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Abstract: This paper focuses on the weighted complementarity problem (WCP), which is widely
used in the fields of economics, sciences and engineering. Not least because of its local superlinear
convergence rate, smoothing Newton methods have widespread application in solving various
optimization problems. A two-step smoothing Newton method with strong convergence is proposed.
With a smoothing complementary function, the WCP is reformulated as a smoothing set of equations
and solved by the proposed two-step smoothing Newton method. In each iteration, the new method
computes the Newton equation twice, but using the same Jacobian, which can avoid consuming
a lot of time in the calculation. To ensure the global convergence, a derivative-free line search
rule is inserted. At the same time, we develop a different term in the solution of the smoothing
Newton equation, which guarantees the local strong convergence. Under appropriate conditions, the
algorithm has at least quadratic or even cubic local convergence. Numerical experiments indicate the
stability and effectiveness of the new method. Moreover, compared to the general smoothing Newton
method, the two-step smoothing Newton method can significantly improve the computational
efficiency without increasing the computational cost.

Keywords: weighted complementarity problem; derivative-free line search; two-step smoothing
Newton method; superquadratic convergence property

MSC: 65K05; 90C33

1. Introduction

The weighted complementarity problem (WCP for short) is

x ≥ 0, s ≥ 0, G(x, s, y) = 0, xs = w, (1)

in which x, s ∈ Rn, y ∈ Rm, w ∈ Rn
+ is a known weighted vector, G(x, s, y) : R2n+m →

Rn+m is a nonlinear mapping and xs represents the vector obtained by multiplying the
components of x with s, respectively.

The concept of WCP was introduced first by Potra [1], is an extension of the comple-
mentarity problem (CP) [2,3], and is widely used in engineering, economics and science. As
shown in [1], Fisher market equilibrium problems from economics can be transformed into
WCPs, and quadratic programming and weighted centering problems can be equivalently
converted to monotone WCPs. Not only that, the WCP has the potential to be developed
into atmospheric chemistry [4,5] and multibody dynamics [6,7].

When G(x, s, y) : R2n+m → Rn+m is a linear mapping, the WCP (1) can be degenerated
into the linear weighted complementarity problem (WLCP) as

x ≥ 0, s ≥ 0, Mx + Ns + Py = t, xs = w, (2)
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where M, N ∈ R(m+n)×n, P ∈ R(m+n)×m, t ∈ Rm+n. Many scholars have studied the WLCP
and have put forward many effective algorithms. Potra [1] proposed two interior-point
algorithms and discussed their computational complexity and convergence based on the
methods by Mcshane [8] and Mizuno et al. [9]. Gowda [10] discussed a class of WLCP over
Euclidean Jordan algebra. Chi et al. [11,12] proposed infeasible interior-point methods for
WLCPs, which have good computational complexity. Asadi et al. [13] presented a modified
interior-point method and obtained an iteration bound for the monotone WLCP.

On the other hand, recent years have witnessed a growing development of smoothing
Newton methods for WCPs whose basic idea is to convert the problem to a smoothing
set of nonlinear equations by employing a smoothing function, which is then solved by
Newton methods [14–19]. Zhang [20] proposed a smoothing Newton method for the WLCP.
For WCPs over Euclidean Jordan algebras, Tang et al. [21] presented a smoothing method
and analyzed its convergence property under some weaker assumptions.

The two-step Newton method [22–24], which typically achieves third-order conver-
gence when solving nonlinear equations H(x) = 0, has a higher order of convergence
than the classical Newton method. The two-step Newton algorithm computes not only a
Newton step defined as

dk
1 = −H′(xk)−1H(xk),

but also an approximate Newton step as

dk
2 = −H′(xk)−1H(yk),

where yk = xk + dk
1 and H′(x) represents the Jacobian matrix of H(x). Compared with

classical third-order methods such as Halley’s method [25] or super-Newton’s method [26],
the two-step Newton algorithm does not need to compute the second-order Hessen matrix,
and its computational cost is lower. Without adding additional derivatives and inverse
operators, it is possible to raise the order of convergence from second to third order by
evaluating the function only once.

In light of those considerations, we present here a two-step Newton algorithm pos-
sessing a high-order convergence rate for the WCP (1) on a smoothing complementarity
function and an equivalent smoothing system of equations. The new algorithm has the
following advantageous properties:

• The proposed method computes the Newton direction twice in each iteration. The
first calculation yields a Newton direction, and the second yields an approximate
Newton direction. Moreover, both calculations employ the same Jacobian matrix (see
Section 3), which saves computing costs.

• The new algorithm utilizes a new term ζk = min{γ, ε
$
k}where $ ∈ [1, 2] (see Section 3),

when computing the Newton direction, unlike existing Newton algorithms for the
WCP [20,21], which determine the local strong convergence. In particular, when $ = 2,
the algorithm has local cubic convergence properties.

• To obtain global convergence properties, we employ a derivative-free line search rule.

This paper is structured as follows. Section 2 presents a smoothing function and
discusses its basic properties. Section 3 presents a derivative-free two-step smoothing
Newton algorithm for the WCP, which is shown to be feasible. Section 4 deals with
convergence properties. Section 5 shows some experiment results. Section 6 gives some
concluding remarks.

2. Preliminaries

We define a smoothing function as

θε(u, v, r) =
√

u2 + v2 + 2r + 2ε− (u + v), (3)

where ε ∈ (0, 1) and r ≥ 0 is a given constant. It readily follows that θ0(u, v, r) = 0 if and
only if u ≥ 0, v ≥ 0, uv = r.
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By simple reasoning and calculations, we can conclude the following.

Lemma 1. For any 0 < ε < 1, θε(u, v, r) is continuously differentiable, where

(θε(u, v, r))′ε =
1√

u2 + v2 + 2r + 2ε
,

(θε(u, v, r))′u =
u√

u2 + v2 + 2r + 2ε
− 1,

(θε(u, v, r))′v =
v√

u2 + v2 + 2r + 2ε
− 1.

In addition, (θε(u, v, r))′u < 0 and (θε(u, v, r))′v < 0.

Let z = (ε, x, s, y) ∈ R× R2n+m and w ∈ Rn
+; we define M(z) by

M(z) =

 ε
θε(x, s, w)
G(x, s, y)

, (4)

where

θε(x, s, w) =

θε(x1, s1, w1)
...

θε(xn, sn, wn)

. (5)

It follows that the WCP (1) can be transformed into an equivalent equation:

M(z) = 0. (6)

The following lemma states the continuous differentiability of M(z).

Lemma 2. Define M(z) and θε(x, s, w) by (4) and (5), respectively. For any ε > 0, M(z) is
continuously differentiable with

M′(z) =

 1 0 0 0
D1 D2 D3 0
0 G′x G′s G′y

, (7)

where

D1 = vec

 1√
x2

i + s2
i + 2wi + 2ε

, i = 1, 2, . . . , n, (8)

D2 = diag

 xi√
x2

i + s2
i + 2wi + 2ε

− 1

, i = 1, 2, . . . , n, (9)

D3 = diag

 si√
x2

i + s2
i + 2wi + 2ε

− 1

, i = 1, 2, . . . , n. (10)

In order to discuss the nonsingularity of Jacobian matrix M′(z), it is necessary to make
some assumption.

Assumption 1. Assuming that G′y is column full rank, then it holds that any (∆x, ∆s, ∆y) ∈
R2n+m with

G′x∆x + G′s∆s + G′y∆y = 0
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yields 〈∆x, ∆s〉 ≥ 0.

For the WLCP (2), i.e., G(x, s, y) : R2n+m → Rn+m is a linear mapping, then Assump-
tion 1 reduces to

M∆x + N∆s + P∆y = 0,

which shows that G(x, s, y) is monotone, and this case has been discussed for the feasibility
of smoothing algorithms for the WLCP, see [1,20,27] and the reference therein.

Theorem 1. If Assumption 1 holds, then for any ε > 0, M′(z) is nonsingular.

Proof of Theorem 1. It only needs to verify that there exists ∆z = (∆ε, ∆x, ∆s, ∆y) ∈
R2n+m+1 such that

M′(z)∆z = 0, (11)

with ∆z = 0. Substituting (7) into (11) yields

∆ε = 0,

G′x∆x + G′s∆s + G′y∆y = 0,

D1∆ε + D2∆x + D3∆s = 0.

(12)

By Lemmas 1 and 2, we obtain that the diagonal matrices D2 and D3 are both negative
definite. Upon (12), we get

∆x = −D−1
2 D3∆s, (13)

and then
〈∆x, ∆s〉 = −∆sT D3D−1

2 ∆s ≤ 0. (14)

Using Assumption 1 yields that 〈∆x, ∆s〉 ≥ 0, which, together with (14), implies

〈∆x, ∆s〉 = −∆sT D3D−1
2 ∆s = 0,

and then ∆s = 0. We conclude from (13) that ∆x = 0; hence, ∆y = 0 due to the second
equation in (12). We complete the proof.

3. A Two-Step Newton Method

Now, we state the two-step smoothing Newton method. In order to understand
Algorithm 1 more intuitively, we also give the flow chart of the new algorithm, as shown in
Figure 1.

Algorithm 1 A Two-Step Newton Method.
Initial Step. Choose ε0 > 0 and γ, η ∈ (0, 1). Choose c ∈ (0, 1), l ∈ (0, 1) and $ ∈ [1, 2]. {ξk} ⊆ R+ satisfies that
∑∞

k=0 ξk ≤ ξ < ∞. Choose any (x0, s0, y0) ∈ R2n+m as a starting point and let µ0 = (ε0, 0, 0, 0)T ∈ R× R2n+m. Set
z0 = (ε0, x0, s0, y0) and k = 0.
Step 1. If ‖M(zk)‖ = 0, stop. Else, calculate ∆zk

1 by

M′(zk)∆zk
1 = −M(zk) + ζkµk , (15)

where ζk = min{γ, ε
$
k} and µk = (εk , 0, 0, 0)T . Let z̄k = zk + ∆zk

1.
Step 2. Calculate ∆zk

2 by
M′(zk)∆zk

2 = −M(z̄k) + ζkµk . (16)

Step 3. If
‖M(zk + ∆zk

1 + ∆zk
2)‖ ≤ c · ‖M(zk)‖, (17)

set βk = 1 and go to Step 5.
Step 4. Set βk be the maximum of 1, l, l2, . . . that satisfies the following inequality

‖M(zk + βk∆zk
1 + β2

k∆zk
2)‖2 ≤ (1 + ξk)‖M(zk)‖2 − ηβ2

k(‖∆zk
1‖2 + ‖∆zk

2‖2 + ‖M(zk)‖2). (18)

Step 5. Set zk+1 = zk + βk∆zk
1 + β2

k∆zk
2, k = k + 1 and return to Step 1.
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Figure 1. Flow chart of Algorithm 1.

Remark 1.

1. In each iteration, Algorithm 1 computes the Newton direction by the equations

M′(zk)∆zk
1 = −M(zk) + ζkµk,

and
M′(zk)∆zk

2 = −M(z̄k) + ζkµk,

using a new term ζk = min{γ, ε
$
k}, which is of significance for discussing the local strong

convergence of Algorithm 1. Moreover, although Algorithm 1 computes the Newton direction
twice, its computational cost is comparable to the classical Newton method.

2. Algorithm 1 employs a derivative-free line search rule, a variant of that in [28]. As is shown
in Theorem 2, the new derivative-free line search is feasible.

Theorem 2. If Assumption 1 holds, then Algorithm 1 is feasible. Moreover, we have

1. εk ≥ 0 for any k ≥ 0.
2. {εk} is non-increasing monotonically.
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Proof of Theorem 2. With Theorem 1, we get that M′(z) is invertible. Then, both Step 1
and Step 2 are feasible. Next, we show the feasibility of Step 4. Supposing not, then for any
βk ≥ 0,

‖M(zk + βk∆zk
1 + β2

k∆zk
2)‖2

> (1 + ξk)‖M(zk)‖2 − ηβ2
k(‖∆zk

1‖2 + ‖∆zk
2‖2 + ‖M(zk)‖2)

≥‖M(zk)‖2 − ηβ2
k(‖∆zk

1‖2 + ‖∆zk
2‖2 + ‖M(zk)‖2).

(19)

Hence,

‖M(zk + βk∆zk
1 + β2

k∆zk
2)‖2 − ‖M(zk)‖2 > ηβ2

k(‖∆zk
1‖2 + ‖∆zk

2‖2 + ‖M(zk)‖2) (20)

Dividing (20) by βk and taking the limit as k→ ∞, we can conclude that

lim
k→∞

‖M(zk + βk∆zk
1 + β2

k∆zk
2)‖2 − ‖M(zk)‖2

βk
≥ 0.

Therefore, we get

lim
k→∞

‖M(zk + βk∆zk
1 + β2

k∆zk
2)‖2 − ‖M(zk)‖2

βk

= 2M(zk)T(M′(zk)∆zk
1)

≥ 0.

(21)

On the other hand, if zk is not the solution of (1), then it follows from Step 1 that

M(zk)T(M′(zk)∆zk
1)

= M(zk)T(−M(zk) + ζkµk)

≤ (γ− 1)]‖M(zk)‖2

< 0,

(22)

where the first equality comes from the fact that ζk = min{γ, ε
$
k} ≤ γ ≤ 1. This contra-

dicts (21). Hence, Step 4 is feasible, and then Algorithm 1 is well-defined.
Then, we show εk ≥ 0 by induction. Suppose that εk ≥ 0 for some k > 0, we obtain

from (15) and (16) that
∆ε1

k = −εk + ζkεk, (23)

and
∆ε2

k = −εk − ∆ε1
k + ζkεk. (24)

Then, it holds by Step 5 that

εk+1 = εk + βk∆ε1
k + β2

k∆ε2
k

= εk + βk(−εk + ζkεk) + β2
k(−εk − ∆ε1

k + ζkεk) (25)

= (1− βk)εk + βkζkεk

= [1− βk(1− ζk)]εk,

which means that εk+1 ≥ 0 due to the fact that βk ≤ 1 and ζk ≤ 1. Moreover, it follows that

εk+1 = [1− βk(1− ζk)]εk ≤ εk,

i.e., {εk} is non-increasing monotonically.
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Lemma 3. If Assumption 1 holds, then {‖M(zk)‖} is convergent, and the sequence {zk} remains
in the level set L(z) of ‖M(z)‖

L(z) = {z ∈ R+ × R2n+m|‖M(z)‖ ≤ e
ξ
2 ‖M(z0)‖}.

Proof of Lemma 3. According to (18), we have

‖M(zk+1)‖2 ≤ (1 + ξk)‖M(zk)‖2. (26)

Since ∑∞
k=0 ξk ≤ ξ < ∞, it follows from Lemma 3.3 in [29] that {‖M(zk)‖2} is conver-

gent. Then, {‖M(zk)‖} is also convergent.
Moreover, we have

‖M(zk+1)‖ ≤
√

1 + ξk‖M(zk)‖
≤
√

1 + ξk ·
√

1 + ξk−1 · · · · ·
√

1 + ξ0‖M(z0)‖

=
k

∏
j=0

√
1 + ξ j‖M(z0)‖

≤
[

k

∑
j=0

1
k + 1

(1 + ξ j)

] k+1
2

‖M(z0)‖ (27)

≤
(

1 +
ξ

k + 1

) k+1
2
‖M(z0)‖

≤ e
ξ
2 ‖M(z0)‖.

4. Convergence Properties
4.1. Global Convergence

We first show a statement of great significance before analyzing the convergence
properties of Algorithm 1.

Theorem 3. If Assumption 1 holds, then it holds that lim
k→∞

βk‖M(zk)‖ = 0.

Proof of Theorem 3. Define S(k) and R(k) by

S(k) = {j ≤ k|(17) is satisfied}

and
R(k) = {0, 1, . . . , k}\S(k).

Let |S(k)| be the number of elements in S(k).
If (17) holds for infinite k, then |S(k)| → ∞ as k→ ∞. By (17), (18) and (27), we get

‖M(zk+1)‖2 ≤ ∏
i∈R(k)

(1 + ξi) ∏
i∈S(k)

l2‖M(z0)‖2

= ∏
i∈R(k)

(1 + ξi)l2|S(k)|‖M(z0)‖2

≤ eξ l2|S(k)|‖M(z0)‖2.

As k→ ∞, ‖M(zk+1)‖2 → 0, i.e., ‖M(zk+1)‖ → 0, and then lim
k→∞

βk‖M(zk)‖ = 0.
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Assume that (17) holds for finite k. Then, we have from (18) that

∞

∑
k=0

β2
k‖M(zk)‖ = 0,

which implies
lim
k→∞

βk‖M(zk)‖ = 0.

The proof is completed.

Theorem 4. If Assumption 1 holds, then {zk} converges to a solution of the WCP (1).

Proof of Theorem 4. According to Lemma 3, we know that {‖M(zk)‖} is convergent. Sup-
pose, without loss of generality, that {zk = (εk, xk, sk, yk)} converges to z∗ = (ε∗, x∗, s∗, y∗)
and lim

k→∞
‖M(zk)‖ = ‖M(z∗)‖ ≥ 0. Next, we show ‖M(z∗)‖ = 0 by contradiction. Assume

that ‖M(z∗)‖ > 0, then lim
k→∞

βk = 0 due to Theorem 3.

Let β̂ =
βk
l

, it follows from Step 4 that

‖M(zk + β̂∆zk
1 + β̂2∆zk

2)‖2 >(1 + ξk)‖M(zk)‖2

− ηβ̂2(‖∆zk
1‖2 + ‖∆zk

2‖2 + ‖M(zk)‖2),
(28)

for sufficiently large k.
On the other hand, since

M(zk + β̂(∆zk
1 + β̂∆zk

2)) = M(zk) + β̂M′(zk)(∆zk
1 + β̂∆zk

2) + o(β̂),

it follows that

‖M(zk + β̂(∆zk
1 + β̂∆zk

2))‖2

= ‖M(zk) + β̂M′(zk)(∆zk
1 + β̂∆zk

2)‖2 + o(β̂)

= ‖M(zk)‖2 + 2β̂M(zk)T
(

M′(zk)(∆zk
1 + β̂∆zk

2)
)
+ o(β̂).

(29)

Combining (15) and (16) with (29), we obtain

‖M(zk + β̂(∆zk
1 + β̂∆zk

2))‖2 = ‖M(zk)‖2 + 2β̂M(zk)T
(
−M(zk) + ζkµk

)
+ o(β̂)

= (1− 2β̂)‖M(zk)‖2 + 2β̂ζk M(zk)Tµk + o(β̂) (30)

≤ [1− 2β̂(1− γ)]‖M(zk)‖2 + o(β̂).

Then, from (28) and (30), we get

[1− 2β̂(1− γ)]‖M(zk)‖2 + o(β̂)

> (1 + ξk)‖M(zk)‖2 − ηβ̂2(‖∆zk
1‖2 + ‖∆zk

2‖2 + ‖M(zk)‖2)

≥ ‖M(zk)‖2 − ηβ̂2(‖∆zk
1‖2 + ‖∆zk

2‖2 + ‖M(zk)‖2).

It follows by simple calculation that

2(1− γ)‖M(zk)‖2 +
o(β̂)

β̂
< ηβ̂(‖∆zk

1‖2 + ‖∆zk
2‖2 + ‖M(zk)‖2). (31)

Passing to the limit in (31), then

2(γ− 1)‖M(z∗)‖2 ≥ 0.
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As ‖M(z∗)‖ > 0, it follows that
γ > 1,

a contradiction. Thus, ‖M(z∗)‖ = 0, which means that {zk} converges to a solution of the
WCP (1).

4.2. Local Convergence

We then discuss the local superquadratical convergence properties of Algorithm 1.

Theorem 5. If Assumption 1 holds, all J ∈ ∂M(z∗) are nonsingular. Suppose that G′(x, s, y) and
M′(x, s, y) are both Lipschitz continuous on some neighborhood of z∗, then

1. βk ≡ 1 for any sufficiently large k.
2. {zk} converges to z∗ locally superquadratically. In particular, {zk} converges to z∗ locally

cubically if $ = 2.

Proof of Theorem 5. Upon Theorem 4, we have that ‖M(z∗)‖ = 0. All J ∈ ∂M(z∗) are
nonsingular, so we have for any sufficiently large k that

‖M′(zk)−1‖ = O(1). (32)

Since G′(x, s, y) is Lipschitz continuous on some neighborhood of z∗, M(z) is strongly
semismooth and Lipschitz continuous on some neighborhood of z∗, namely,

‖M(zk)−M(z∗)−M′(zk)(zk − z∗)‖ = O(‖zk − z∗‖2), (33)

and
‖M(zk)‖ = ‖M(zk)−M(z∗)‖ = O(‖zk − z∗‖), (34)

for any sufficiently large k.
By the definition of ζk and µk, it follows that

‖ζkµk‖ ≤ ε
$+1
k ≤ ‖M(zk)‖$+1. (35)

Then, combining (15) and (32)–(35) implies

‖zk + ∆zk
1 − z∗‖ = ‖zk + M′(zk)−1(−M(zk) + ζkµk)− z∗‖

= O
(
‖M(zk)−M(z∗)−M′(xk)(zk − z∗) + ζkµk‖

)
≤ O(‖zk − z∗‖2) + O(‖M(zk)‖3)

= O(‖zk − z∗‖2),

(36)

which means that zk + ∆zk
1 is sufficiently close to z∗ for sufficiently large k. Then, according

to (34) and (36), we have that

‖M(zk + ∆zk
1)‖ = ‖M(zk + ∆zk

1)−M(z∗)‖
= O(‖zk + ∆zk

1 − z∗‖)
= O(‖zk − z∗‖2) = O(‖M(zk)‖2)

(37)



Axioms 2023, 12, 742 10 of 15

Hence, since $ ≥ 1, it follows from (16), (32), (35) and (37) that

‖∆zk
2‖ =

∥∥∥M′(zk)−1
(
−M(zk + ∆zk

1) + ζkµk

)∥∥∥
≤ O

(
‖M(zk + ∆zk

1)‖+ ‖ζkµk‖
)

= O(‖M(zk)‖2) + O(‖M(zk)‖$+1)

= O(‖M(zk)‖2),

(38)

combining with (34) and (36) yields

‖zk + ∆zk
1 + ∆zk

2 − ∆z∗‖ ≤ ‖zk + ∆zk
1 − z∗‖+ ‖∆zk

2‖
= O(‖zk − z∗‖2),

(39)

for any sufficiently large k, which also means that zk + ∆zk
1 + ∆zk

2 is sufficiently close to z∗

for a sufficiently large k, which, together with the Lipschitz continuity of M(z) on some
neighborhood of z∗, implies

‖M(zk + ∆zk
1 + ∆zk

2)−M(zk)−M′(zk)(∆zk
1 + ∆zk

2)‖ = O(‖∆zk
1 + ∆zk

2‖2). (40)

Then, it holds that

‖M(zk + ∆zk
1 + ∆zk

2)‖
≤ ‖M(zk) + M′(zk)(∆zk

1 + ∆zk
2)‖

+ ‖M(zk + ∆zk
1 + ∆zk

2)−M(zk)−M′(zk)(∆zk
1 + ∆zk

2)‖
= ‖M(zk) + M′(zk)∆zk

1‖+ ‖M(z̄k)‖
+ ‖M(z̄k) + M′(zk)∆zk

2‖+ O(‖∆zk
1 + ∆zk

2‖2).

(41)

Now, we consider the term

‖M(zk) + M′(zk)∆zk
1‖+ ‖M(z̄k)‖+ ‖M(z̄k) + M′(zk)∆zk

2‖+ O(‖∆zk
1 + ∆zk

2‖2).

By (15), (32) and (34), we obtain

‖∆zk
1‖ =

∥∥∥M′(zk)−1
(
−M(zk) + ζkµk

)∥∥∥
= O(‖M(zk)‖),
= O(‖zk − z∗‖).

(42)

On the other hand, according to (15), (16) and (35), we obtain

‖M(zk) + M′(zk)∆zk
1‖ = ‖ζkµk‖ = O(‖M(zk)‖$+1), (43)

and
‖M(z̄k) + M′(zk)∆zk

2‖ = ‖ζkµk‖ = O(‖M(zk)‖$+1). (44)

So, combining (34), (38) and (41)–(44), we have

‖M(zk + ∆zk
1 + ∆zk

2)‖
= O(‖M(zk)‖$+1) + O(‖zk − z∗‖2)

= o(‖M(zk)‖)
= ρk‖M(zk)‖,

(45)
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where ρk → 0. This means that (17) makes sense for a sufficiently large k, which shows that
βk ≡ 1 when zk is sufficiently close to z∗, i.e.,

zk+1 = zk + ∆zk
1 + ∆zk

2. (46)

By using (16), (32), (35), (46) and the Lipschitz continuity of M′(z) on some neighbor-
hood of z∗, we get

‖zk+1 − z∗‖
= ‖z̄k − z∗ + M′(zk)−1(−M(z̄k) + ζkµk)‖

= O
(
‖M(z̄k)−M(z∗)−M′(zk)(z̄k − z∗)‖+ ‖ζkµk‖

)
= O

(
‖M(z̄k)−M(z∗)−M′(z̄k)(z̄k − z∗) + (M′(z̄k)−M′(zk))(z̄k − z∗)‖+ ‖ζkµk‖

)
= O(‖z̄k − z∗‖2) + O(‖M(zk)‖$+1)

= O(‖zk − z∗‖$+1).

(47)

Moreover, we have from (34) that

‖M(zk+1)‖ = O(‖zk+1 − z∗‖) = O(‖zk − z∗‖$+1) = O(‖M(zk)‖$+1),

which means that {zk} converges to z∗ locally and superquadratically since $ ∈ [1, 2]. In
particular, if $ = 2, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖3)

and
‖M(zk+1)‖ = O(‖M(zk)‖3),

which means that {zk} converges to z∗ locally cubically.

5. Numerical Experiments

We implement Algorithm 1 in practice and use it to solve some numerical examples
to verify the feasibility and effectiveness in this section. All programs are implemented
on Matlab R2018b and a PC with 2.30 GHz CPU and 16.00 GB RAM. We also code the
algorithm in [20], denoted as SNM_Z, and compare it with the new algorithm. To illustrate
the performance of the new algorithm, we also code and compare the algorithm in [20],
denoted as SNM_Z, with Algorithm 1. The stopping criterion is ‖M(zk)‖ ≤ 10−6 and the
parameters are set as

l = 0.5, c = 0.8, γ = 0.01, ε0 = 0.1, η = 0.001 and ξk = 1/2k+2.

For SNM_Z, the stopping criterion is the same as that in Algorithm 1, and the parame-
ters are the same as [20].

Example 1. Consider an example of the WLCP (2) with

M =

(
A
B

)
, N =

(
0
−I

)
, P =

(
0
−AT

)
, t =

(
A f
g

)
,

where B ∈ Rn×n, A ∈ Rm×n whose elements are produced by the normal distribution on [0, 1],
f , g ∈ Rn are chosen uniformly from [0, 1] and [−1, 0], respectively. The weighted vector w ∈ Rn

is generated by w = uv with v = Bu− g, where u, v ∈ Rn are generated uniformly from [0, 1].

We test two kinds of problems using Algorithm 1 with different B, denoted by B1 and
B2. B1 is produced by setting B1 = QQT/‖QQT‖, where Q is generated uniformly from
[0, 1]. The diagonal matrix B2 is generated randomly on [0, 1]. The initial points x0, s0 and
y0 are chosen as (1, 0, . . . , 0)T with relevant dimensions in every experiment.
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First, in order to state the influence of $ on the local convergence, we perform different
$ for each case on B1. We perform three experiments for each problem and present the
numerical results in Table 1. In what follows, (AIT)IT represents the (average) number of
iterations, (ATime)Time is the (average) time taken for the algorithm to run in seconds,
and (AERO)ERO represents the (average) value of ‖M(zk)‖ in the last iteration. As we can
see in Table 1, Algorithm 1 has different local convergence rates with different values of $.
Moreover, Algorithm 1 has at least a local quadratic rate of convergence.

Then, we test an example of m = 400 and n = 800 for B1 to visually demonstrate the
local convergence properties of Algorithm 1 and SNM_Z. In what follows, we set $ = 2
in Algorithm 1. The results are shown in Table 2, which shows that Algorithm 1 has a
local cubic convergence rate whose convergence rate is actually faster than SNM_Z, which
possesses the local quadratic convergence rate.

Finally, we randomly performed 10 trials for each case. The tested results are shown
in Table 3, which demonstrates that Algorithm 1 carries out fewer iterations than SNM_Z.
In addition, although Algorithm 1 calculates the Newton direction twice in each iteration,
it does not consume too much time compared with SNM_Z.

Table 1. Numerical results for a WLCP with B1.

m n
$ = 1 $ = 1.5 $ = 2

IT Time ERO IT Time ERO IT Time ERO

500 1000
5 2.0413 1.7219× 10−10 4 1.9238 5.4462× 10−7 4 1.8250 5.8769× 10−12

6 2.3358 3.9422× 10−7 5 2.4771 3.1306× 10−13 4 1.7943 3.3544× 10−12

6 2.3764 1.3445× 10−11 5 2.4997 3.1950× 10−13 4 1.7302 3.5464× 10−12

1000 2000
6 14.0543 1.7549× 10−12 5 11.9847 5.9945× 10−7 4 12.4097 1.8342× 10−12

6 14.5208 2.6955× 10−12 5 11.8457 3.0670× 10−9 4 12.3936 1.1576× 10−8

6 14.2352 1.3315× 10−9 5 12.5786 2.7924× 10−10 4 12.4111 1.8763× 10−12

1500 3000
5 39.7915 5.0310× 10−7 5 38.5589 3.0246× 10−12 4 36.4203 6.2360× 10−12

7 48.1246 2.9957× 10−7 6 41.4926 3.2203× 10−12 4 39.9579 6.7978× 10−11

7 46.4935 1.3715× 10−9 6 41.8099 3.4429× 10−10 4 46.6347 2.0403× 10−11

2000 4000
6 110.1033 5.6894× 10−10 5 81.3782 5.9703× 10−7 4 100.4127 2.7987× 10−11

6 107.8945 2.2694× 10−8 6 104.6634 3.3573× 10−7 4 110.2353 1.2117× 10−11

7 128.1354 2.6992× 10−11 7 136.8423 5.7307× 10−12 4 103.2185 2.2580× 10−10

2500 5000
6 178.1547 3.4099× 10−10 5 176.0884 6.7770× 10−7 4 100.4127 2.7987× 10−11

6 261.9206 2.5631× 10−10 6 178.2723 1.1975× 10−10 4 110.2353 1.2117× 10−11

6 286.3750 6.7117× 10−12 6 209.1771 6.7177× 10−12 4 130.8529 8.7520× 10−12

3000 6000
6 371.0119 4.0263× 10−10 6 356.2151 1.8624× 10−8 4 316.1594 4.5234× 10−11

6 332.6154 2.4767× 10−8 6 306.6382 9.6163× 10−12 4 320.2794 6.5542× 10−11

6 352.4338 1.7184× 10−10 6 369.1693 8.3990× 10−8 4 320.2625 1.8997× 10−11

Table 2. Variation of the value of ‖M(zk)‖ with the number of iterations for B1.

k Algorithm 1 SNM_Z

1 3.5025× 100 9.0554× 100

2 1.4006× 10−1 1.5244× 100

3 1.7885× 10−4 1.3534× 10−1

4 3.0450× 10−12 4.6924× 10−3

5 \ 1.2604× 10−5

6 \ 1.5665× 10−10
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Table 3. Numerical comparison results for a WLCP.

B m n
Algorithm 1 SNM_Z

AIT ATime AERO AIT ATime AERO

B1

500 1000 4.0 1.6388 2.2736× 10−7 5.9 2.5001 3.8463× 10−8

1000 2000 4.0 15.8679 3.5679× 10−11 5.6 17.8929 7.1401× 10−8

1500 3000 4.1 42.0557 3.5400× 10−7 5.9 31.5197 3.7355× 10−8

2000 4000 4.1 90.4867 5.3932× 10−7 5.5 80.4471 5.7230× 10−8

2500 5000 4.1 179.8909 4.8241× 10−7 6.0 142.9854 7.1523× 10−8

3000 6000 4.1 300.2717 5.7601× 10−7 6.8 215.0043 2.5449× 10−8

B2

500 1000 4.2 1.5968 7.5550× 10−8 6.8 1.5040 1.0939× 10−7

1000 2000 4.2 9.5536 2.7452× 10−7 7.0 9.4423 9.6079× 10−8

1500 3000 4.4 32.8206 2.2022× 10−7 5.8 35.8170 3.9237× 10−8

2000 4000 4.5 80.3553 1.9778× 10−9 7.1 73.1503 1.2470× 10−7

2500 5000 4.6 159.6309 7.6437× 10−9 7.5 127.3718 1.2020× 10−7

3000 6000 4.8 270.6326 5.9255× 10−8 7.3 204.2898 1.1762× 10−7

Example 2. Consider an example of the WCP (1), where

G(x, s, y) =
(

Bx + CTy− s + d
C(x− t)

)
,

with B = diag(b) where b ∈ Rn is generated uniformly from [0, 1], C ∈ Rm×n whose entries are
produced from the standard normal distribution randomly. d, t ∈ Rn and w ∈ Rn are all generated
randomly from [0, 1].

We also generated 10 trials for each case. The initial points x0, s0 and y0 are all chosen
as (1, 0, . . . , 0)T with relevant dimensions. The test results are shown in Table 4, which also
indicates that Algorithm 1 is more stable and efficient than SNM_Z.

Table 4. Numerical comparison results for a WCP.

m n
Algorithm 1 SNM_Z

AIT ATime AERO AIT ATime AERO

500 1000 4.4 1.8729 1.7379× 10−7 6.7 2.4799 2.4252× 10−8

1000 2000 4.6 13.3430 7.0375× 10−9 6.9 17.1639 1.1370× 10−7

1500 3000 5.0 44.8153 1.2673× 10−7 7.4 61.5095 4.7525× 10−8

2000 4000 5.2 120.9742 4.0044× 10−8 6.8 114.9068 1.7140× 10−8

2500 5000 5.3 220.2452 3.6690× 10−8 7.3 217.9106 2.0620× 10−8

3000 6000 5.2 371.6272 2.2190× 10−9 6.6 404.5870 1.1662× 10−7

6. Conclusions

The two-step Newton method, known for its efficiency in solving nonlinear equations,
is adopted to solve the WCP in this paper. A novel two-step Newton method designed
specifically for solving the WCP is proposed. The best property of this method is its
consistent Jacobian matrix in each iteration, resulting in an improved convergence rate
without additional computational expenses. To guarantee the global convergence, a new
derivative-free line search rule is introduced. With appropriate conditions and parameter
selection, the algorithm achieves cubic local convergence. Numerical results show that
the two-step Newton method significantly improves the computational efficiency without
increasing the computational cost compared to the general smoothing Newton method.
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