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Abstract: The paper deals with the problem of representation of Horn’s hypergeometric functions via
continued fractions and branched continued fractions. We construct the formal continued fraction
expansions for three ratios of Horn’s hypergeometric functions H7. The method employed is a two-
dimensional generalization of the classical method of constructing a Gaussian continued fraction. It
is proved that the continued fraction, which is an expansion of each ratio, uniformly converges to a
holomorphic function of two variables on every compact subset of some domain of C2, and that this
function is an analytic continuation of such a ratio in this domain. To illustrate this, we provide some
numerical experiments at the end.
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1. Introduction

Families of hypergeometric functions (such as Appell [1,2], Horn [3–5], Lauricella [6],
and others) were and remain the object of our research, as they have many different
applications both in mathematics and in other fields of science [7–10]. In particular, their
properties [11–14], integral representations [15–18], and representations in the form of
branched continued fractions [19–26] are studied.

In [27], the expansion of the Horn’s hypergeometric function H4 into a branched
continued fraction, which is a continued fraction according to its structure, was obtained.
However, this do not provide an opportunity to apply the well-known results from the
analytical theory of continued fractions through the so-called ’figure approximants’ (see, for
example, [28])—that is, different approaches to the determining of approximants. Therefore,
the question naturally arises: is there an expansion of Horn’s hypergeometric function into
a pure continued fraction?

In this paper, we give a partial answer to the above question by converting three
expansions of certain ratios of Horn’s hypergeometric functions H7 into continued fractions
as functions of two complex variables. To do this, using the technique of establishing
recurrence relations [29], it is shown that one three- and two four-term recurrence relations
for the function H7 are valid. It is proved that every continued fraction, which is an
expansion of a certain ratio, uniformly converges to a holomorphic function on every
compact subset of some domain of C2, and that this function is an analytic continuation
of such a ratio in this domain. At the end of the paper, we undertake some numerical
experiments.
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2. Expansions

Horn’s hypergeometric function H7 is defined by double power series (see, [3–5])

H7(a; c1, c2; z) =
∞

∑
m,n=0

(a)2m+n

(c1)m(c2)n

zm
1 zn

2
m! n!

, |z1| < 1/4, (1)

where a, c1, and c2 are complex constants, c1 and c2 are not equal to a non-positive integer,
(·)k is the Pochhammer symbol defined for any complex number α and non-negative integer
n by (α)0 = 1, and (α)n = α(α + 1) . . . (α + n− 1), z = (z1, z2) ∈ C2.

Let us prove the three- and four-term recurrence relations for function (1).

Lemma 1. The following relations hold true:

H7(a; c1, c2; z) = H7(a + 1; c1 + 1, c2; z)− (a + 1)(2c1 − a)
c1(c1 + 1)

z1 H7(a + 2; c1 + 2, c2; z)

− 1
c2

z2 H7(a + 1; c1 + 1, c2 + 1; z), (2)

H7(a; c1, c2; z) = H7(a + 1; c1, c2 + 1; z)− 2(a + 1)
c1

z1 H7(a + 2; c1 + 1, c2 + 1; z)

− c2 − a
c2(c2 + 1)

z2 H7(a + 1; c1, c2 + 2; z), (3)

H7(a; c1, c2; z) = H7(a; c1, c2 + 1; z) +
a

c2(c2 + 1)
z2 H7(a + 1; c1, c2 + 1; z). (4)

Proof. By definition (1), we get

H7(a; c1, c2; z)−H7(a + 1; c1 + 1, c2; z)

=
∞

∑
m,n=0

(a)2m+n

(c1)m(c2)n

zm
1 zn

2
m!n!

−
∞

∑
m,n=0

(a + 1)2m+n

(c1 + 1)m(c2)n

zm
1 zn

2
m!n!

= ∑
m,n≥0, m+n≥1

(a + 1)2m+n−1

(c2)n

zm
1 zn

2
m!n!

(
a

(c1)m
− a + 2m + n

(c1 + 1)m

)

= ∑
m≥1, n=0

(a + 2)2(m−1)+n

(c1 + 2)m−1(c2)n

(a + 1)(a− 2c1)

c1(c1 + 1)
mzm

1 zn
2

m!n!
− ∑

m=0, n≥1

(a + 1)2m+n−1

c2(c2 + 1)n−1

nzm
1 zn

2
m!n!

+ ∑
m≥1, n≥1

(a + 1)(a + 2)2(m−1)+n

(c1 + 1)m−1(c2)n

(
a
c1
− a + 2m + n

c1 + m

)
zm

1 zn
2

m!n!

= − (a + 1)(2c1 − a)
c1(c1 + 1)

z1 ∑
m≥1, n≥0

(a + 2)2(m−1)+n

(c1 + 2)m−1(c2)n

zm−1
1 zn

2
(m− 1)!n!

− z2

c2
∑

m≥0, n≥1

(a + 1)2m+n−1

(c1 + 1)m(c2 + 1)n−1

zm
1 zn−1

2
m!(n− 1)!

= − (a + 1)(2c1 − a)
c1(c1 + 1)

z1 ∑
m≥0, n≥0

(a + 2)2m+n

(c1 + 2)m(c2)n

zm
1 zn

2
m!n!

− z2

c2
∑

m≥0, n≥0

(a + 1)2m+n

(c1 + 1)m(c2 + 1)n

zm
1 zn

2
m!n!

= − (a + 1)(2c1 − a)
c1(c1 + 1)

z1 H7(a + 2; c1 + 2, c2; z)− z2

c2
H7(a + 1; c1 + 1, c2 + 1; z),

and this means that the four-term recurrence relation (2) is correct.
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Let us prove the four-term recurrence relation (3). We have

H7(a; c1, c2; z)−H7(a + 1; c1, c2 + 1; z)

=
∞

∑
m,n=0

(a)2m+n

(c1)m(c2)n

zm
1 zn

2
m!n!

−
∞

∑
m,n=0

(a + 1)2m+n

(c1)m(c2 + 1)n

zm
1 zn

2
m!n!

= ∑
m,n≥0, m+n≥1

(a + 1)2m+n−1

(c1)m

zm
1 zn

2
m!n!

(
a

(c2)n
− a + 2m + n

(c2 + 1)n

)

= − ∑
m≥1, n=0

(a + 1)(a + 2)2(m−1)+n

(c1 + 1)m

2mzm
1 zn

2
m!n!

+ ∑
m=0, n≥1

(a + 1)2m+n−1

(c2 + 1)n−1

(
a
c2
− a + n

c2 + n

)
zm

1 zn
2

m!n!

+ ∑
m≥1, n≥1

(a + 1)2m+n−1

(c1)m(c2 + 1)n−1

(
a
c2
− a + 2m + n

c2 + n

)
zm

1 zn
2

m!n!

= − ∑
m≥1, n≥0

(a + 1)(a + 2)2(m−1)+n

c1(c1 + 1)m−1(c2 + 1)n

2mzm
1 zn

2
m!n!

+ ∑
m≥0, n≥1

(a + 1)2m+n−1

(c1)mc2(c2 + 1)(c2 + 2)n−1

(a− c2)nzm
1 zn

2
m!n!

= −2
a + 1

c1
z1 ∑

m≥1, n≥0

(a + 2)2(m−1)+n

(c1 + 1)m−1(c2 + 1)n

zm−1
1 zn

2
(m− 1)!n!

− c2 − a
c2(c2 + 1)

z2 ∑
m≥0, n≥1

(a + 1)2m+n−1

(c1)m(c2 + 2)n−1

zm
1 zn−1

2
m!(n− 1)!

= −2
a + 1

c1
z1 ∑

m≥0, n≥0

(a + 2)2m+n

(c1 + 1)m(c2 + 1)n

zm
1 zn

2
m!n!

− c2 − a
c2(c2 + 1)

z2 ∑
m≥0, n≥0

(a + 1)2m+n

(c1)m(c2 + 2)n

zm
1 zn

2
m!n!

= −2
a + 1

c1
z1 H7(a + 2; c1 + 1, c2 + 1; z)− c2 − a

c2(c2 + 1)
z2 H7(a + 1; c1, c2 + 2; z),

which had to be proved.
Finally,

H7(a; c1, c2; z)−H7(a; c1, c2 + 1; z)

=
∞

∑
m,n=0

(a)2m+n

(c1)m(c2)n

zm
1 zn

2
m!n!

−
∞

∑
m,n=0

(a)2m+n

(c1)m(c2 + 1)n

zm
1 zn

2
m!n!

=
∞

∑
m,n≥0, m+n≥1

a(a + 1)2m+n−1

(c1)m

(
1

(c2)n
− 1

(c2 + 1)n

)
zm

1 zn
2

m!n!

=
a

c2(c2 + 1)
z2

∞

∑
m≥0, n≥1

(a + 1)2m+n−1

(c1)m(c2 + 2)n−1

zm
1 zn−1

2
m!(n− 1)!

=
a

c2(c2 + 1)
z2

∞

∑
m≥0, n≥0

(a + 1)2m+n

(c1)m(c2 + 2)n

zm
1 zn

2
m!n!

=
a

c2(c2 + 1)
z2 H7(a + 1; c1, c2 + 2; z),

which is the desired three-term recurrence relation.
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We set

R1(a; c1, c2; z) =
H7(a; c1, c2; z)

H7(a + 1; c1 + 1, c2; z)
, R2(a; c1, c2; z) =

H7(a; c1, c2; z)
H7(a + 1; c1, c2 + 1; z)

,

and

R3(a; c1, c2; z) =
H7(a; c1, c2; z)

H7(a; c1, c2 + 1; z)
.

Then, dividing (2) by H7(a + 1; c1 + 1, c2; z), (3) by H7(a + 1; c1, c2 + 1; z), and (4) by
H7(a; c1, c2 + 1; z), we get

R1(a; c1, c2; z) = 1−

2(a + 1)(2c1 − a)
c1(c1 + 1)

z2

R1(a + 1; c1 + 1, c2; z)
−

1
c2

z2

R3(a + 1; c1 + 1, c2; z)
, (5)

R2(a; c1, c2; z) = 1−

2(a + 1)
c1

z1

R1(a + 1; c1, c2 + 1; z)
−

c2 − a
c2(c2 + 1)

z2

R3(a + 1; c1, c2 + 1; z)
, (6)

and

R3(a; c1, c2; z) = 1 +

a
c2(c2 + 1)

z2

R2(a; c1, c2 + 1; z)
. (7)

Using the recurrence relations (5)–(7), it is possible to convert the formal expansions
of the relations Rk(a; c1, c2; z), k ∈ {1, 2, 3} into branched continued fractions, as it is for
Horn’s hypergeometric functions H3 and H4 in works [27,30,31]. We will show that for
certain values of the parameters, it is possible to convert the formal expansions of these
ratios into continued fractions.

The following is true.

Theorem 1. A ratio

R2(a; (a + 1)/2, a; z) (8)

has a formal continued fraction of the form

1 +
a1z1

1 +
a2z2

1 +
a3z2

1 + . . .

, (9)

where

a3k+1 = −4, a3k+2 = − 1
a + 2k + 1

, a3k+3 =
1

a + 2k + 1
, k ≥ 0. (10)

Proof. We set c1 = (a + 1)/2, c2 = a. Then, at Step 1.1 from (6), we obtain

R2(a; (a + 1)/2, a; z) = 1− 4z1

R1(a + 1; (a + 1)/2, a + 1; z)
.



Axioms 2023, 12, 738 5 of 10

At Step 1.2, replacing a, c2 by a + 1 and c2 + 1, respectively, in (5), we get

R1(a + 1; c1, c2 + 1; z) = 1−

2(a + 2)(2c1 − a− 1)
c1(c1 + 1)

z2

R1(a + 2; c1 + 1, c2 + 1; z)
−

1
c2 + 1

z2

R3(a + 2; c1 + 1, c2 + 1; z)
,

which gives us

R2(a; (a + 1)/2, a; z) = 1− 4z1

1− z2/(a + 1)
R3(a + 2; (a + 3)/2, a + 1; z)

.

Since it follows from (7) that

R3(a + 2; c1 + 1, c2 + 1; z) = 1 +

a + 2
(c2 + 1)(c2 + 2)

z2

R2(a + 2; c1 + 1, c2 + 2; z)
,

at Step, 1.3 we have

R2(a; (a + 1)/2, a; z) = 1− 4z1

1− z2/(a + 1)

1 +
z2/(a + 1)

R2(a + 2; (a + 3)/2, a + 2; z)

. (11)

We will continue with the next construction of a continued fraction using the ideas
outlined in Steps 1.1–1.3.

By analogy, it is clear that for all k ≥ 1, the following relation holds:

R2(a + 2k;(a + 1)/2 + k, a + 2k; z)

= 1− 4z1

1− z2/(a + 2k + 1)

1 +
z2/(a + 2k + 1)

R2(a + 2k + 2; (a + 1)/2 + k + 1, a + 2k + 2; z)

. (12)

Substituting relation (12) with k = 1 in (11) in Steps 2.1–2.3 we obtain

R2(a; (a + 1)/2, a; z) = 1− 4z1

1− z2/(a + 1)

1 +
z2/(a + 1)

1− 4z1

1− z2/(a + 3)

1 +
z2/(a + 3)

R2(a + 4; (a + 5)/2, a + 4; z)

.

Next, by recurrence relation (12) after the nth block of Steps n.1–n.3, we get

R2(a;(a + 1)/2, a; z) =

1− 4z1

1− z2/(a + 1)

1 +
z2/(a + 1)

1− . . .− 4z1

1− z2/(a + 2n− 1)

1 +
z2/(a + 2n− 1)

R2(a + 2n; (a + 1)/2 + n, a + 2n; z)

.
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Finally, by (12), one obtains the continued fraction (9) for ratio (8).

The following two theorems can be proved analogously.

Theorem 2. A ratio R1(a; a/2, a; z) has a formal continued fraction of the form (9), where

a3k+1 = − 1
a + 2k

, a3k+2 =
1

a + 2k
, a3k+3 = −4, k ≥ 0. (13)

Theorem 3. A ratio R3(a; (a + 1)/2, a− 1; z) has a formal continued fraction of the form (9),
where

a3k+1 =
1

a + 2k− 1
, a3k+2 = −4, a3k+3 = − 1

a + 2k + 1
, k ≥ 0. (14)

3. Convergence of Continued Fraction Expansions

To prove our next result, we recall the following theorem (see, [32], Theorem 4.42).

Theorem 4. If all elements of a continued fraction

1 +
c1

1 +
c2

1 +
c3

1 + . . .

lie in a parabolic region

Θα =

{
w : |w| − Re(we−2iα) ≤ 1

2
cos2 α

}
, −π

2
< α <

π

2
,

then the continued fraction converges to a finite value if and only if at least one of the series

∞

∑
n=1

∣∣∣∣ c2c4 . . . c2n

c3c5 . . . c2n+1

∣∣∣∣, ∞

∑
n=1

∣∣∣∣ c3c5 . . . c2n+1

c4c6 . . . c2n+2

∣∣∣∣
is divergent.

The following is true.

Theorem 5. Let a be a real constant such that a 6= −2k− 1 for all k ≥ 0, and let

Ω =
⋃

−π/2<α<π/2

Ωα, (15)

where

Ωα =

{
z ∈ C2 : |z1|+ Re(z1e−2iα) <

1
8

cos2 α,

|z2|+ Re(z2e−2iα) <
a + 1

2
cos2 α, |z2| − Re(z2e−2iα) <

a + 1
2

cos2 α

}
.

Then:

(A) The continued fraction (9), whose coefficients are defined by (10), converges uniformly on every
compact subset of (15) to a function f (z) holomorphic in Ω;

(B) The function f (z) is an analytic continuation of (8) in the domain Ω.

Proof. Let α be an arbitrary number from the interval (−π/2, π/2), and let z be an arbitrary
fixed point from Ωα. It is clear that the coefficients of (9) satisfy the conditions of Theorem 4.
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This yields the uniform convergence of (9) to a holomorphic function on all compact
subsets of Ωα, and, consequently, in whole domain Ω by virtue of arbitrariness α. This
proves part (A). Proof of (B) is analogous to the proof of Theorem 3 [27], so it is omitted.

An analogous two theorems could be proved in a similar way.

Theorem 6. Let a be a real constant such that a 6= −2k for all k ≥ 0, and let

Φ =
⋃

−π/2<α<π/2

Φα, (16)

where

Φα =

{
z ∈ C2 : |z1|+ Re(z1e−2iα) <

1
8

cos2 α,

|z2|+ Re(z2e−2iα) <
a
2

cos2 α, |z2| − Re(z2e−2iα) <
a
2

cos2 α
}

.

Then:

(A) The continued fraction (9), whose coefficients are defined by (13), converges uniformly on every
compact subset of (16) to a function g(z) holomorphic in Φ;

(B) The function g(z) is an analytic continuation of R1(a; a/2, a; z) in the domain Φ.

Theorem 7. Let a be a real constant such that a 6= −2k + 1 for all k ≥ 0. Then:

(A) The continued fraction (9), whose coefficients are defined by (14), converges uniformly on every
compact subset of (15) to a function h(z) holomorphic in Ω;

(B) The function h(z) is an analytic continuation of R3(a; (a + 1)/2, a− 1; z) in the domain Ω.

4. Numerical Experiments

By Theorem 5, one obtains

z2 exp
{

z2

1− 2
√

z1

}
γ

(
1,

4
√

z1z2

1− 4z1

)
γ

(
2,

−z2

1− 2
√

z1

)
− γ

(
2,

−z2

1 + 2
√

z1

) =

H7

(
2;

3
2

, 2; z
)

H7

(
3;

3
2

, 3; z
)

= 1 +
a1z1

1 +
a2z2

1 +
a3z2

1 + . . .

, (17)

where

γ(a, z) =
∫ z

0
e−tta−1dt

is an incomplete gamma function, and a3k+1 = −4, a3k+2 = −1/(2k + 3), a3k+3 = 1/(2k + 3),
k ≥ 0.

The continued fraction in (17) converges and represents a single-valued branch of
the function

z2 exp
{

z2

1− 2
√

z1

}
γ

(
1,

4
√

z1z2

1− 4z1

)
γ

(
2,

−z2

1− 2
√

z1

)
− γ

(
2,

−z2

1 + 2
√

z1

) (18)

in the domain (15).
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The numerical illustration of series

z2 exp
{

z2

1− 2
√

z1

}
γ

(
1,

4
√

z1z2

1− 4z1

)
γ

(
2,

−z2

1− 2
√

z1

)
− γ

(
2,

−z2

1 + 2
√

z1

) =

H7

(
2;

3
2

, 2; z
)

H7

(
3;

3
2

, 3; z
)

= 1− 4z1 −
4
3

z1z2 +
16
9

z2
1z2

2 +
16
45

z2
1z3

2 +
64
9

z3
1z2

2 + . . . (19)

and the continued fraction (17) is given in the Table 1.

Table 1. Relative error of 10th partial sum and 10th approximant for (18).

z (18) (19) (17)

(0.02,−0.05) 0.921335 1.4231× 10−13 9.8450× 10−14

(0.9,−0.7) −1.9733 1.1404× 10+03 1.2458× 10−07

(0.5,−1.5) −0.559039 2.2218× 10+02 6.8000× 10−04

(1.1, 2.1) −18.7215 3.1446× 10+03 5.0892× 10−04

(2.5,−2.5) −4.7833 1.7296× 10+07 5.8165× 10−06

(1.5,−2.5) −2.61448 5.7421× 10+05 3.9358× 10−05

(2.1,−2.5) −3.91426 5.3717× 10+06 1.0927× 10−05

(3,−3.5) −5.04522 1.3625× 10+08 2.4661× 10−05

(0.2, 10) 0.106699 1.9893× 10+03 6.2873× 10−01

(0.4,−10) −0.27212 2.8133× 10+04 4.2133× 10−01

In Figure 1a–d, we can see the plots where the 20th approximant of (17) guarantees
certain truncation error bounds for function (18).

(a) (b)

(c) (d)
Figure 1. The plots where the approximant f20(z) of (17) guarantees certain truncation error bounds
for function (18).
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Calculations and plots were performed using Wolfram Mathematica software 13.1.0.0
for Linux.

5. Discussion

In this work, for the first time, expansions of ratios of hypergeometric functions of
two complex variables into continued fractions were constructed. This made it possible to
apply one of the well-known convergence criteria of continued fractions—the parabolic
theorem—to the study of convergence. Numerical experiments showed that the domain
of convergence of the constructed expansions is wider; that is, the problem of studying
the convergence of such fractions remains open. One should the specific periodicity of
the coefficients of the constructed expansions. One should also note that the method
of establishing an analytical continuation remains the same as for branched continued
fractions. More on branched continued representations of the functions of several variables
can be found in the papers [33–40].

Finally, let us point out a rather interesting and promising direction of investigation:
representing discrete hypergeometric series (see, [41]) via branched continued fractions.
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