈ Υ}.

(⇒:) Presume thatH(·, 0) enjoys a fixed point. Then, X is non-empty; that is, 0 ∈ X. It is
necessary to verify that in [0, 1], X is both open and closed. Utilizing the connectedness,
X = [0, 1] is met. As a result,H(·, 1) enjoys a fixed point in Υ.

The closedness of X in [0, 1] shall be indicated. Let {ιz}∞
n=1 ⊆ X with ιz → ι ∈ [0, 1] as

z→ ∞. The aim is to show that ι belongs to X. Owing to ιz ∈ X for n = 1, 2, 3, . . ., xz ∈ Υ
with xz = H(xz, ιz) exists. Also, for n, m ∈ {1, 2, 3, . . .}, we have

ṽλ(xz, xm) = ṽλ(H(xz, ιz),H(xm, ιm))

≤ sṽλ(H(xz, ιz),H(xz, ιm)) + sṽλ(H(xz, ιm),H(xm, ιm)).
(18)
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Also, from (b), we obtain

ψ(O(sṽλ(H(xz, ιm),H(xm, ιm)))) ≤ ψ
(
O
(
sp+1ṽλ(H(xz, ιm),H(xm, ιm))

))
≤ [ψ(O(C(xz, xm)))]

k

≤ ψ(O(C(xz, xm))),

(19)

where

C(xz, xm) = αṽλ(xz, xm) + α|ṽλ(xz,H(xz, ιm))− ṽλ(xm,H(xm, ιm))|
+(sp − 2α)ϕ

(
1
s ṽ2λ(xz,H(xm, ιm))

)
≤ αṽλ(xz, xm) + αṽλ(H(xz, ιz),H(xz, ιm))

+(sp − 2α)ϕ
(

ṽλ(xz, xm) + ṽλ(xm,H(xm, ιm))− 1
s ṽλ(xm, xm)

)
≤ αṽλ(xz, xm) + αṽλ(H(xz, ιz),H(xz, ιm))
+(sp − 2α)ṽλ(xz, xm).

Thereby, by using the properties of ψ and O and also, contemplating the above, the inequal-
ity (19) turns into

sṽλ(H(xz, ιm),H(xm, ιm)) ≤ (sp − α)ṽλ(xz, xm) + αṽλ(H(xz, ιz),H(xz, ιm)).

In turn, if we combine the last inequality with (18) and consider (c), we obtain

ṽλ(xz, xm) ≤ |ψ(ι)− ψ(ι0)|+ (sp − α)ṽλ(xz, xm) +
α

s
|ψ(ι)− ψ(ι0)|,

which implies

ṽλ(xz, xm) ≤
(

α + s
s(α + 1− sp)

)
|ψ(ι)− ψ(ι0)|.

By the convergence of {ιz}z∈N with n, m→ ∞, we attain

lim
z,m→∞

ṽλ(xz, xm) = 0.

This means that {xz}z∈N is a ṽ−Cauchy sequence inM. Due to the ṽ−completeness of
(M, ṽ), x ∗ ∈ Λ exists such that

ṽλ(x ∗, x ∗) = lim
z→∞

ṽλ(x ∗, xz) = lim
z,m→∞

ṽλ(xz, xm) = 0.

Moreover,

ṽ2λ(xz,H(x ∗, ι)) = ṽλ(H(xz, ιz),H(x ∗, ι))

≤ sṽλ(H(xz, ιz),H(xz, ι)) + sṽλ(H(xz, ι),H(x ∗, ι)).
(20)

Similarly, we have

ψ(O(sṽλ(H(xz, ι),H(x ∗, ι)))) ≤ ψ
(
O
(
sp+1ṽλ(H(xz, ι),H(x ∗, ι))

))
≤ [ψ(O(C(xz, x ∗)))]k < ψ(O(C(xz, x ∗))),

(21)
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where

C(xz, x ∗) = αṽλ(xz, x ∗) + α|ṽλ(xz,H(xz, ι))− ṽλ(x ∗,H(x ∗, ι))|
+(sp − 2α)ϕ

(
1
s ṽ2λ(xz,H(x ∗, ι))

)
,

≤ αṽλ(xz, x ∗) + α|ṽλ(xz,H(xz, ι))− ṽλ(x ∗,H(x ∗, ι))|
+(sp − 2α)ϕ

(
ṽλ(xz, x ∗) + ṽλ(x ∗,H(x ∗, ι))− 1

s ṽλ(x ∗, x ∗)
)

.

Consequently, keeping the properties of ψ and O in mind, from (21), we conclude that

sṽλ(H(xz, ι),H(x ∗, ι)) ≤ (sp − α)ṽλ(xz, x ∗)

+α|ṽλ(xz,H(xz, ι))− ṽλ(x ∗,H(x ∗, ι))|

+(sp − 2α)ṽλ(x ∗,H(x ∗, ι)),

and thereupon, by using (c), the expression (20) becomes

ṽλ(xz,H(x ∗, ι)) ≤ |ψ(ιz)− ψ(ι)|+ (sp − α)ṽλ(xz, x ∗)

+α|ṽλ(xz,H(xz, ι))− ṽλ(x ∗,H(x ∗, ι))|

+(sp − 2α)ṽλ(x ∗,H(x ∗, ι)).

Letting z→ ∞ in the above, we obtain lim
z→∞

ṽλ(xz,H(x ∗, ι)) = 0 and hence

ṽλ(x ∗,H(x ∗, ι)) = lim
z→∞

ṽλ(xz,H(xz, ι)) = 0,

which entails that x ∗ = H(x ∗, ι). Since (a) is provided, we gain x ∗ ∈ Υ. Thus ι ∈ X and X

is closed in [0, 1].
To obtain the openness of X in [0, 1], regard that ι0 ∈ X. Thence, x0 ∈ Υ with

x0 = H(x0, ι0) exists. Due to the openness of Υ, r > 0 exists such that Bṽλ
(x0, r) ⊆ Υ in

M. Considering ε = s(α+1−sp)
α+s (ṽλ(x0, x0) + r) > 0 with α ∈ (0, 1) and s ≥ 1 provided that

α + 1 > sp, there exists ϑ(ε) > 0 such that |ψ(ι)− ψ(ι0)| < ε for all ι ∈ (ι0 − ϑ(ε), ι0 + ϑ(ε))
because ψ is continuous on ι0. Let ι ∈ (ι0 − ϑ(ε), ι0 + ϑ(ε)), for

p ∈ Bṽλ
(x0, r) = {x ∈ M : ṽλ(x , x0) ≤ ṽλ(x0, x0) + r},

we obtain

ṽ2λ(H(x , ι), x0) = ṽ2λ(H(x , ι),H(x0, ι0))

≤ sṽλ(H(x , ι),H(x , ι0)) + sṽλ(H(x , ι0),H(x0, ι0)).
(22)

Also, using (b), we have

ψ(O(sṽλ(H(x , ι0),H(x0, ι0)))) ≤ ψ
(
O
(
sp+1ṽλ(H(x , ι0),H(x0, ι0))

))
≤ [ψ(O(C(x , x0)))]

k < ψ(O(C(x , x0))),
(23)

where
C(x , x0) = αṽλ(x , x0) + α|ṽλ(x ,H(x , ι0))− ṽλ(x0,H(x0, ι0))|

+(sp − 2α)ϕ
(

1
s ṽ2λ(x ,H(x0, ι0))

)
,

≤ (sp − α)ṽλ(xz, x ∗) + αṽλ(H(x , ι),H(x , ι0)).
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So, in a similar way, the inequality (23) becomes

sṽλ(H(x , ι0),H(x0, ι0)) ≤ (sp − α)ṽλ(xz, x ∗) + αṽλ(H(x , ι),H(x , ι0))

and subsequently, considering (22) and the inequality (c), we achieve

ṽλ(H(x , ι), x0) ≤ |ψ(ι)− ψ(ι0)|+ (sp − α)ṽλ(xz, x ∗) + α
s |ψ(ι)− ψ(ι0)|

≤
(
1 + α

s

)
|ψ(ι)− ψ(ι0)|+ (sp − α)(ṽλ(x0, x0) + r)

≤
(
1 + α

s

)
ε + (sp − α)(ṽλ(x0, x0) + r)

≤ ṽλ(x0, x0) + r

andH(x , ι) ∈ Bṽλ
(x0, r). Therefore,

H(·, ι) : Bṽλ
(x0, r)→ Bṽλ

(x0, r)

for every fixed ι ∈ (ι0 − ϑ(ε), ι0 + ϑ(ε)). Now, Corollary 5 can be applied to derive that
H(·, ι) enjoys a fixed point in Λ. Owing to (a), this fixed point must belong to Υ. Therefore,

(ι0 − ϑ(ε), ι0 + ϑ(ε)) ⊆ X,

and thus we deduce that X is open in [0, 1].

5. Conclusions

In conclusion, according to the attractiveness of b−metric, partial metric, and modular
metric spaces, we derive a new generalized metric space structure referred to as partial
modular b−metric space, which improves the results of the work of Das et al. [11] and Hos-
seinzadeh and Parvaneh [10]. Furthermore, we describe certain key topological properties
and provide instances to back them up.

On the other hand, in the context of this space, we establish a fixed point theorem
based on the concept of interpolative type contraction, which was created by Karapınar [29]
and has been a valuable source for researchers working on establishing a more general
contraction mapping. In addition, we look at a family of simulation functions that have
E−contraction and almost contraction mappings. There are still vacancies in the sense of
Partial
m[ms for fixed point outcomes. We demonstrate a basic application of homotopy theory.

It should be highlighted that the findings of this study can be advanced in various ways.
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