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Abstract: In this article, we introduce the Kavya–Manoharan generalized inverse Kumaraswamy
(KM-GIKw) distribution, which can be presented as an improved version of the generalized inverse
Kumaraswamy distribution with three parameters. It contains numerous referenced lifetime distri-
butions of the literature and a large panel of new ones. Among the essential features and attributes
covered in our research are quantiles, moments, and information measures. In particular, various
entropy measures (Rényi, Tsallis, etc.) are derived and discussed numerically. The adaptability of the
KM-GIKw distribution in terms of the shapes of the probability density and hazard rate functions
demonstrates how well it is able to fit different types of data. Based on it, an acceptance sampling
plan is created when the life test is truncated at a predefined time. More precisely, the truncation time
is intended to represent the median of the KM-GIKw distribution with preset factors. In a separate
part, the focus is put on the inference of the KM-GIKw distribution. The related parameters are
estimated using the Bayesian, maximum likelihood, and maximum product of spacings methods. For
the Bayesian method, both symmetric and asymmetric loss functions are employed. To examine the
behaviors of various estimates based on criterion measurements, a Monte Carlo simulation research is
carried out. Finally, with the aim of demonstrating the applicability of our findings, three real datasets
are used. The results show that the KM-GIKw distribution offers superior fits when compared to
other well-known distributions.

Keywords: Kavya–Manoharan generated family; generalized inverse Kumaraswamy distribution;
entropy; maximum product of spacing; Bayesian estimation

MSC: 60E05; 62F10; 62C10; 62D05

1. Introduction

Nowadays, in order to communicate and use data, developing effective statistical
models remains a challenge. The sciences of the environment, biology, economics, and
engineering are particularly demanding on such models. The desired characteristics of
the (probability) distributions that form the bases of these models have, thus, been the
focus of numerous generations of statisticians. In particular, various types of extensions
or generalization techniques have been elaborated to enhance the properties of existing
distributions. In parallel, modern informatics advancements have stimulated the practical
application of complex mathematical changes that have emerged in this area. A traditional
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approach involves adding scale or shape parameters to make an existing distribution more
sensitive to certain key modeling elements (mean, variance, tails of the distributions, skew-
ness, kurtosis, etc.). Consequently, several novel families of continuous distributions were
put forth, some of which were created in the references listed in Refs. [1–12]. In particular,
Ref. [13] suggested the Dinesh–Umesh–Sanjay (DUS) transformation to obtain original
lifetime distributions. Its primary advantage involves the capacity of the created distri-
butions to keep their parameter-parsimonious nature and possesses new functionalities.
The cumulative distribution function (CDF) and probability density function (PDF) of the
random variable (RV) V based on the DUS transformation are given by

F(v) =
1

e− 1

[
eG(v) − 1

]
, v ∈ R,

and
f (v) =

1
e− 1

g(v)eG(v), v ∈ R,

respectively, where G(.) and g(.) are the CDF and the PDF of a baseline continuous distri-
bution, respectively. Ref. [14] suggested an alternative approach that created new lifetime
distributions using the sine function. Based on this, Ref. [15] developed a generalized DUS
transformation for generating several relevant lifetime distributions. Still in the spirit of the
DUS transformation, Ref. [16] proposed a new class of parsimonious distributions, known
as the Kavya–Manoharan (KM) transformation, with the following CDF and PDF:

F(v) =
e

e− 1

(
1− e−G(v)

)
, v ∈ R, (1)

and
f (v) =

e
e− 1

g(v)e−G(v), v ∈ R, (2)

respectively. Using the exponential and Weibull distributions as the baseline distribu-
tions for this modification, Ref. [16] introduced two new distributions. Some analytical
properties, parameter estimates, and data analysis were presented. Based on the KM
transformation, some recently modified distributions were established. The one-parameter
distribution called the KM inverse length biased exponential distribution was suggested in
Ref. [17]. Ref. [18] proposed an enhanced version of the Burr X (BX) distribution based on
the KM transformation and used ranked set sampling for the estimation of the parameters
involved. In regard to biomedical data, Ref. [19] presented an extended version of the log-
logistic distribution using this transformation. A new expanded form of the Kumaraswamy
(Kw) distribution, still based on the KM distribution, was presented in Ref. [20]. Further,
Ref. [21] provided a new three-parameter KM exponentiated Weibull distribution.

On the other hand, the distribution of the inverse of an RV is also a famous transfor-
mation technique known as the inverse distribution. Based on an RV, say U, it consists
of considering the distribution of the inverse RV of U, i.e., V = 1/U. Here are a few
applications where the inverse distribution arises: In finance, the inverse distribution is
used to model the distribution of returns on investments. More precisely, the returns on
investments are often modeled by log-normal or other distributions, and the inverse of
these distributions is used to model the distribution of the time to reach a certain invest-
ment goal. In actuarial science, the inverse distribution is used to model the time until a
claim is made. In queuing theory, the distribution of the time between two arrivals in a
queue is often modeled by an inverse distribution. The inverse distribution is also used to
model the service times of customers in a queue. Overall, many studies involving inverse
distributions have been treated in the literature by different researchers (see, for instance,
Refs. [22–29]). In particular, the inverse Kw (IKw) distribution was created in Ref. [29]
from the original Kw distribution. The corresponding CDF is indicated as follows:

G(v) =
[
1−

(
1 + vϑ1

)]−ϑ2
, v > 0, (3)
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where ϑ1 > 0 and ϑ2 > 0 are shape parameters, and G(v) = 0 for v ≤ 0. Ref. [30] has
published the generalized version of Equation (3), known as the generalized IKw (GIKw)
distribution, along with a new shape parameter. The CDF and PDF of the GIKw distribution
are as follows:

G(v) =
[

1−
(

1 + vϑ1
)−ϑ2

]ϑ3

, v > 0, (4)

and G(v) = 0 for v ≤ 0, and

g(v) = ϑ1ϑ2ϑ3vϑ1−1
(

1 + vϑ1
)−ϑ2−1

[
1−

(
1 + vϑ1

)−ϑ2
]ϑ3−1

, v > 0, (5)

and g(v) = 0 for v ≤ 0, respectively, where ϑ1 > 0, ϑ2 > 0, and ϑ3 > 0 are shape
parameters.

In light of the above, this article provides a contribution to the topic by introducing the
Kavya–Manoharan-GIKw (KM-GIKw) distribution as a new three-parameter distribution
based on the KM transformation. The following points provide sufficient justification for
studying it:

• The KM-GIKw distribution has a PDF that possesses both symmetric and asymmetric
forms (unimodal, inverse J-shaped, and right-skewed).

• The KM-GIKw distribution provides a great deal of versatility and contains a plethora
of novel and published sub-distributions.

• The hazard function (HF) forms of the MK-GIKw distribution include decreasing and
upside-down shapes.

• The KM-GIKw distribution has a closed-form quantile function (QF); it is easy to
compute numerous properties and generate random numbers using it.

• In the setting of the MK-GIKw distribution, an accurate acceptance sampling plan
(ASP) based on the truncated life test can be constructed.

• The parameters of the MK-GIKw distribution can be estimated quite efficiently using
the Bayesian, maximum likelihood (ML), and maximum product of spacings (MPS)
methods.

• In terms of data fitting, thanks to its high level of flexibility, the superiority of the KM-
GIKw distribution in comparison to other well-known and comparable distributions
is quite possible (this will be shown using three actual datasets; model selection results
demonstrated that the suggested distribution is the most suitable choice for them).

All these items are developed through the article, with a maximum amount of infor-
mation and details.

The rest is divided into the following sections: The KM-GIKw distribution is described
in Section 2. Section 3 discusses some of its structural aspects. For the truncated life tests
based on the KM-GIKw distribution, the ASP and related numerical work are provided
in Section 4. The parameter estimation and study using a Monte Carlo simulation are
presented in Section 5. Data analyses for actual world data are given in Section 6. Section 7
summarizes the article and provides its conclusion.

2. The New KM-GIKw Distribution

The CDF of the KM-GIKw distribution is obtained by replacing the CDF of the GIKw
distribution in Equation (4) into Equation (1); that is:

F(v) =
e

e− 1

{
1− e−

[
1−(1+vϑ1)

−ϑ2
]ϑ3
}

, v > 0, (6)

and F(v) = 0 for v ≤ 0, where ϑ1 > 0, ϑ2 > 0 and ϑ3 > 0 are shape parameters.
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In order to mention the parameters, the KM-GIKw distribution can be expressed by
KM-GIKw (ϑ1, ϑ2, ϑ3). The PDF associated with Equation (6) is determined by

f (v) =
e ϑ1ϑ2ϑ3vϑ1−1

e− 1

(
1 + vϑ1

)−ϑ2−1
[

1−
(

1 + vϑ1
)−ϑ2

]ϑ3−1
e−
[
1−(1+vϑ1)

−ϑ2
]ϑ3

, v > 0, (7)

and f (v) = 0 for v ≤ 0.
The survival function (SF) and HF of the KM-GIKw distribution are defined as follows:

F̄(v) = 1− e
e− 1

{
1− e−

[
1−(1+vϑ1)

−ϑ2
]ϑ3
}

, v > 0,

and F̄(v) = 1 for v ≤ 0, and

h(v) =
e ϑ1ϑ2ϑ3vϑ1−1(1 + vϑ1

)−ϑ2−1
[
1−

(
1 + vϑ1

)−ϑ2
]ϑ3−1

e−
[
1−(1+vϑ1)

−ϑ2
]ϑ3

e− 1− e

(
1− e−

[
1−(1+vϑ1)

−ϑ2
]ϑ3
) , v > 0,

and h(v) = 0 for v ≤ 0, respectively.
Figure 1 displays the PDF and HF of the KM-GIKw distribution for certain parameter

values.
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Figure 1. Selected plots of (a) f (v) and (b) h(v).

This figure shows that the PDF can have symmetric and asymmetric forms. On this
side, the HF can be decreasing and upside-down-shaped.

By introducing two RVs Z and V, the following new or existing parsimonious distri-
butions are offered, mainly based on the CDF in Equation (6).

1. For ϑ1 = 1, the CDF in Equation (6) provides the KM-IKw distribution as a new
sub-distribution.

2. Using the transformation Z = δVϑ1 , where V has the CDF in Equation (6), then Z
has the KM-exponentiated Lomax distribution with parameters (δ, ϑ2, ϑ3) as the new
distribution. Hence, the CDF of Z obtains the following form:

F(z) =
e

e− 1

{
1− e−

[
1−(1+ z

δ )
−ϑ2

]ϑ3
}

, z > 0,
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and F(z) = 0 for z ≤ 0.
3. Using the transformation Z = log(1 + Vϑ1), where V has the CDF in Equation (6),

then Z has the KM-exponentiated exponential distribution with parameters (ϑ2, ϑ3)
(see Ref. [31]). Hence, the CDF of Z obtains the following form:

F(z) =
e

e− 1

{
1− e−[1−e−ϑ2z]

ϑ3
}

, z > 0.

and F(z) = 0 for z ≤ 0. For ϑ3 = 1, Z has the KM-exponential distribution with
parameter (ϑ2) (see Ref. [16]).

4. Using the transformation Z = 1
ϑ1
[log(1 + Vϑ1)]1/δ, where V has the CDF in Equation (6)

and let ϑ2 = 1, then Z has the KM-exponentiated Weibull distribution with parameters
(ϑ3, ϑ1, δ) (see Ref. [21]). Hence, the CDF of Z obtains the following structure:

F(z) =
e

e− 1

1− e
−
[

1−e−(ϑ1z)δ
]ϑ3
, z > 0.

and F(z) = 0 for z ≤ 0. For ϑ3 = 1, Z has the KM–Weibull (KM-W) distribution with
parameters (ϑ1, δ) (see Ref. [16]).

5. Using the transformation Z = [log(1 + Vϑ1)]1/2, where V has the CDF in Equation (6)
and let ϑ3 = 1, then Z has the KM–Rayleigh distribution with parameter ϑ2 (see
Ref. [16]). Hence, the CDF of Z has the following structure:

F(z) =
e

e− 1

{
1− e−

[
1−e−ϑ2z2 ]}

, z > 0,

and F(z) = 0 for z ≤ 0.
6. Using the transformation Z = 1

ϑ1
[log(1 + Vϑ1)]1/2, where V has the CDF in Equation (6)

and let ϑ2 = 1, then Z has the KM–Burr X (KM-BX) distribution with parameters
(ϑ1, ϑ3) (see Ref. [18]). Hence, the CDF of Z has the following structure:

F(z) =
e

e− 1

{
1− e−

[
1−e−(ϑ1z)2

]ϑ3
}

, z > 0,

and F(z) = 0 for z ≤ 0.
7. Using the transformation Z = δV, where V has the CDF in Equation (6) and let

ϑ2 = ϑ3 = 1, then Z has the KM–Log logistic distribution with parameters (δ, ϑ1) (see
Ref. [19]). Hence, the CDF of Z has the following structure:

F(z) =
e

e− 1

1− e
−
[

1−
(

1+( z
δ )

ϑ1
)−1

], z > 0,

and F(z) = 0 for z ≤ 0.
8. Using the transformation Z = V−(ϑ1/δ), where V has the CDF in Equation (6) and let

ϑ3 = 1, then Z has the KM–Burr III distribution with parameters (δ, ϑ2) as the new
distribution. Hence, the CDF of Z has the following structure:

F(z) = 1− e
e− 1

{
1− e−

[
1−(1+z−δ)

−ϑ2
]}

, z > 0,

and F(z) = 0 for z ≤ 0.
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9. Using the transformation Z = V−(ϑ1/δ), where V has the CDF in Equation (6), then
Z has the KM–Kumaraswamy Burr III distribution with parameters (δ, ϑ2, ϑ3) as the
new distribution. Hence, the CDF of Z has the following structure:

F(z) = 1− e
e− 1

{
1− e−

[
1−(1+z−δ)

−ϑ2
]ϑ3
}

, z > 0,

and F(z) = 0 for z ≤ 0.
10. Using the transformation Z = V(ϑ1/δ), where V has the CDF in Equation (6), then Z

has the KM-exponentiated Burr XII distribution with parameters (δ, ϑ2, ϑ3) as the new
distribution. Hence, the CDF of Z has the following structure:

F(z) =
e

e− 1

{
1− e−

[
1−(1+zδ)

−ϑ2
]ϑ3
}

, z > 0,

and F(z) = 0 for z ≤ 0.
11. Using the transformation Z = V(ϑ1/δ), where V has the CDF in Equation (6), then

Z has the KM–Burr XII (KM-XBII) distribution with parameters (δ, ϑ2) as the new
distribution. Hence, the CDF of Z has the following structure:

F(z) =
e

e− 1

{
1− e−

[
1−(1+zδ)

−ϑ2
]}

, z > 0,

and F(z) = 0 for z ≤ 0.

3. Statistical Properties

In this section, we examine the statistical features of the KM-GIKw distribution, such
as the QF, moments, and entropy measures.

3.1. Quantile Function

Theoretical considerations, statistical applications, and Monte Carlo techniques all
involve the QF. The QF of the KM-GIKw distribution is represented by

vu = Q(u) =

((
1−

{
−log

[
1− u

(
1− e−1

)]}1/ϑ3
)−(1/ϑ2)

− 1

)1/ϑ1

, (8)

where u ∈ (0, 1). For u = 0.5, we obtain the median of the KM-GIKw distribution.

3.2. Moment Measures

The moments with various orders play a key role in defining the characteristics of the
variability of a distribution. Here, we determine the main moment measures for the KM-
GIKw distribution. To this aim, here and after, we consider an RV V having the KM-GIKw
distribution. For any integer q, the qth moment of V is obtained as µ′q = E(Vq), so that

µ′q =
e ϑ1ϑ2ϑ3

e− 1

∫ ∞

0
vq+ϑ1−1

(
1 + vϑ1

)−ϑ2−1
[

1−
(

1 + vϑ1
)−ϑ2

]ϑ3−1
e−
[
1−(1+vϑ1)

−ϑ2
]ϑ3

dv. (9)

Let us now investigate its existence in the functions of the involved parameters. When
v→ 0, we have

vq+ϑ1−1
(

1 + vϑ1
)−ϑ2−1

[
1−

(
1 + vϑ1

)−ϑ2
]ϑ3−1

e−
[
1−(1+vϑ1)

−ϑ2
]ϑ3

∼ ϑϑ3−1
2 vq+ϑ1ϑ3−1,
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and, since q ≥ 0, ϑ1 > 0 and ϑ3 > 0, we always have q + ϑ1ϑ3 − 1 > −1. On the other
hand, when v→ ∞, we obtain

vq+ϑ1−1
(

1 + vϑ1
)−ϑ2−1

[
1−

(
1 + vϑ1

)−ϑ2
]ϑ3−1

e−
[
1−(1+vϑ1)

−ϑ2
]ϑ3

∼ e−1vq−ϑ1ϑ2−1

and we have −q + ϑ1ϑ2 + 1 > 1 if q < ϑ1ϑ2. Hence, according to the Riemann integral
convergence rules, the qth moment of V exists if and only if q < ϑ1ϑ2.

This integral is complicated to simplify, but two complementary options are possible:
(i) numerical computation for the fixed values of the parameters and (ii) series expansions
that incorporate as much moment information as possible into discrete coefficients. The
numerical approach is taken into account throughout the rest of the study.

Furthermore, based on these moments, the qth central moment of V is defined by

µq = E[
(
V − µ′1

)q
] =

q

∑
l=0

(−1)l
(

q
l

)
(µ′1)

lµ′q−l . (10)

Diverse moment measures can be obtained based on Equation (10). The main ones are
provided in Table 1, considering the first few moments, i.e., variance (var), skewness (SK),
kurtosis (KU), coefficient of variation (CV), and index of dispersion (ID) of V. We conclude
from this table that

• As the value of ϑ3 increases, at fixed values of ϑ1 and ϑ3, the values of µ′1, µ′2, µ′3, µ′4,
SK, and KU are rising, whereas those of var, CV, and ID are decreasing.

• The values of µ′1, µ′2, µ′3, µ′4, var, SK, KU, CV, and ID are decreasing when the values of
ϑ2 increase at a fixed value of ϑ1 and ϑ3 in the majority of situations.

• The KM-GIKw distribution is positively skewed, as indicated by the values of SK.
• The KM-GIKw distribution is platykurtic and leptokurtic based on the values of KU.

Table 1. Numerical values of certain moments associated with the KM-GIKw distribution.

ϑ1 ϑ2 ϑ3 µ′1 µ′2 µ′3 µ′4 var SK KU CV ID

3.0

2.0

2.0 0.915 0.969 1.222 1.955 0.139 1.938 14.148 0.398 0.145

3.0 1.036 1.211 1.645 2.778 0.137 2.101 15.927 0.357 0.132

4.0 1.123 1.402 2.011 3.539 0.132 2.211 17.162 0.336 0.126

5.0 1.190 1.563 2.337 4.252 0.127 2.289 18.081 0.322 0.123

3.0

2.0 0.759 0.644 0.613 0.660 0.068 1.172 6.412 0.344 0.090

3.0 0.851 0.790 0.804 0.911 0.065 1.279 7.035 0.300 0.077

4.0 0.915 0.901 0.963 1.132 0.064 1.358 7.495 0.276 0.070

5.0 0.963 0.991 1.099 1.331 0.063 1.418 7.852 0.261 0.066

4.0

2.0 0.673 0.500 0.409 0.368 0.047 0.897 4.896 0.322 0.070

3.0 0.751 0.608 0.530 0.501 0.043 0.982 5.279 0.277 0.058

4.0 0.804 0.688 0.629 0.616 0.041 1.047 5.566 0.252 0.051

5.0 0.845 0.753 0.712 0.718 0.040 1.099 5.794 0.236 0.047
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Table 1. Cont.

ϑ1 ϑ2 ϑ3 µ′1 µ′2 µ′3 µ′4 var SK KU CV ID

5.0

2.0

2.0 0.932 0.914 0.946 1.039 0.045 1.017 6.036 0.228 0.048

3.0 1.008 1.058 1.161 1.341 0.042 1.198 6.844 0.203 0.042

4.0 1.059 1.163 1.328 1.589 0.040 1.313 7.409 0.190 0.038

5.0 1.098 1.246 1.467 1.803 0.040 1.394 7.832 0.181 0.036

3.0

2.0 0.836 0.728 0.660 0.623 0.029 0.602 4.199 0.203 0.034

3.0 0.899 0.832 0.796 0.786 0.025 0.750 4.606 0.175 0.028

4.0 0.940 0.906 0.898 0.915 0.023 0.850 4.911 0.161 0.024

5.0 0.970 0.963 0.980 1.023 0.022 0.923 5.150 0.152 0.022

4.0

2.0 0.779 0.629 0.527 0.456 0.022 0.423 3.680 0.192 0.029

3.0 0.835 0.716 0.630 0.570 0.019 0.554 3.952 0.164 0.022

4.0 0.871 0.776 0.707 0.658 0.017 0.645 4.159 0.148 0.019

5.0 0.898 0.822 0.767 0.731 0.015 0.712 4.327 0.139 0.017

Figures 2–4 provide further trends by displaying the 3D plots of the mean, variance,
skewness, and kurtosis of V for various values of ϑ1, ϑ2, and ϑ3. Various non-monotonic
shapes are observed, illustrating the versatility of these measures.
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Figure 2. The 3D plots of the mean (light green), variance (dark green), skewness (dark pink), and
kurtosis (dark blue) associated with the KM-GIKw distribution at ϑ3 = 15.0.
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Figure 3. The 3D plots of the mean (light green), variance (dark green), skewness (dark pink), and
kurtosis (dark blue) associated with the KM-GIKw distribution at ϑ2 = 2.5.
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Figure 4. The 3D plots of the mean (light green), variance (dark green), skewness (dark pink), and
kurtosis (dark blue) associated with the KM-GIKw distribution at ϑ1 = 3.0.

3.3. Entropy Measures

In several disciplines, including physics, engineering, and economics, the entropy of
an RV is a measure of variation in uncertainty. As evidenced by Rényi in Ref. [32], the
Rényi (Ri) entropy is defined as follows:

I††(τ) =
1

1− τ
log
[∫ ∞

−∞
[ f (v)]τdv

]
, (11)

with τ 6= 1, τ > 0, and where f (v) denotes the PDF of the considered RV. In the precise
context of the KM-GIKw distribution, for v > 0, we have

[ f (v)]τ =

(
e ϑ1ϑ2ϑ3

e− 1

)τ

vτ(ϑ1−1)
(

1 + vϑ1
)−τ(ϑ2+1)

[
1−

(
1 + vϑ1

)−ϑ2
]τ(ϑ3−1)

e−τ
[
1−(1+vϑ1)

−ϑ2
]ϑ3

.

For v ≤ 0, we obviously have [ f (v)]τ = 0. Let us now investigate the existence of∫ ∞
0 [ f (v)]τdv, and the Ri entropy as well, in the function of the involved parameters. When

v→ 0, we have

vτ(ϑ1−1)
(

1 + vϑ1
)−τ(ϑ2+1)

[
1−

(
1 + vϑ1

)−ϑ2
]τ(ϑ3−1)

e−τ
[
1−(1+vϑ1)

−ϑ2
]ϑ3

∼ ϑ
τ(ϑ3−1)
2 vτ(ϑ1ϑ3−1).

Hence, according to the Riemann integral convergence rules, we must have τ(ϑ1ϑ3 − 1) > −1.
On the other hand, when v→ ∞, we obtain

vτ(ϑ1−1)
(

1 + vϑ1
)−τ(ϑ2+1)

[
1−

(
1 + vϑ1

)−ϑ2
]τ(ϑ3−1)

e−τ
[
1−(1+vϑ1)

−ϑ2
]ϑ3

∼ e−τv−τ(ϑ1ϑ2+1).

Hence, according to the Riemann integral convergence rules, we must have τ(ϑ1ϑ2 + 1) > 1.
To summarize, the Ri entropy makes mathematical sense if and only if τ(ϑ1ϑ3 − 1) > −1
and τ(ϑ1ϑ2 + 1) > 1.
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Under these conditions, it is challenging to simplify this integral, and there are
two complementary approaches that can be used: (i) numerical computation of the integral
for fixed values of the parameters, and (ii) series expansions that incorporate as much mo-
ment information as possible into discrete coefficients. The first point will be investigated
in this study.

Based on the Ri entropy, the Shannon entropy can be derived as

S†† = lim
τ→1

I††(τ) = −
∫ ∞

−∞
f (v) log [ f (v)]dv.

See [33]. By applying the previous findings, it exists if and only if ϑ1ϑ3 > 0 and ϑ1ϑ2 > 0,
which is always the case.

On the other hand, the following formula is used to compute the Tsallis entropy of V:

T††(τ) =
1

τ − 1

[
1−

∫ ∞

−∞
[ f (v)]τdv

]
,

where τ 6= 1, τ > 0.
The Arimoto entropy is specified by

A††(τ) =
τ

1− τ

[(∫ ∞

−∞
[ f (v)]τdv

) 1
τ

− 1

]
,

where τ 6= 1 and τ > 0.
Also, another famous entropy measure, the Havrda–Charvat entropy, is specified by

HC††(τ) =
1

21−τ − 1

[(∫ ∞

−∞
[ f (v)]τdv

) 1
τ

− 1

]
,

where τ 6= 1 and τ > 0.
The three above entropy measures make sense in the setting of the KM-GIKw distribu-

tion if and only if τ(ϑ1ϑ3 − 1) > −1 and τ(ϑ1ϑ2 + 1) > 1.
Table 2 displays some numerical measures of the introduced entropy measures. We

conclude from this table that:

• All the entropy measures decrease when the value of τ increases, giving us additional
information.

• As the value of ϑ3 increases, at fixed values of ϑ1 and ϑ2, except at (ϑ1, ϑ2) = (3, 2),
we observe that all the entropy measures decrease.

• As the value of ϑ2 increases, at fixed values of ϑ1 and ϑ3, we observe that all the
entropy measures decrease.
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Table 2. Some numerical values of the considered entropy measures.

ϑ1 ϑ2 ϑ3
τ = 0.5 τ = 0.8 τ = 1.2

I †† T †† A †† HC †† I †† T †† A †† HC †† I †† T †† A †† HC ††

3.0

2.0

2.0 0.265 0.714 0.842 2.033 0.153 0.366 0.369 0.621 0.083 0.187 0.188 0.241

3.0 0.271 0.733 0.868 2.095 0.155 0.369 0.372 0.626 0.081 0.184 0.184 0.237

4.0 0.277 0.751 0.891 2.152 0.157 0.375 0.379 0.637 0.082 0.186 0.187 0.240

5.0 0.282 0.767 0.914 2.207 0.160 0.384 0.387 0.651 0.085 0.191 0.192 0.247

3.0

2.0 0.122 0.302 0.325 0.785 0.033 0.077 0.077 0.130 −0.027 −0.063 −0.063 −0.081

3.0 0.114 0.281 0.301 0.726 0.021 0.048 0.048 0.080 −0.042 −0.098 −0.098 −0.126

4.0 0.109 0.267 0.285 0.688 0.013 0.030 0.030 0.051 −0.051 −0.120 −0.119 −0.154

5.0 0.106 0.259 0.276 0.666 0.008 0.019 0.019 0.031 −0.057 −0.133 −0.133 −0.171

4.0

2.0 0.040 0.093 0.096 0.231 −0.039 −0.090 −0.090 −0.151 −0.095 −0.224 −0.223 −0.287

3.0 0.024 0.056 0.057 0.138 −0.059 −0.134 −0.134 −0.225 −0.117 −0.277 −0.276 −0.355

4.0 0.013 0.031 0.031 0.076 −0.072 −0.163 −0.163 −0.274 −0.132 −0.312 −0.311 −0.400

5.0 0.006 0.013 0.013 0.032 −0.081 −0.184 −0.183 −0.308 −0.142 −0.337 −0.335 −0.432

5.0

2.0

2.0 0.045 0.106 0.108 0.262 −0.046 −0.106 −0.105 −0.177 −0.108 −0.256 −0.255 −0.328

3.0 0.025 0.059 0.060 0.145 −0.070 −0.158 −0.158 −0.265 −0.134 −0.318 −0.316 −0.407

4.0 0.015 0.035 0.035 0.084 −0.083 −0.186 −0.186 −0.312 −0.148 −0.352 −0.350 −0.451

5.0 0.009 0.020 0.020 0.049 −0.090 −0.203 −0.202 −0.340 −0.156 −0.373 −0.371 −0.478

3.0

2.0 −0.056 −0.125 −0.121 −0.292 −0.134 −0.299 −0.297 −0.499 −0.189 −0.455 −0.452 −0.582

3.0 −0.088 −0.193 −0.183 −0.442 −0.169 −0.375 −0.372 −0.625 −0.227 −0.550 −0.545 −0.702

4.0 −0.108 −0.233 −0.219 −0.530 −0.191 −0.421 −0.416 −0.700 −0.249 −0.608 −0.602 −0.776

5.0 −0.121 −0.260 −0.243 −0.587 −0.206 −0.452 −0.447 −0.751 −0.265 −0.648 −0.642 −0.826

4.0

2.0 −0.114 −0.245 −0.230 −0.556 −0.186 −0.410 −0.406 −0.682 −0.238 −0.579 −0.574 −0.739

3.0 −0.152 −0.322 −0.296 −0.714 −0.227 −0.497 −0.491 −0.825 −0.281 −0.692 −0.684 −0.881

4.0 −0.177 −0.368 −0.334 −0.807 −0.254 −0.551 −0.543 −0.914 −0.309 −0.764 −0.755 −0.972

5.0 −0.194 −0.400 −0.360 −0.870 −0.272 −0.589 −0.580 −0.975 −0.328 −0.815 −0.804 −1.036

4. Acceptance Sampling Plans

This section is devoted to the construction of an ASP in the context of the KM-GIKw
distribution. Hence, we assume that the lifetime of a product can be modeled as an RV
with the KM-GIKw (ϑ1, ϑ2, ϑ3) distribution given by the CDF in Equation (6), and the
producer-assumed specified median lifetime of the units is M0. The main objective is to
determine if the suggested lot should be approved or disapproved based on the criterion
that the unit’s actual median lifetime, M, is longer than the indicated lifetime, M0. The
test is typically terminated after a certain period t and the failure number is recorded. In
order to detect the median lifetime, the experiment is conducted for t = aM0 units of time,
a multiple of the expected median lifetime multiplied by any positive constant a.

The ASP has been the subject of several studies. In particular, a single ASP for the
three-parameter inverse Topp–Leone (ITL) and power ITL distributions was found in
Refs. [34,35] using the median lifetime of the provided distribution and the truncated
life test.

The following is how the idea is described in Ref. [36], regarding acceptance of the
offered lot, based on proof that M ≥ M0, given the probability of at least p∗ (consumer’s
risk) and the ASP:

1. Pick a sample of n units at random from the indicated lot.
2. Execute the test below for t units of time:

If the acceptance number, denoted by c, or fewer units malfunction during the test,
accept the entire lot; elsewhere, reject the entire lot.
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According to the proposed ASP, the probability of accepting a lot is provided by taking
into account lots that are large enough to allow for the implementation of the binomial
distribution. It is given by

L(δ) =
c

∑
i=0

(
n
i

)
δi(1− δ)n−i, i = 1, 2, . . . , n, (12)

where δ = F(t) = F(t; ϑ1, ϑ2, ϑ3), as defined by the CDF in Equation (6). The function L(δ)
represents the sampling plan’s operational characteristic or the acceptance probability of
the lot as a function of the failure probability. Additionally, by using the formula t = aM0,
δ0 can be expressed as follows:

δ0 = F(aM0; ϑ1, ϑ2, ϑ3) =
e

e− 1

{
1− e−

[
1−(1+(aM0)

ϑ1)
−ϑ2

]ϑ3
}

. (13)

The current problem is to find the lowest positive integer n for given values of p∗,
aM0, and c. Thus, the operating characteristic function can be rewritten as follows:

L(δ0) =
c

∑
i=0

(
n
i

)
δi

0(1− δ0)
n−i ≤ 1− p∗, (14)

where δ0 is provided in Equation (13).
The low values of n satisfying the inequality in Equation (14) and its corresponding

operating characteristic probability are computed and mentioned in Tables 3–10, for the
supposed parameters listed below:

1. The consumer risk is assumed as follows: p∗ = 0.1, 0.25, 0.5, 0.75, and 0.99.
2. The acceptance number of each proposed lot is assumed as follows: c = 0, 2, 4, 10,

and 20.
3. The factor median lifetime is assumed as a = 0.15, 0.30, 0.60, 0.90, and 1. If a = 1, then

t = M0 = 0.5 for all values of ϑ1, ϑ2, and ϑ3.
4. Eight cases for parameters of the KM-GIKw distribution are considered, where the

following values are assumed: 0.25, 0.75, 1.25, 1.5, and 2.

The following observations may be drawn based on the information shown in the
tables:

• For the parameters of the ASP, when p∗ and c rise, the necessary sample size n rises as
well, whereas L(δ0) reduces. While a rises, the necessary n falls, while L(δ0) rises.

• For the parameters of the KM-GIKw distribution: With increasing any parameters of
ϑ1, ϑ2, ϑ3, and keeping the other parameters constant, the required n rises, but L(δ0)
decreases.

Lastly, we verify each of our outcomes: L(δ0) ≤ 1− p∗. Also, when a = 1, we have
δ0 = 0.5 as t = M0 and, hence, all numerical results (n, L(δ0)) for any vector of parameters
(ϑ1, ϑ2, λ) are the same.
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Table 3. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters: (ϑ1, ϑ2, ϑ3) = (0.25, 0.25, 0.25)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 3 1.0000 3 1.0000 3 1.0000 3 1.0000 3 1.0000
4 7 0.9181 7 0.9048 6 0.9685 6 0.9652 6 0.9643

10 17 0.9351 17 0.9164 16 0.9399 16 0.9302 16 0.9274
20 36 0.9191 35 0.9174 34 0.9171 33 0.9298 33 0.9258

0.25 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 4 0.8977 4 0.8865 4 0.8743 4 0.8667 4 0.8647
4 8 0.8230 8 0.7986 8 0.7720 8 0.7553 8 0.7508

10 20 0.7712 19 0.8000 19 0.7573 18 0.8104 18 0.8044
20 40 0.7662 39 0.7526 37 0.7944 37 0.7586 36 0.8036

0.50 0 2 0.5323 2 0.5159 1 1.0000 1 1.0000 1 1.0000
2 6 0.5604 6 0.5297 5 0.6862 5 0.6711 5 0.6671
4 10 0.5791 10 0.5390 9 0.6348 9 0.6128 9 0.6070

10 23 0.5377 22 0.5585 21 0.5849 21 0.5495 21 0.5402
20 44 0.5486 43 0.5211 41 0.5582 41 0.5079 40 0.5599

0.75 0 3 0.2834 3 0.2661 2 0.4991 2 0.4892 2 0.4866
2 8 0.2829 8 0.2534 7 0.3421 7 0.3237 7 0.3189
4 13 0.2623 12 0.3113 12 0.2724 12 0.2505 11 0.3444

10 27 0.2583 26 0.2614 25 0.2677 24 0.3013 24 0.2926
20 49 0.2875 48 0.2558 46 0.2717 45 0.2755 45 0.2641

0.99 0 8 0.0121 7 0.0188 7 0.0155 7 0.0137 7 0.0133
2 15 0.0123 14 0.0150 14 0.0110 13 0.0160 13 0.0153
4 21 0.0128 20 0.0137 19 0.0152 19 0.0122 19 0.0115

10 38 0.0113 36 0.0136 35 0.0118 34 0.0128 34 0.0119
20 64 0.0111 61 0.0130 59 0.0119 58 0.0109 57 0.0134

Table 4. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (0.25, 0.25, 0.75)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 4 0.9481 4 0.9278 4 0.9005 3 1.0000 3 1.0000
4 8 0.9276 7 0.9509 7 0.9213 6 0.9711 6 0.9687

10 21 0.9183 19 0.9235 17 0.9393 17 0.9057 16 0.9407
20 44 0.9189 40 0.9159 36 0.9265 35 0.9017 34 0.9186

0.25 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 5 0.8505 5 0.8013 4 0.9005 4 0.8806 4 0.8750
4 10 0.7873 9 0.7998 8 0.8290 8 0.7858 8 0.7734

10 24 0.7978 22 0.7824 20 0.7825 19 0.7796 19 0.7596
20 49 0.7823 44 0.7895 40 0.7823 38 0.7734 37 0.7974

0.50 0 2 0.6270 2 0.5835 2 0.5366 2 0.5076 1 1.0000
2 7 0.6003 7 0.5102 6 0.5683 6 0.5143 5 0.6874
4 13 0.5163 11 0.5913 10 0.5894 10 0.5188 9 0.6366

10 29 0.5156 26 0.5189 23 0.5537 22 0.5282 21 0.5880
20 56 0.5034 50 0.5141 45 0.5147 42 0.5392 41 0.5625

0.75 0 3 0.3932 3 0.3405 3 0.2879 3 0.2577 2 0.5000
2 10 0.2861 9 0.2820 8 0.2908 7 0.3582 7 0.3437
4 16 0.2857 14 0.3088 13 0.2721 12 0.2919 12 0.2743

10 34 0.2609 30 0.2790 27 0.2727 25 0.2962 25 0.2705
20 62 0.2783 56 0.2569 50 0.2645 47 0.2635 46 0.2756

0.99 0 10 0.0150 9 0.0134 8 0.0128 7 0.0171 7 0.0156
2 20 0.0103 17 0.0133 15 0.0133 14 0.0129 14 0.0112
4 27 0.0137 24 0.0129 21 0.0141 20 0.0114 19 0.0154

10 49 0.0113 43 0.0125 38 0.0129 36 0.0106 35 0.0121
20 82 0.0112 73 0.0105 65 0.0101 60 0.0125 59 0.0124



Axioms 2023, 12, 739 16 of 35

Table 5. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (0.25, 0.75, 0.25)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 4 0.9215 4 0.9059 3 1.0000 3 1.0000 3 1.0000
4 7 0.9445 7 0.9275 7 0.9074 6 0.9699 6 0.9687

10 19 0.9076 18 0.9111 17 0.9202 17 0.9005 16 0.9408
20 39 0.9166 37 0.9161 35 0.9227 34 0.9251 34 0.9186

0.25 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 5 0.7868 5 0.7520 4 0.8887 4 0.8779 4 0.8750
4 9 0.7797 8 0.8407 8 0.8033 8 0.7798 8 0.7734

10 21 0.8097 20 0.8043 19 0.8073 19 0.7699 19 0.7597
20 43 0.7844 41 0.7686 39 0.7646 38 0.7593 37 0.7975

0.50 0 2 0.5718 2 0.5452 2 0.5190 2 0.5039 1 1.0000
2 6 0.6328 6 0.5843 6 0.5355 6 0.5073 5 0.6875
4 11 0.5611 10 0.6100 10 0.5466 10 0.5095 9 0.6367

10 25 0.5406 24 0.5091 22 0.5698 22 0.5144 21 0.5881
20 48 0.5469 46 0.5058 43 0.5371 42 0.5199 41 0.5627

0.75 0 3 0.3270 3 0.2972 3 0.2693 3 0.2539 2 0.5000
2 9 0.2594 8 0.3071 8 0.2588 7 0.3511 7 0.3437
4 14 0.2791 13 0.2926 12 0.3187 12 0.2832 12 0.2744

10 29 0.2874 27 0.3028 26 0.2716 25 0.2835 25 0.2706
20 54 0.2730 51 0.2633 48 0.2696 46 0.2935 46 0.2757

0.99 0 9 0.0114 8 0.0143 8 0.0101 7 0.0164 7 0.0156
2 17 0.0105 15 0.0156 14 0.0159 14 0.0121 14 0.0112
4 23 0.0141 22 0.0113 20 0.0147 20 0.0105 19 0.0154

10 42 0.0113 39 0.0122 37 0.0105 35 0.0136 35 0.0122
20 71 0.0100 66 0.0111 62 0.0111 60 0.0107 59 0.0124

Table 6. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (0.25, 0.75, 0.75)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 5 0.9280 4 0.9527 4 0.9135 3 1.0000 3 1.0000
4 10 0.9197 8 0.9362 7 0.9359 7 0.9012 6 0.9688

10 27 0.9094 22 0.9047 18 0.9269 17 0.9111 16 0.9408
20 57 0.9113 46 0.9037 38 0.9141 35 0.9096 34 0.9186

0.25 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 7 0.7735 5 0.8621 5 0.7688 4 0.8836 4 0.8750
4 13 0.7649 10 0.8080 9 0.7543 8 0.7922 8 0.7734

10 32 0.7554 25 0.7824 21 0.7727 19 0.7898 19 0.7597
20 64 0.7702 51 0.7634 42 0.7724 38 0.7881 37 0.7975

0.50 0 3 0.5128 2 0.6383 2 0.5578 2 0.5117 2 0.5000
2 10 0.5063 8 0.5056 6 0.6074 6 0.5219 6 0.5000
4 17 0.5071 13 0.5492 11 0.5246 10 0.5287 10 0.5000

10 38 0.5099 30 0.5090 24 0.5579 22 0.5432 22 0.5000
20 73 0.5136 57 0.5324 47 0.5209 42 0.5599 42 0.5000

0.75 0 5 0.2629 4 0.2601 3 0.3111 3 0.2618 3 0.2500
2 13 0.2933 10 0.3107 8 0.3317 7 0.3659 7 0.3438
4 21 0.2885 17 0.2568 13 0.3239 12 0.3014 12 0.2744

10 45 0.2573 35 0.2642 28 0.2906 25 0.3102 25 0.2706
20 83 0.2511 64 0.2773 52 0.2827 47 0.2819 46 0.2757

0.99 0 14 0.0130 11 0.0112 8 0.0168 7 0.0179 7 0.0156
2 27 0.0106 20 0.0132 16 0.0124 14 0.0139 14 0.0112
4 37 0.0121 28 0.0135 23 0.0101 20 0.0125 19 0.0154

10 66 0.0110 51 0.0104 40 0.0132 36 0.0120 35 0.0122
20 110 0.0109 85 0.0107 68 0.0114 61 0.0110 59 0.0124
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Table 7. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (0.75, 0.75, 0.75)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 6 0.9124 5 0.9012 4 0.9261 3 1.0000 3 1.0000
4 12 0.9090 9 0.9259 7 0.9492 7 0.9056 6 0.9688

10 32 0.9112 24 0.9185 19 0.9194 17 0.9175 16 0.9408
20 69 0.9021 51 0.9141 40 0.9093 35 0.9190 34 0.9186

0.25 0 2 0.7657 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 8 0.7883 6 0.8108 5 0.7974 4 0.8872 4 0.8750
4 15 0.7861 11 0.8152 9 0.7944 8 0.8000 8 0.7734

10 38 0.7666 28 0.7846 22 0.7734 19 0.8021 19 0.7597
20 78 0.7503 57 0.7770 44 0.7768 39 0.7561 37 0.7975

0.50 0 3 0.5863 2 0.6809 2 0.5803 2 0.5168 2 0.5000
2 12 0.5048 9 0.5037 7 0.5036 6 0.5314 6 0.5000
4 20 0.5302 15 0.5218 11 0.5831 10 0.5412 10 0.5000

10 46 0.5067 34 0.5049 26 0.5058 22 0.5618 22 0.5000
20 88 0.5209 65 0.5151 49 0.5445 43 0.5258 42 0.5000

0.75 0 6 0.2632 4 0.3157 3 0.3368 3 0.2671 3 0.2500
2 16 0.2813 12 0.2661 9 0.2757 8 0.2550 7 0.3438
4 26 0.2698 19 0.2719 14 0.3005 12 0.3135 12 0.2744

10 54 0.2733 40 0.2563 30 0.2673 26 0.2644 25 0.2706
20 100 0.2656 73 0.2693 55 0.2774 48 0.2598 46 0.2757

0.99 0 18 0.0107 12 0.0146 9 0.0129 7 0.0190 7 0.0156
2 33 0.0112 23 0.0132 17 0.0125 14 0.0153 14 0.0112
4 46 0.0110 33 0.0108 24 0.0119 20 0.0140 19 0.0154

10 81 0.0110 58 0.0115 43 0.0112 36 0.0140 35 0.0122
20 135 0.0105 97 0.0112 72 0.0115 62 0.0102 59 0.0124

Table 8. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (1.25, 1.25, 1.25)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 2 0.9441 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 21 0.9022 9 0.9041 4 0.9670 4 0.9017 3 1.0000
4 45 0.9025 18 0.9135 9 0.9243 7 0.9227 6 0.9687

10 128 0.9007 51 0.9025 24 0.9157 18 0.9017 16 0.9408
20 278 0.9017 110 0.9002 51 0.9099 37 0.9029 34 0.9186

0.25 0 6 0.7501 2 0.8557 1 1.0000 1 1.0000 1 1.0000
2 32 0.7509 13 0.7552 6 0.8084 4 0.9017 4 0.8750
4 61 0.7565 24 0.7696 11 0.8119 8 0.8317 8 0.7734

10 155 0.7562 61 0.7582 28 0.7788 20 0.7875 19 0.7596
20 319 0.7540 125 0.7527 57 0.7685 40 0.7894 37 0.7975

0.50 0 13 0.5016 5 0.5361 2 0.6792 2 0.5385 1 1.0000
2 48 0.5074 19 0.5074 8 0.5996 6 0.5719 5 0.6875
4 84 0.5027 33 0.5009 15 0.5162 10 0.5940 9 0.6367

10 191 0.5042 74 0.5114 33 0.5445 23 0.5609 21 0.5881
20 370 0.5027 143 0.5122 65 0.5033 45 0.5249 41 0.5626

0.75 0 25 0.2516 9 0.2874 4 0.3134 3 0.2900 2 0.5000
2 70 0.2517 27 0.2544 12 0.2621 8 0.2944 7 0.3437
4 112 0.2510 43 0.2560 19 0.2668 13 0.2767 12 0.2744

10 232 0.2523 89 0.2590 39 0.2836 27 0.2793 25 0.2706
20 426 0.2517 164 0.2550 73 0.2591 50 0.2734 46 0.2757

0.99 0 81 0.0101 30 0.0109 12 0.0142 8 0.0131 7 0.0156
2 148 0.0101 55 0.0112 23 0.0127 15 0.0138 14 0.0112
4 204 0.0103 77 0.0106 33 0.0103 21 0.0147 19 0.0154

10 356 0.0101 135 0.0103 58 0.0107 38 0.0137 35 0.0121
20 586 0.0102 223 0.0104 97 0.0102 65 0.0109 59 0.0124
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Table 9. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (1.5, 1.5, 1.5)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 6 0.9067 2 0.9196 1 1.0000 1 1.0000 1 1.0000
2 58 0.9010 15 0.9031 5 0.9395 4 0.9099 3 1.0000
4 127 0.9004 32 0.9008 11 0.9013 7 0.9319 6 0.9687

10 364 0.9004 89 0.9052 29 0.9004 18 0.9195 16 0.9408
20 795 0.9009 194 0.9029 61 0.9043 38 0.9017 34 0.9186

0.25 0 15 0.7601 4 0.7777 1 1.0000 1 1.0000 1 1.0000
2 90 0.7508 22 0.7641 7 0.8039 5 0.7607 4 0.8750
4 174 0.7533 43 0.7537 14 0.7512 8 0.8492 8 0.7734

10 445 0.7519 108 0.7589 34 0.7550 21 0.7555 19 0.7597
20 917 0.7501 223 0.7503 68 0.7715 41 0.7931 37 0.7975

0.50 0 36 0.5036 9 0.5115 3 0.5383 2 0.5517 1 1.0000
2 138 0.5022 33 0.5194 10 0.5550 6 0.5962 5 0.6875
4 241 0.5013 58 0.5121 18 0.5116 11 0.5087 9 0.6367

10 550 0.5010 133 0.5040 40 0.5277 24 0.5342 21 0.5881
20 1065 0.5011 257 0.5058 78 0.5074 46 0.5407 41 0.5627

0.75 0 71 0.2537 17 0.2617 5 0.2897 3 0.3043 2 0.5000
2 202 0.2502 48 0.2604 14 0.2855 8 0.3197 7 0.3437
4 323 0.2504 77 0.2594 23 0.2639 13 0.3085 12 0.2744

10 670 0.2506 161 0.2532 48 0.2577 28 0.2691 25 0.2706
20 1229 0.2509 296 0.2508 88 0.2623 52 0.2538 46 0.2757

0.99 0 235 0.0102 55 0.0108 15 0.0131 8 0.0155 7 0.0156
2 430 0.0101 102 0.0102 29 0.0105 16 0.0110 14 0.0112
4 595 0.0100 141 0.0103 40 0.0112 22 0.0131 19 0.0154

10 1033 0.0101 246 0.0102 71 0.0104 40 0.0109 35 0.0122
20 1700 0.0100 406 0.0101 118 0.0104 67 0.0113 59 0.0124

Table 10. The ASP (n, L(δ0)) for the KM-GIKw distribution with parameters (ϑ1, ϑ2, ϑ3) = (2, 2, 2)
for selected values of p∗, c, and a.

p∗ c a→ 0.15 0.30 0.60 0.90 1

n L(δ0) n L(δ0) n L(δ0) n L(δ0) n L(δ0)

0.10 0 91 0.9008 7 0.9056 1 1.0000 1 1.0000 1 1.0000
2 951 0.9000 68 0.9023 8 0.9097 4 0.9268 3 1.0000
4 2098 0.9000 150 0.9004 16 0.9174 7 0.9499 6 0.9688

10 6052 0.9001 430 0.9009 45 0.9090 19 0.9211 16 0.9408
20 13259 0.9000 941 0.9005 97 0.9079 40 0.9120 34 0.9186

0.25 0 248 0.7507 18 0.7550 2 0.8373 1 1.0000 1 1.0000
2 1489 0.7502 106 0.7522 11 0.7861 5 0.7990 4 0.8750
4 2904 0.7501 206 0.7524 22 0.7516 9 0.7966 8 0.7734

10 7430 0.7500 527 0.7509 54 0.7641 22 0.7771 19 0.7597
20 15302 0.7501 1085 0.7502 111 0.7541 44 0.7820 37 0.7975

0.50 0 597 0.5006 42 0.5078 4 0.5869 2 0.5816 2 0.5000
2 2305 0.5000 163 0.5032 17 0.5041 7 0.5063 6 0.5000
4 4025 0.5002 285 0.5018 29 0.5121 11 0.5864 10 0.5000

10 9194 0.5001 651 0.5009 66 0.5049 26 0.5111 22 0.5000
20 17811 0.5001 1261 0.5005 127 0.5105 50 0.5032 42 0.5000

0.75 0 1194 0.2503 84 0.2536 8 0.2884 3 0.3383 3 0.2500
2 3378 0.2501 239 0.2504 24 0.2528 9 0.2782 7 0.3438
4 5407 0.2500 382 0.2512 38 0.2584 14 0.3039 12 0.2744

10 11219 0.2500 793 0.2509 79 0.2568 30 0.2720 25 0.2706
20 20580 0.2501 1455 0.2509 145 0.2586 55 0.2839 46 0.2757

0.99 0 3967 0.0100 279 0.0101 26 0.0118 9 0.0131 7 0.0156
2 7241 0.0100 510 0.0101 49 0.0105 17 0.0128 14 0.0112
4 9997 0.0100 705 0.0100 68 0.0105 24 0.0123 19 0.0154

10 17356 0.0100 1224 0.0101 119 0.0105 43 0.0117 35 0.0122
20 28521 0.0100 2013 0.0100 197 0.0105 72 0.0121 59 0.0124
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5. Methods of Estimation for the Unknown Parameters

In this section, we investigate the estimation of the parameters of the KM-GIKw
distribution based on the ML, MPS, and Bayesian methods.

5.1. Maximum Likelihood Estimates

In this part, the ML estimates (MLEs) of the parameters of the KM-GIKw distribution
are determined on the basis of complete samples. Thus, let v1, . . . , vn be the observed
values of an RV with the KM-GIKw distribution. We denote the parameter vector as
Ψ ≡ (ϑ1, ϑ2, ϑ3)

T . Let us set f (v) = f (v; Ψ) and F(v) = F(v; Ψ). The associated log-
likelihood function is provided by

log L(Ψ) =
n

∑
i=1

log[ f (vi; Ψ)]

= n− n log(e− 1) + n log ϑ1 + n log ϑ2 + n log ϑ3 + (ϑ1 − 1)
n

∑
i=1

log vi − (ϑ2 + 1)
n

∑
i=1

log
(

1 + vϑ1
i

)
+(ϑ3 − 1)

n

∑
i=1

log
[

1−
(

1 + vϑ1
i

)−ϑ2
]
−

n

∑
i=1

[
1−

(
1 + vϑ1

i

)−ϑ2
]ϑ3

.

The MLEs ϑ̂1, ϑ̂2, and ϑ̂3 of ϑ1, ϑ2, and ϑ3, respectively, are obtained by maximizing log L(Ψ)
with respect to Ψ. They can be obtained numerically based on the first partial derivatives
of log L(Ψ) with respect to Ψ. These derivatives are given by

∂ log L(Ψ)

∂ϑ1
=

n
ϑ1

+
n

∑
i=1

log vi − (ϑ2 + 1)
n

∑
i=1

log(vi)

1 + v−ϑ1
i

+ ϑ2(ϑ3 − 1)
n

∑
i=1

vϑ1
i log(vi)

(
1 + vϑ1

i

)−ϑ2−1

1−
(

1 + vϑ1
i

)−ϑ2

−ϑ2ϑ3

n

∑
i=1

vϑ1
i log(vi)

(
1 + vϑ1

i

)−ϑ2−1
[

1−
(

1 + vϑ1
i

)−ϑ2
]ϑ3−1

,

∂ log L(Ψ)

∂ϑ2
=

n
ϑ2
−

n

∑
i=1

log
(

1 + vϑ1
i

)
+ (ϑ3 − 1)

n

∑
i=1

(
1 + vϑ1

i

)−ϑ2
log
(

1 + vϑ1
i

)
1−

(
1 + vϑ1

i

)−ϑ2

−ϑ3

n

∑
i=1

(
1 + vϑ1

i

)−ϑ2
log
(

1 + vϑ1
i

)[
1−

(
1 + vϑ1

i

)−ϑ2
]ϑ3−1

,

and
∂ log L(Ψ)

∂ϑ3
=

n
ϑ3

+
n

∑
i=1

log
[

1−
(

1 + vϑ1
i

)−ϑ2
]
−

n

∑
i=1

[
1−

(
1 + vϑ1

i

)−ϑ2
]ϑ3

log
[

1−
(

1 + vϑ1
i

)−ϑ2
]

.

Setting the system of nonlinear equations ∂ log L(Ψ)
∂ϑ1

=
∂ log L(Ψ)

∂ϑ2
=

∂ log L(Ψ)
∂ϑ3

= 0 and
solving them simultaneously yields the MLEs. It is often more feasible to use nonlinear
optimization techniques, such as the quasi-Newton algorithm, to numerically maximize
log L(Ψ).

5.2. Maximum Product Spacing Estimates

A good alternative to the ML method is the MPS method, which consists of approx-
imating the Kullback–Leibler information measure. In this method, an ordered sample
of values of size n is taken from an RV with the KM-GIKw distribution, say v(1), . . . , v(n).
Then, the uniform spacings can be computed as follows:

ζ∗(Ψ) =
1

n + 1
log

{
n+1

∏
i=1

Θ(i)

}
,
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where 
Θ(1) = F(v(1); Ψ)

Θ(i) = F(v(i); Ψ)− F(v(i−1); Ψ) i = 2, . . . , n
Θ(n+1) = 1− F(v(n); Ψ).

with F
(

v(0); Ψ
)
= 0 and F

(
v(n+1); Ψ

)
= 1.

The logarithm of the geometric mean of the spacings is defined as follows:

ζ∗(Ψ) =
1

n + 1

n+1

∑
i=1

log

{
e

e− 1

{
e−
[
1−(1+v(i−1)

ϑ1)
−ϑ2

]ϑ3

− e−
[
1−(1+v(i)

ϑ1)
−ϑ2

]ϑ3
}}

.

The MPS estimates (MPSEs) ϑ̃1, ϑ̃2 and ϑ̃3 of ϑ1, ϑ2 and ϑ3, respectively, are obtained by
maximizing ζ∗(Ψ) with respect to Ψ. However, the obtained estimates cannot be expressed
analytically. As a result, a numerical technique using nonlinear optimization algorithms
can be used.

5.3. Bayesian Estimates

This section examines the estimation of the unknown parameters of the KM-GIKw
distribution using the Bayesian method. The squared error (SE) loss function (LF) and the
linear exponential LF (LELF) are two different types of LFs that may be considered for the
Bayesian estimates (BEs). We suggest employing separate gamma priors of parameters
ϑ1, ϑ2, and ϑ3 with the following PDFs:

π1(ϑ1) ∝ ϑa1−1
1 e−b1ϑ1 ϑ1 > 0, a1 > 0, b1 > 0,

π2(ϑ2) ∝ ϑa2−1
2 e−b2ϑ2 ϑ2 > 0, a2 > 0, b2 > 0,

π3(ϑ3) ∝ ϑa3−1
3 e−b3ϑ3 ϑ3 > 0, a3 > 0, b3 > 0,

(15)

where the hyperparameters as and bs, with s = 1, 2, 3, are picked to represent the prior
information of the unknown parameters. The joint prior distribution of Ψ = (ϑ1, ϑ2, ϑ3) is
given as follows:

π(Ψ) = π1(ϑ1)π2(ϑ2)π3(ϑ3), (16)

that is
π(Ψ) ∝ ϑa1−1

1 ϑa2−1
2 ϑa3−1

3 e−b1ϑ1−b2ϑ2−b3ϑ3 . (17)

Given the observed data v = (v1, v2, . . . , vn), the posterior density is provided via the
following equation:

π(Ψ | v) =
π(Ψ)L(Ψ)∫

(0,∞)3 π(Ψ)L(Ψ)dΨ
.

Thus, it is expressed as follows:

π(Ψ | v) ∝
ϑn+a1−1

1 ϑn+a2−1
2 ϑn+a3−1

3
e−n+b1ϑ1+b2ϑ2+b3ϑ3(e− 1)n

n

∏
i=1

vϑ1−1
i Ω−ϑ2−1

i

[
1−Ωi

−ϑ2
]ϑ3−1

e−[1−Ωi
−ϑ2 ]

ϑ3
, (18)

where Ωi =
(

1 + vϑ1
i

)
. The BE of L(Ψ) under the SE loss function, denoted by BE-SELF, is

provided via

ϑ̂BE−SELF = E[L(Ψ) | v] =
∫
(0,∞)3

L(Ψ)π(Ψ | v)dΨ. (19)

On the other hand, the LELF is an asymmetric LF that equally emphasizes under- and
overestimations. Underestimation can be less beneficial than overestimation in a number
of real-world scenarios, and vice versa. In these circumstances, a LELF can be proposed as
an alternative to the SELF, which is offered through the followin equation:[

L(Ψ), L̂(Ψ)
]
= eL̂(Ψ)−L(Ψ) − τ∗

[
L̂(Ψ)− L(Ψ)

]
− 1,
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where τ∗ 6= 0. Here, τ∗ > 0 demonstrates that an overestimation is more serious than an
underestimation, and τ∗ < 0 indicates the opposite. As τ∗ moves closer to zero, it replicates
the BE-SELF itself. For further information on this subject, see Refs. [37,38]. The BE of L(Ψ)
under this loss can be calculated as follows:

Ψ̂BE−LELF = E
[
e−τ∗L(Ψ) | v

]
= − 1

τ∗
log
[∫

(0,∞)3
e−τ∗L(Ψ)π(Ψ | v)dΨ

]
. (20)

As can be seen, there is no way to convert the estimates given in Equations (19) and (20)
into closed-form expressions. Thus, we use the Metropolis–Hasting (MH) algorithm to
create posterior samples and the Markov chain Monte Carlo (MCMC) method to generate
the appropriate BEs.

5.4. Markov Chain Monte Carlo

The MCMC technique is a generic simulation technique employed for computing and
sampling from posterior values of concern. In fact, the posterior uncertainty regarding the
parameters Ψ as well as a kernel estimate of the posterior distribution may both be fully
summarized by the MCMC samples (see Ref. [39]).

A discrete-time Markov chain (MC) serves as the foundation for the MCMC technique.
An MC is a stochastic process: Ψ(0), Ψ(1), Ψ(2), . . .. There are numerous methods to generate
proposals in the MCMC technique, like the MH algorithm.

5.5. MH Algorithm

A recommended distribution and beginning values for the unknown parameters Ψ
must be specified in order to implement the MH algorithm for the KM-GIKw distribution.
To this end, a multivariate normal distribution is considered; that is, N3

(
Ψ, SΨ

)
, where

SΨ comprises the variance–covariance matrix (V-CM) for the recommended distribution.
In fact, it is possible to gather unfavorable observations. The MLEs for Ψ are taken into
account for the starting values, i.e., Ψ(0) = Ψ̂MLE. As the asymptotic V-CM, SΨ is selected.
I−1(Ψ̂MLE), where I(.) is the Fisher information matrix. The selection of SΨ is shown to be
a key factor in the MH algorithm, where the acceptance rate depends on it. When taking all
of this into account, the MH algorithm’s steps for selecting a sample from the designated
posterior density in Equation (18) are as follows:

I. Put the value of Ψ’s initial parameter to Ψ(0) =
(

ϑ̂1
MLE

, ϑ̂2
MLE

, ϑ̂3
MLE

)
.

II. Perform the following operations for i = 1, 2, . . . , M:

II.1: Put Ψ = Ψ(i−1).
II.2: Using N3(log Ψ, SΨ), create a new candidate parameter value Ψ.
II.3: Specify ξ

′
= eΨ.

II.4: Determine β = π(ξ
′ |v)

π(Ψ|v) , where π(· | v) is given in Equation (18).

II.5: Create a sample U from the uniform distribution over (0, 1).
II.6: Take the new candidate or leave it out ξ

′


If U ≤ β set Ψ(i) = ξ

′

otherwise set Ψ(i) = Ψ.

Finally, it is possible to reject a portion of the size M of random samples taken from the
posterior density (burn-in), and then use the remaining samples to obtain the BEs. More
precisely, the BEs of Ψ(i) =

(
ϑ
(i)
1 , ϑ

(i)
2 , ϑ

(i)
3

)
utilizing the MCMC technique under the SELF

and LELF can be estimated as follows:
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Ψ̂BE−SELF =
1

M− lB

M

∑
i=lB

Ψ(i), (21)

and

Ψ̂BE−LELF = − 1
τ∗

log

[
1

M− lB

M

∑
i=lB

e−τ∗Ψ(i)

]
, (22)

where lB represents the number of burn-in samples.

5.6. Simulation Study

The aim of this section is to examine the behaviors of the MLE, MPSE, and BE, which
were covered in the previous sub-sections. To evaluate the effectiveness of the suggested
estimating methods, an MC analysis is employed. The computation is done using the
statistical programming language R. Additionally, the bbmle and BMT packages in R are
considered to compute the MPSEs and MLEs, respectively.

Utilizing a number of recommended estimation techniques, the MC simulation is run.
The KM-GIKw distribution may be used to create one thousand elements of random data
under the following assumptions:

1. The target sample sizes for the KM-GIKw distribution are n = 20, 30, 50, 100, and 200.
2. The parameters of the KM-GIKw distribution are assumed to be

Case 1: ϑ1 = 1.25, ϑ2 = 1.25, ϑ3 = 1.25.
Case 2: ϑ1 = 1.50, ϑ2 = 1.75, ϑ3 = 1.50.
Case 3: ϑ1 = 2.00, ϑ2 = 1.75, ϑ3 = 2.50.
Case 4: ϑ1 = 2.50, ϑ2 = 2.50, ϑ3 = 2.50.
Case 5: ϑ1 = 2.50, ϑ2 = 2.50, ϑ3 = 3.50.

Monte Carlo steps:

Step 1: Generate random data from the KM-GIKw distribution from Equation (8) with ϑ1,
ϑ2, and ϑ3, given the sample size n.

Step 2: Compute the MLEs of ϑ1, ϑ2, and ϑ3 using the true value of these parameters as
the initial values for solving the normal equations.

Step 3: Compute the MPSEs of ϑ1, ϑ2, and ϑ3.

Step 4: The MH method and MCMC technique are used with an informative prior (IP) to
determine the BEs. For the IP, assume that

a1 = 0.5, b1 = 1.5, a2 = 0.75, b2 = 1.75, a3 = 0.65, b3 = 1.65.

After that, the estimated values are calculated using these values. When utilizing
the MH algorithm, the MLEs take into account the initial guess values. Out of the
10,000 samples created from the posterior density and subsequently derived BEs
under two distinct LFs, the SELF and LELF (at τ∗ = −0.5, and τ∗ = 0.5), 2000 burn-in
samples are ultimately deleted.

Step 5: Repeat Step 1 to Step 4, the number of times: 1000, saving all estimates.

Step 6: Compute the following statistical measures of the performances for the point
estimates, i.e., the average estimated bias (ABias) and root mean square errors (RMSE).
These measures are computed as follows:

ABias(Ψ) =
1

1000

1000

∑
l=1

Ψ̂l −Ψ, RMSE(Ψ) =

√√√√ 1
1000

1000

∑
l=1

(
Ψ̂l −Ψ

)2,

where Ψ refers to the parameter vector, Ψ̂ refers to the estimated value of the given
parameter, and l indicates the number of the considered sample.
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Hence, MLEs and MPSEs are computed for two methods.
All the results of the Monte Carlo simulation for each case for the given parameters

(ϑ1, ϑ2, ϑ3) are reported in Tables 11–15, respectively. From these tabulated values, one can
indicate the following:

1. As n increases, the ABiases tend to zero and the RMSEs decrease.
2. The ABiases and RMSEs of parameters ϑ1 and ϑ2 for the MLEs have larger magnitudes

than those of the MPSEs. But, for ϑ3, they have larger magnitudes for the MPSEs than
for the MLEs.

3. For the BEs, one can order the RMSEs as follows: RMSE (BE-LELF: τ∗ = −0.5) <
RMSE (BE-SELF) < RMSE (BE-LELF: τ∗ = −0.5).

Table 11. ABiases and RMSEs of different estimation methods for the KM-GIKw distribution with
(ϑ1, ϑ2, ϑ3) = (1.25, 1.25, 1.25) at different sample sizes n.

n MLE MPSE BE-SELF BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5

ABias RMSE ABias RMSE ABias RMSE ABias RMSE ABias RMSE

20 ϑ1 0.7316 1.7584 −0.0425 1.3785 −0.5916 0.6724 −0.5532 0.7331 −0.6225 0.6705
ϑ2 1.8898 4.7333 0.8544 4.0574 −0.5588 0.5863 −0.5327 0.5676 −0.5808 0.6038
ϑ3 0.3424 1.5112 1.0926 2.2619 0.8328 0.9379 0.9602 1.0804 0.7827 1.2488

30 ϑ1 0.6693 1.6406 −0.0303 1.3035 −0.5440 0.6488 −0.5281 0.5777 −0.5823 0.6159
ϑ2 1.9725 4.7845 0.6817 3.3038 −0.5182 0.5532 −0.4917 0.5356 −0.5407 0.5700
ϑ3 0.2547 1.2547 0.8893 1.8100 0.9111 1.4813 0.8869 0.9990 0.7977 1.3782

50 ϑ1 0.4162 1.2621 −0.0479 1.1619 −0.4874 0.5438 −0.4558 0.5424 −0.5127 0.5614
ϑ2 1.3037 3.6018 0.5193 3.0619 −0.4504 0.5064 −0.4218 0.4925 −0.4748 0.5212
ϑ3 0.1706 0.8818 0.6128 1.2320 0.8205 1.6151 0.8234 1.1918 0.7281 1.2419

100 ϑ1 0.4184 1.0113 0.0026 0.8663 −0.3717 0.4531 −0.3459 0.4475 −0.3952 0.4653
ϑ2 1.0295 2.5959 0.3959 2.2452 −0.3434 0.4337 −0.3149 0.4260 −0.3684 0.4437
ϑ3 −0.0175 0.5828 0.2960 0.7670 0.5166 0.6365 0.5651 0.6879 0.4915 0.7394

200 ϑ1 0.2137 0.7564 −0.0919 0.6796 −0.3350 0.4342 −0.3137 0.4240 −0.3552 0.4451
ϑ2 0.5632 1.8495 0.1247 1.4341 −0.2966 0.4204 −0.2686 0.4202 −0.3211 0.4253
ϑ3 0.0361 0.5049 0.2805 0.6553 0.4592 0.5961 0.4996 0.6502 0.4240 0.5587

Table 12. ABiases and RMSEs of different estimation methods for the KM-GIKw distribution with
(ϑ1, ϑ2, ϑ3) = (1.50, 1.75, 1.50) at different sample sizes n.

n MLE MPSE BE-SELF BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5

ABias RMSE ABias RMSE ABias RMSE ABias RMSE ABias RMSE

20 ϑ1 0.5246 1.6695 −0.3838 1.3168 −0.7705 0.7938 −0.7391 0.7666 −0.7991 0.8192
ϑ2 2.3495 6.3725 0.4480 4.6099 −0.8761 0.8986 −0.8374 0.8665 −0.9085 0.9268
ϑ3 0.4631 1.5513 1.5144 2.5522 1.0225 1.1076 1.1902 1.2888 0.8873 0.9657

30 ϑ1 0.5510 1.6154 −0.1520 1.4451 −0.7220 0.7483 −0.6932 0.7237 −0.7487 0.7716
ϑ2 2.6210 6.6031 1.1645 5.7568 −0.8251 0.8504 −0.7863 0.8193 −0.8575 0.8782
ϑ3 0.3648 1.5363 1.1933 2.2814 1.0141 1.1110 1.1632 1.2751 0.8924 0.9809

50 ϑ1 0.4939 1.4495 −0.0869 1.2708 −0.6301 0.6669 −0.6020 0.6438 −0.6561 0.6890
ϑ2 2.3578 6.1063 0.9671 4.7559 −0.7399 0.7775 −0.6984 0.7468 −0.7748 0.8057
ϑ3 0.2193 1.1584 0.7910 1.6130 0.9391 1.4851 0.9978 1.1121 0.8195 1.0244

100 ϑ1 0.3337 1.0898 −0.1169 0.9897 −0.5622 0.6114 −0.5377 0.5925 −0.5853 0.6299
ϑ2 1.3954 3.9828 0.4382 3.0738 −0.6601 0.7196 −0.6202 0.6962 −0.6944 0.7431
ϑ3 0.0970 0.8204 0.5065 1.0929 0.7672 0.8745 0.8401 0.9510 0.7015 0.8066

200 ϑ1 0.2369 0.8830 −0.1593 0.8164 −0.4943 0.5620 −0.4720 0.5471 −0.5158 0.5771
ϑ2 0.9288 2.8265 0.1694 2.1749 −0.5844 0.6790 −0.5437 0.6690 −0.6194 0.6943
ϑ3 0.0641 0.6343 0.4225 0.8734 0.6613 0.7745 0.7171 0.8335 0.6108 0.7222
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Table 13. ABiases and RMSEs of different estimation methods for the KM-GIKw distribution with
(ϑ1, ϑ2, ϑ3) = (2.00, 1.75, 2.50) at different sample sizes n.

n MLE MPSE BE-SELF BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5

ABias RMSE ABias RMSE ABias RMSE ABias RMSE ABias RMSE

20 ϑ1 0.5611 1.7686 −0.1133 1.7178 −.8147 0.8634 −0.7595 0.8172 -0.8653 0.9073
ϑ2 2.7515 7.3533 1.8432 6.6930 −0.7407 0.7662 −0.6887 0.7238 −0.7834 0.8033
ϑ3 0.9808 3.7088 2.4913 5.5586 0.9436 1.0320 1.2018 1.3005 0.8197 1.8058

30 ϑ1 0.4477 1.6176 −0.1606 1.5830 −0.7126 0.7578 −0.6616 0.7147 −0.7599 0.7991
ϑ2 2.1123 6.0099 1.0897 5.1813 −0.6580 0.6906 −0.6014 0.6479 −0.7041 0.7292
ϑ3 0.6810 2.8021 2.0666 4.6228 0.9620 1.0637 1.1915 1.3043 0.7798 0.8808

50 ϑ1 0.3479 1.2937 −0.1061 1.2867 −0.5821 0.6500 −0.5380 0.6158 −0.6240 0.6839
ϑ2 1.5401 4.5769 0.8561 4.0290 −0.5681 0.6308 −0.5122 0.5986 −0.6144 0.6630
ϑ3 0.3670 2.0177 1.2711 3.2743 0.9065 1.0394 1.0907 1.2393 0.7583 0.8870

100 ϑ1 0.1935 0.9246 −0.1235 0.9579 −0.4646 0.5504 −0.4277 0.5240 −0.5002 0.5773
ϑ2 0.8289 2.7821 0.3507 2.3355 −0.4700 0.5689 −0.4178 0.5480 −0.5150 0.5933
ϑ3 0.1523 1.0608 0.6896 1.8525 0.7481 0.8986 0.8733 1.0322 0.6417 0.7910

200 ϑ1 0.1686 0.7778 −0.0629 0.7797 −.3791 0.5035 −0.3462 0.4838 −0.4111 0.5243
ϑ2 0.5959 1.7857 0.2476 1.5078 −0.3603 0.5352 −0.3060 0.5352 −0.4072 0.5463
ϑ3 0.0954 1.0296 0.4097 1.4428 0.6088 0.8107 0.7064 0.9182 0.5245 0.7242

Table 14. ABiases and RMSEs of different estimation methods for the KM-GIKw distribution with
(ϑ1, ϑ2, ϑ3) = (2.50, 2.50, 2.50) at different sample sizes n.

n MLE MPSE BE-SELF BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5

ABias RMSE ABias RMSE ABias RMSE ABias RMSE ABias RMSE

20 ϑ1 0.4491 1.9251 −0.3490 1.9073 −1.1529 1.2137 −1.0588 1.3444 −1.2202 1.2509
ϑ2 4.2616 11.3458 2.1601 8.7924 −1.3623 1.3793 −1.3010 1.3237 −1.4125 1.4263
ϑ3 1.2525 4.0293 3.0214 6.2343 1.2724 1.3530 1.5482 1.6413 1.2070 2.4814

30 ϑ1 0.3770 1.6916 −0.1718 1.7480 −1.0427 1.0855 −0.9886 1.0367 −1.0931 1.1317
ϑ2 3.5462 9.6190 1.9969 7.6894 −1.2911 1.3116 −1.2258 1.2535 −1.3438 1.3604
ϑ3 0.9190 3.2612 2.2280 5.3408 1.3217 1.4105 1.5663 1.6703 1.1262 1.2085

50 ϑ1 0.4073 1.4816 −0.0103 1.5210 −0.8714 0.9164 −0.8239 0.8745 −0.9168 0.9573
ϑ2 2.7688 7.6290 1.7529 6.7930 −1.1285 1.1640 −1.0582 1.1073 −1.1869 1.2144
ϑ3 0.4457 2.3392 1.2457 3.5957 1.1896 1.2912 1.3756 1.4911 1.0390 1.1345

100 ϑ1 0.1672 0.9408 −0.1319 0.9760 −0.7570 0.8105 −0.7170 0.7753 −0.7959 0.8453
ϑ2 1.1330 4.2257 0.5191 3.5660 −1.0104 1.0638 −0.9429 1.0121 −1.0679 1.1111
ϑ3 0.1391 0.9752 0.5157 1.6269 1.0352 1.1518 1.1717 1.3014 0.9207 1.0307

200 ϑ1 0.1454 0.8496 −0.0860 0.8652 −0.6253 0.7003 −0.5902 0.6713 −0.6598 0.7296
ϑ2 0.8290 3.0290 0.4561 3.3005 −0.8457 0.9369 −0.7745 0.8957 −0.9067 0.9798
ϑ3 0.1127 1.0067 0.3814 1.4589 0.8284 0.9687 0.9288 1.0842 0.7429 0.8758

Table 15. ABiases and RMSEs of different estimation methods for the KM-GIKw distribution with
(ϑ1, ϑ2, ϑ3) = (2.50, 2.50, 3.50) at different sample sizes n.

n MLE MPSE BE-SELF BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5

ABias RMSE ABias RMSE ABias RMSE ABias RMSE ABias RMSE

20 ϑ1 0.4693 1.8287 −0.2074 1.8708 −0.9543 0.9991 −0.8896 0.9418 −1.0147 1.0538
ϑ2 3.4209 9.1172 2.3421 8.9577 −1.1298 1.1524 −1.0441 1.0763 −1.1980 1.2156
ϑ3 1.4743 4.7706 3.5656 7.9989 1.0206 1.1420 1.3566 1.4808 0.8484 2.1064

30 ϑ1 0.4582 1.6699 −0.1520 1.6820 −0.8169 0.8657 −0.7596 0.8158 −0.8711 0.9140
ϑ2 2.9969 8.1020 1.7638 7.3588 −1.0134 1.0451 −0.9206 0.9677 −1.0868 1.1106
ϑ3 0.8390 3.6453 2.5670 6.5515 1.1261 1.2277 1.4255 1.5356 0.8874 0.9900

50 ϑ1 0.3047 1.4393 −0.1342 1.5184 −0.6835 0.7323 −0.6352 0.6895 -0.7302 0.7744
ϑ2 2.1835 6.9038 1.4187 6.5544 −0.8928 0.9375 −0.8033 0.8663 −0.9667 1.0008
ϑ3 0.5551 2.4754 1.8370 4.7715 1.0950 1.2145 1.3467 1.4806 0.8930 1.0108

100 ϑ1 0.1940 0.9748 −0.1029 1.0387 −0.5449 0.6194 −0.5035 0.5858 −0.5851 0.6532
ϑ2 1.1916 3.7559 0.5906 3.3470 −0.7221 0.8177 −0.6244 0.7661 −0.8012 0.8731
ϑ3 0.1698 1.3761 0.7391 2.3793 0.9181 1.0719 1.0980 1.2616 0.7669 0.9200

200 ϑ1 0.1452 0.8401 −0.0928 0.8728 −0.4836 0.5750 −0.4498 0.5495 −0.5168 0.6011
ϑ2 0.8788 3.1260 0.4142 2.7938 −0.6414 0.7807 −0.5578 0.7475 −0.7124 0.8211
ϑ3 0.1242 1.2396 0.5395 2.0225 0.8120 0.9940 0.9476 1.1376 0.6945 0.8747
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6. Real Data Analysis

In this section, we present applications to two datasets to demonstrate the usefulness
and adaptability of the KM-GIKw distribution. More precisely, adopting the modeling
viewpoint, the KM-GIKw model is fitted to these two datasets and compared with the
three-parameter GIKw model as well as two-parameter models, including the KM–Lomax
(KM-L), Lomax (L), KM–Burr XII (KM-BXII), BXII, KM-BX, BX, KM-W, and W models. For
the decision about the best-fitting competing model, we compute two important criteria,
e.g., the Kolmogorov–Smirnov statistic (KS) and the p-value (PVKS). The model that has
the lowest KS value and the largest PVKS value is the best model. Table 16 displays several
statistical measures for the two datasets.

Table 16. Descriptive analysis for both datasets.

Datasets Minimum Var Median Mean Standard Deviation Maximum SK KU

Dataset 1 1.00 4995.173 22.00 59.60 70.677 261.00 1.784 2.569
Dataset 2 1.10 0.471 1.70 1.90 0.686 4.10 1.862 0.686

6.1. The First Dataset

The first dataset consists of a sample of 30 failure times of an airplane’s air-conditioning
system. It was provided in Ref. [40]. The data are reported in Table 17.

Table 17. The failure time dataset.

246 21 120 23 261 87 7 14 62 47 225 71 42 20 5
12 71 11 14 120 11 3 16 52 95 14 11 16 90 1

6.2. The Second Dataset

The second dataset consists of the relief times of twenty patients receiving an analgesic
introduced in Ref. [41]. The data are described in Table 18.

Table 18. The values of the relief-time data.

1.5 1.2 1.4 1.9 1.8 1.6 2.2 1.1 1.4 1.3 1.7 1.7 2.7 4.1 1.8
2.3 1.6 2 3 1.7

Tables 19 and 20 show the numerical results of the MLEs, standard errors (SEs), KS,
and PVKS for both datasets. From these tables, we can note that the KM-GIKw model
has the lowest value of KS and the largest value of PVKS for both datasets. Then, we can
conclude that the KM-GIKw model gives the best fit. Figures 5–10 display the plots of
the empirical CDF (ECDF), empirical PDF (EPDF), and probability–probability (PP) plots
for both datasets. They support the numerical values in Tables 19 and 20; visually, the
KM-GIKw model provides the best fitting results. Tables 21 and 22 show the estimates for
the KM-GIKw model by using different methods of estimation.
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Table 19. Numerical results of the MLE, SE, KS, and PVKS for the first dataset.

Measures KM-GIKw GIKw KM-L L KM-BXII BXII KM-BX BX KM-W W

ϑ̂1 0.331 0.352 0.006 0.007 0.013 0.018

ϑ̂2 2.803 2.958 7.533 3.296 0.019 0.029

ϑ̂3 43.765 45.251 0.353 0.290

δ̂ 511.530 141.265 10.513 10.198 0.938 0.854

SE(ϑ̂1) 0.250 0.265 0.001 0.001 0.003 0.004

SE(ϑ̂2) 2.727 2.844 18.296 3.075 0.083 0.142

SE(ϑ̂3) 91.054 97.513 0.063 0.059

SE(δ̂) 1365.278 168.443 45.141 49.620 0.128 0.119

KS 0.131 0.135 0.145 0.142 0.372 0.377 0.181 0.196 0.146 0.153

PVKS 0.680 0.641 0.557 0.585 <0.001 <0.001 0.282 0.201 0.546 0.481

Table 20. Numerical results of the MLE, SE, KS, and PVKS for the second dataset.

Measures KM-GIKw GIKw KM-L L KM-BXII BXII KM-BX BX KM-W W

ϑ̂1 3.628 5.111 0.655 0.691 0.422 0.469

ϑ̂2 1.093 0.809 1670.930 1405.725 0.022 0.032

ϑ̂3 9.050 6.470 3.563 3.246

δ̂ 4716.450 2669.973 53.623 52.862 3.114 2.787

SE(ϑ̂1) 6.075 6.631 0.085 0.086 0.033 0.040

SE(ϑ̂2) 2.418 1.316 19,573.048 12,641.637 0.053 0.077

SE(ϑ̂3) 19.360 7.799 1.338 1.321

SE(δ̂) 55,248.332 24,014.725 129.668 125.750 0.458 0.427

KS 0.094 0.096 0.436 0.440 0.291 0.285 0.172 0.190 0.186 0.185

PVKS 0.995 0.993 0.001 0.001 0.068 0.078 0.595 0.465 0.492 0.501

Table 21. Different methods of estimation of the KM-GIKw distribution for the first dataset.

MLE MPSE BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5 BE-SELF

ϑ̂1 0.3310 0.0117 0.0090 0.0090 0.0090

ϑ̂2 2.8030 4.8698 2.7485 2.7346 2.7417

ϑ̂3 43.7650 45.7956 59.8282 35.2123 43.2794

Table 22. Different methods of estimation of the KM-GIKw distribution for the second dataset.

MLE MPSE BE-LELF: τ∗ = −0.5 BE-LELF: τ∗ = 0.5 BE-SELF

ϑ̂1 3.6280 0.8197 1.0706 1.0687 1.0696

ϑ̂2 1.0930 5.6366 10.1222 9.6864 9.9097

ϑ̂3 9.0500 3.9271 3.8744 3.7049 3.7908
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Figure 5. ECDF plots of all the competitive models for the first dataset.
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Figure 6. EPDF plots of all the competitive models for the first dataset.
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Figure 7. PP plots of all the competitive models for the first dataset.
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Figure 8. ECDF plots of all the competitive models for the second dataset.
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Figure 9. EPDF plots of all the competitive models for the second dataset.
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Figure 10. PP plots of all the competitive models for the second dataset.



Axioms 2023, 12, 739 33 of 35

7. Discussion and Conclusions

This study combines the generalized inverse Kumaraswamy distribution with the
Kavya–Manoharan-G family to produce a new three-parameter distribution known as
the Kavya–Manoharan generalized inverse Kumaraswamy distribution, abbreviated as
KM-GIKw. The corresponding PDF includes a wide range of forms, which increases its
versatility in estimating a variety of data types. This was shown by precise graphics. The
corresponding HF is a decreasing or upside-down function. Some fundamental mathe-
matical characteristics of the KM-GIKw distribution were derived, including the Rényi,
Tsallis, Arimoto, and Havrda and Charvat entropy measures. On the other hand, an ASP
was constructed using the KM-GIKw distribution when the life test was terminated at the
median lifetime of the suggested distribution. The required sample size was determined
using a variety of truncation periods and different characteristics of the proposed distri-
bution and degrees of consumer risk. Additionally, it was determined that the probability
of acceptance at the obtained sample sizes must be less than or equal to the complement
of the consumer’s risk. In the statistical part, the model parameters were estimated using
the ML, MPS, and Bayesian estimation methods. Based on these different methods, the
simulation study examined the performance of the model parameters. The adaptability
and possibilities of the KM-GIKw model were then illustrated by looking at real-world
data applications. It was shown that it can provide a better fit than previous competing
lifetime models.
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