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Abstract: Ideally, switching between subsystems and controllers occurs synchronously. In other
words, whenever a subsystem requires switching, its corresponding sub-controller will be promptly
activated. However, in reality, due to network delays, system detection, etc., the activation of
candidate controllers frequently lags, which causes issues with asynchronous switching between
controllers and subsystems. This asynchronous switching problem may affect system performance
and even make the system unstable because the state between the subsystem and the controller
may be inconsistent, resulting in the controller not being able to control the subsystem correctly. To
keep the system stable while using asynchronous switching, this work suggests an asynchronous
control technique for a class of discrete linear switching systems with time delay based on the mode-
dependent average dwell time (MDADT). First, we construct a state feedback controller and establish
a closed-loop system. In the asynchronous and synchronous intervals of subsystems and controllers,
different Lyapunov functions are selected, and sufficient conditions for exponential stability and the
H∞ performance of the closed-loop system under asynchronous switching are obtained. In addition,
using the MDADT switching strategy, the relevant parameters of each subsystem are designed and
the corresponding state–feedback controller gain matrix can be obtained. Finally, a switching system
with three subsystems is shown. The approach is confirmed by simulating it using the average dwell
time (ADT) switching strategy and the MDADT switching strategy separately.

Keywords: asynchronous control; average dwell time; exponential stability; mode dependent;
time delay

MSC: 93B36; 93C05; 93C65; 93D23

1. Introduction

A discrete system refers to all systems that are not continuous in time and space. They
are ubiquitous in practical problems. It is expected that when computers assist people in
simulating, controlling, and analyzing systems, they usually need to discretize time. In
addition, there are some discrete mathematical models in the fields of biology, industry, and
economics. For example, research on image encryption [1], human infectious diseases [2],
and changes in the market economy [3] all require the application of discrete systems. A
discrete switching system is an important type of discrete system. It realizes different
functions and behaviors through state switching, and it can also realize complex logic
operations, control, and decision-making functions.

The benefits of switching systems in terms of model composition have garnered
increased attention. Switched systems are not only widely studied in theory but also
have extensive applications in many engineering fields, such as electronic equipment [4],
aerospace technology [5], traffic management [6], environmental governance [7], and others.
The switched system is often a dynamical system made up of switching signals and a finite
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number of continuous or discrete dynamic subsystems. A piecewise constant function that
depends on state or time is the switching signal, which is also known as the switching rule,
switching strategy, or switching law. The stability of the switching system is somewhat
impacted by the choice of switching signal. When an inappropriate switching signal is
selected, the trajectories of the switched system that may make all subsystems stable are
divergent; similarly, when a suitable switching signal is selected, it is possible to stabilize a
switched system with unstable subsystems.

Research on switching signals is mainly reflected in the design of its dwell time.
At present, typical research on switching signals mainly includes arbitrary switching
signals [8], dwell time switching signals (DT) [9], average dwell time switching signals
(ADT) [10], mode-dependent average dwell time switching signals (MDADT) [11], and
persistent dwell time switching signals (PDT) [12]. DT restricts the switching time of two
consecutive subsystems to be no less than a constant τ. ADT requires a constant τa for the
average running time of the subsystem in the limited switching interval. MDADT makes
each subsystem have its own ADT, which reduces the conservativeness of research, so it
has a broader range of applications compared with the former two. The PDT switching
mechanism consists of fast switching and slow switching alternately: the τ part can repre-
sent slow switching and T part can represent fast switching. However, DT and ADT cannot
represent fast switching because they have strict constraints on the number of switches in a
given period. As this implies, PDT is more general than DT and ADT. The complexity of
PDT is much higher than that of DT and ADT, so there are few related studies.

There have been abundant research achievements in switched systems on system
stability analysis [13], tracking control problems [14], time delay problems [15], robust
control [16], gain analysis [17], etc. In recent years, scholars have also paid more attention
to asynchronous switching control [18–23]. Asynchronous switching refers to a situation
where the subsystem does not match the controller; that is, the switching signals of the
subsystem and the controller are inconsistent. Since the identification of subsystems and
the matching of corresponding controllers takes a certain amount of time, asynchronous
situations cannot be avoided. In [24], based on the asynchronous switching of subsystems
and filters, the design of the filter for discrete switched T-S fuzzy systems was discussed.
The challenge of designing a controller for time delay nonlinear switching systems with
asynchronous switching was investigated in [25]. During this operation of the system, the
system cannot always operate in an ideal state, and signal interference and fault phenomena
are inevitable. If the cause and location of the fault cannot be found in time, certain
losses will be caused. Therefore, introducing fault diagnosis and detection mechanisms
is an essential means to ensure system security. Considering the filter and subsystem
asynchrony, fault detection on switched systems is carried out in [26]. The time trigger
control is frequently used in sampling control to sample periodically; however, because
it samples in the form of cycles, wasting system resources, the proposed event trigger
mechanism aims to overcome this problem by monitoring changes in system performance
in real time by designing event triggers. Ref. [27] studies the multi-asynchronous switching
issue in switching systems with event triggering. In contrast to the prior asynchrony, the
system’s stability and controller design are investigated, along with the many asynchronous
challenges of subsystems, event triggers, and controllers. Due to the reasons of the system
itself or the technical limitations of the measurement means, it is impossible to measure
all of the system’s status information. By constructing an observer and using the input or
output information of the original system to construct a new system, studying the new
system allows one to discover the pertinent characteristics of the previous system. In [28],
the issue of observer design for nonlinear switching systems with asynchronous situations
is covered. There are few studies on asynchronous control of discrete switched systems,
and most of them are based on the ADT switching strategy. Thus, combining the MDADT
approach with asynchronous switching is essential.

The asynchronous control problem of discrete time delay switched systems is investi-
gated in this work using MDADT. The majority of research on switched systems up to now
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has centered on synchronous switching. The switched system finds it challenging to sustain
synchronous switching in practical circumstances. Since each subsystem and sub-controller
in the system operates at a different speed and responds to commands differently, the
associated controller may still be working on the current task when the subsystem has
begun to execute the next task. This affects the stability of the system by causing confusion
over the order in which different subsystems and sub-controllers should be executed. The
main problem with current asynchronous switching is how to ensure the stability of the
whole system when the subsystem does not match the corresponding sub-controller. In
this paper, we present a parameter associated with exponential decay that tackles this
problem by restricting the proportion of matching and mismatching durations between
the controller and its corresponding subsystem. The majority of earlier investigations
used the ADT technique, which meant that the dwell time and other parameters for each
subsystem were constant. However, these parameters are not optimal due to the differences
in each subsystem. Relatively speaking, MDADT technology is more flexible. It allows each
subsystem to choose the most-suitable parameters according to its own needs to determine
its dwell time, and it can set the switching delay of each sub-controller so that they do not
have to be all the same. The main motivation is to use this feature of MDADT to improve
system performance, and this approach to system performance verification differs from
earlier ones. The following are its primary contributions:

1. An innovative asynchronous control method is provided for discrete time delay
switched systems.

2. Using the MDADT switching strategy, the switched system’s exponential stability
and the necessary conditions for H∞ performance are discovered, and the gain matrix of
the controller is also computed.

The sections of this essay are organized as follows. The problem and definitions that
apply to it are presented in Section 2. In Section 3, adequate requirements for exponential
stability of discrete time delay switched systems and H∞ performance are laid out, and
controllers are also built. To test the efficacy of the asynchronous control method, Section 4
presents a discrete time delay switching system with two subsystems. Simulations are run
under the ADT switching signal and the MDADT switching signal. Section 5 presents the
results of the simulations of the example and the definition proof.

Notations: Rn represents n-dimensional Euclidean vector space, L2[0, ∞] is square
integrable function space, ‖ · ‖ stands for Euclidean norm, X > 0 and XT are positive
definite matrices and transpose matrices, λmin{· · · } and λmax{· · · } represent the minimum
and maximum eigenvalues of the matrix, respectively, col{· · · } represents a column vector,
and ∗ represents the symmetric block in the block matrix.

2. Problem Statement

This section presents the discussed system and the design of the controller.

2.1. System Description

Consider the following discrete time delay linear switched system:

x(ς + 1) = Aσ(ς)x(ς) + Bσ(ς)u(ς) + A1σ(ς)x(ς− d) + B1σ(ς)v(ς), ς ≥ 0

z(ς) = Cσ(ς)x(ς) + Dσ(ς)u(ς), ς ≥ 0

x(ς) = ϕ(ς), ς ∈ {−d, · · · , 0}
(1)

where x ∈ Rnx , u ∈ Rnu , and z ∈ Rnz are the state vector, control input, and controlled
output of the system, respectively; v ∈ Rnv represents the disturbance input and belongs
to L2[0, ∞); ϕ(ς) represents the initial vector-valued function; and d represents a constant
delay time. The symbol σ(ς) : N → M = {1, 2, · · · , m}, m ∈ N+ stands for the switching
signal; {(ς0, σ(ς0)), (ς1, σ(ς1)), · · · , (ςl , σ(ςl)), · · · , l = 0, 1, 2, 3, · · · } represents the sys-
tem’s switching time sequence; ς0 indicates the initial switching time; and ςl indicates the
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l-th switching time. If the l-th subsystem is turned on, ς ∈ [ςl , ςl+1) results. Aσ(ς), Bσ(ς),
A1σ(ς), B1σ(ς), Cσ(ς), and Dσ(ς) are constant matrices.

Definition 1 ([29]). For any switching signal σ(ς), let Nσ,j(ς0, ς) and Tj(ς0, ς) denote the switch-
ing times and running times of the j-th subsystem activated on [ς0, ς), respectively. If ∃N0j > 0,
τaj > 0, such that

Nσ,j(ς0, ς) ≤ N0j(ς0, ς) +
Tj(ς0, ς)

τaj
, ∀ς ≥ ς0 ≥ 0,

then τaj and N0j are known as MDADT and the chatter bound, respectively.

Definition 2 ([30]). The switched system is exponentially stable if there exist constants c > 0 and
0 < ζ < 1 such that the solution of the system satisfies:

‖x(ς)‖2 < cζ(ς−ς0)‖x(ς0)‖2, ∀ς > ς0.

Definition 3 ([30]). Given δ > 0 and c > 0, if the switching system is exponentially stable and
under zero initial conditions, for all nonzero v, the following inequality holds:

∞

∑
s=k0

e−cszT(s)z(s) ≤ δ2
∞

∑
s=k0

vT(s)v(s).

Then the switched system is exponentially stable with an exponential H∞ index δ.

Lemma 1 ([31]). For symmetric matrices X and W > 0 of any appropriate dimension and for any
constant ξ, the following inequalities hold:

−XW−1X ≤ ξ2W − 2ξX.

2.2. Controller

Establish a state–feedback controller in System (1):

u(ς) = Kσ′(ς)x(ς),

where σ′(ς) and Kσ′(ς) represent the switching signal and control gain matrix of the con-
troller, respectively. Let ∆l be the switching delay time of the controller relative to the
subsystem, and satisfy ∆l < ςl+1 − ςl . Then {(ς0 + ∆0, σ′(ς0)), (ς1 + ∆1, σ′(ς1)), · · · , (ςl +
∆l , σ′(ςl)), · · · , l = 0, 1, 2, 3, · · · } is the controller’s switching sequence.

2.3. Build a Closed-Loop System

Substituting the dynamic output feedback controller into the switching System (1), the
following closed-loop switched system can be obtained:

x(ς + 1) = (Aσ(ς) + Bσ(ς)Kσ′(ς))x(ς) + A1σ(ς)x(ς− d) + B1σ(ς)v(ς), ς ≥ 0

z(ς) = (Cσ(ς) + Dσ(ς)Kσ′(ς))x(ς), ς ≥ 0

x(ς) = ϕ(ς), ∀ς ∈ {−d, · · · , 0}
(2)

If σ(ςl) = i, the i-th subsystem is activated at the moment of system switching ςl ;
likewise, if σ(ςl−1) = j, the j-th subsystem is enabled at the time of system switching ςl−1.
T−(ς0, ς) and T+(ς0, ς) are utilized to indicate the matching and mismatching intervals
between the subsystem and the controller while the system is running in [ς0, ς).T−(ς− ς0),
and T+(ς− ς0) represent the interval lengths of T−(ς0, ς) and T+(ς0, ς).

In [ςl , ςl + ∆l), the l-th subsystem has already started running, but due to factors such
as controller model recognition, the controller at this time is from the (l − 1)-th subsystem,



Axioms 2023, 12, 747 5 of 18

which results in a mismatch between the subsystem and the controller. In [ςl + ∆l , ςl+1),
the l-th controller is activated and the subsystem matches the controller. Thus, System (2)
is expressed as follows:

x(ς + 1) = Āijx(ς) + A1ix(ς− d) + B1iv(ς),
z(ς) = C̄ijx(ς), ς ∈ [ςl , ςl + ∆l),
x(ς) = ϕ(ς),

(3a)


x(ς + 1) = Āix(ς) + A1ix(ς− d) + B1iv(ς),
z(ς) = C̄ix(ς), ς ∈ [ςl + ∆l , ςl+1),
x(ς) = ϕ(ς),

(3b)

where Āij = Ai + BiKj, C̄ij = Ci + DiKj, Āi = Ai + BiKi, C̄i = Ci + DiKi.
When v = 0, considering the stability of the system, System (3) becomes:

x(ς + 1) =

{
Āijx(ς) + A1ix(ς− d), ς ∈ [ςl , ςl + ∆l),
Āix(ς) + A1ix(ς− d), ς ∈ [ςl + ∆l , ςl+1),

(4)

where Āij = Ai + BiKj,Āi = Ai + BiKi.

3. Main Results

For the above switched System (2), this section mainly discusses two issues:
(1) Solve the sufficient conditions for the time delay closed-loop switched System

(2) to be exponentially stable and have the H∞ performance index under asynchronous
switching;

(2) Solve for the H∞ controller gains based on the stability condition.
The following theorem gives sufficient conditions to ensure the exponential stability

of System (4) by using multiple Lyapunov functions and the MDADT technique.

Theorem 1. For System (4), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, and µi > 1, if
there exist matrices Pi > 0, Qi > 0, and Ri > 0 satisfying

−eαi Pi + Qi 0 (Āij − I)T Ri ĀT
ij Pi

∗ −edαi Qi AT
1iRi AT

1iPi
∗ ∗ −d−1Ri 0
∗ ∗ ∗ −Pi

 < 0, (5)


−e−βi Pi + Qi 0 (Āi − I)T Ri ĀT

i Pi
∗ −e−dβi Qi AT

1iRi AT
1iPi

∗ ∗ −d−1Ri 0
∗ ∗ ∗ −Pi

 < 0, (6)

Pi ≤ µiPj, Qi ≤ µiQj, Ri ≤ µiRj, (7)

in f
ς>ς0

T−
σ(ς f )

(ς f+1 − ς f )

T+
σ(ς f )

(ς f+1 − ς f )
≥

αi + ε∗i
βi − ε∗i

, (8)

where f ∈ ψ(i) = σ(k f ) = i, i ∈ M, then System (4) is exponentially stable, and any MDADT
switching signal satisfies

τai >
ln(µiθi)

ε∗i
. (9)

Proof. When ς ∈ [ςl , ςl + ∆l), the subsystem does not match the controller at this time.
Consider the following Lyapunov function:
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Vα(xς, ς) = xT(ς)Pix(ς) +
ς−1

∑
s=ς−d

eαi(ς−1−s)xT(s)Qix(s) +
0

∑
r=1−d

ς−1

∑
s=ς+r−1

eαi(ς−1−s)hT(s)Rih(s), (10)

where h(s) = x(s + 1)− x(s).
Denote ∆Vα(xς, ς) = Vα(xς+1, ς + 1) − eαi Vα(xς, ς) and ξ(ς) = col(x(ς), x(ς − d)).

Then

∆Vα(xς, ς) = Vα(xς+1, ς + 1)− eαi Vα(xς, ς)

≤ xT(ς + 1)Pix(ς + 1)− eαi xT(ς)Pix(ς) + xT(ς)Qix(ς)

− edαi xT(ς− d)Qix(ς− d) + dhT(ς)Rih(ς)

(11)

It follows from (4) that

xT(ς + 1)Pix(ς + 1) = ξT(ς)
[
Āij A1i

]T Pi
[
Āij A1i

]
ξ(ς), (12)

and

dgT(ς)Rig(ς) = d(x(ς + 1)− x(ς))T Ri(x(ς + 1)− x(ς))

= dξT(ς)
[
Āij − I A1i

]T Ri
[
Āij − I A1i

]
ξ(ς).

(13)

From (11)–(13), we can obtain

∆Vα(xς, ς) = Vα(xς, ς)− eαi Vα(xς, ς)≤ ξT(ς)Ωijξ(ς), (14)

where

Ωij =
[
Āij A1i

]T Pi
[
Āij A1i

]
+ diag(−eαi Pi + Qi,−edαi Qi)

+ d
[
Āij − I A1i

]T Ri
[
Āij − I A1i

]
.

(15)

According to Schur’s complement, Equations (5) and (15) are equivalent; we can obtain

∆Vα(xς, ς) = Vα(xς+1, ς + 1)− eαi Vα(xς, ς) ≤ 0. (16)

This implies
Vασ(ςl)

(xς) ≤ eασ(ςl )
(ς−ςl)Vασ(ςl)

(xςl ). (17)

When ς ∈ [ςl + ∆l , ςl+1), the subsystem is matched with the controller at this time.
Consider the following Lyapunov function:

Vβ(xς, ς) = xT(ς)Pix(ς) +
ς−1

∑
s=ς−d

eβi(s−ς+1)xT(s)Qix(s) +
0

∑
r=1−d

ς−1

∑
s=ς+r−1

eβi(s−ς+1)hT(s)Rih(s), (18)

Denote ∆Vβ(xς, ς) = Vβ(xς+1, ς + 1)− e−βi Vβ(xς, ς). Similarly, we have

∆Vβ(xς, ς) = Vβ(xς, ς)− e−βi Vβ(xς, ς)≤ ξT(ς)Ωiξ(ς), (19)

where

Ωi =
[
Āi A1i

]T Pi
[
Āi A1i

]
+ diag(−e−βi Pi + Qi,−e−dβi Qi)

+ d
[
Āi − I A1i

]T Ri
[
Āi − I A1i

]
.

(20)
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According to Schur’s complement, Equations (6) and (20) are equivalent; we can obtain

∆Vβ(xς, ς) = Vβ(xς+1, ς + 1)− e−βi Vβ(xς, ς) ≤ 0. (21)

Thus,
Vβσ(ςl)

(xς) ≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl + ∆l). (22)

In the whole interval [0, ς], the Lyapunov function consists of (10) and (18):

Vσ(ς)(ς) =

{
Vασ(ς), ς ∈ [ςl , ςl + ∆l),
Vβσ(ς), ς ∈ [ςl + ∆l , ςl+1).

(23)

From (7), (10) and (18), we have

Vβ(xς, ς) ≤ µiVα(xς, ς), Vα(xς, ς) ≤ θiVβ(xς, ς), (θi = µie(αi+βi)d). (24)

When ς ∈ [ςl , ςl+1), from (17), (22) and (24), we have

Vσ(ςl)
(xς) ≤ e−βσ(ςl )

T−(ςl+1−ςl)Vβσ(ςl)
(xςl+∆l )

≤ µσ(ςl)
e−βσ(ςl )

T−(ςl+1−ςl)Vασ(ςl)
(x−ςl+∆l

)

≤ µσ(ςl)
e−βσ(ςl )

T−(ςl+1−ςl)eασ(ςl )
T+(ςl+1−ςl)Vασ(ςl)

(xςl )

≤ µσ(ςl)
θσ(ςl)

e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)Vβσ(ςl)
(x−ςl

)

≤ µσ(ςl)
θσ(ςl)

e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)

× µσ(ςl−1)
θσ(ςl−1)

e−βσ(ςl−1)
T−(ςl−ςl−1)eασ(ςl−1)

T+(ςl−ςl−1) ×Vβσ(ςl−1)
(x−ςl−1

)

≤ · · · ≤ µσ(ςl)
θσ(ςl)

µσ(ςl−1)
θσ(ςl−1)

· · · µσ(ς1)
θσ(ς1)

× e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)

× e−βσ(ςl−1)
T−(ςl−ςl−1)eασ(ςl−1)

T+(ςl−ςl−1) × · · · × e−βσ(ς0)
T−(ς1−ς0)eασ(ς0)

T+(ς1−ς0)Vσ(ς0)

= ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

αiT+(ς f+1−ς f )−βiT−(ς f+1−ς f )

×Vσ(ς0)
(xς0).

(25)

It follows from (8) that

αiT+(ςl+1 − ςl)− βiT−(ςl+1 − ςl) ≤ −ε∗i (ςl+1 − ςl). (26)

From (25) and (26), we can obtain

Vσ(ςl)
(xς)

≤ ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

αiT+(ς f+1−ς f )−βiT−(ς f+1−ς f )

×Vσ(ς0)
(xς0)

≤ ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

−ε∗i (ς f+1−ς f )

Vσ(ς0)
(xς0)

≤ e
∑

i∈M
N0,i ln(µiθi)

e
∑

i∈M, f∈ψ(i)
(

ln(µiθi)
τai

−ε∗i )(ς f+1−ς f )

Vσ(ς0)
(xς0).

(27)

Meanwhile, considering the Lyapunov function, there are positive numbers ã and
b̃ satisfying

ã‖x(ς)‖2 ≤ V(xς) ≤ b̃‖x(ς)‖2, (28)
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where

ã = min
i∈M
{λmin(Pi)},

b̃ = max
i∈M
{λmax(Pi)}+ d max

i∈M
{edαi λmax(Qi)}+

d(d + 1)
2

max
i∈M
{edαi λmax(Ri)}.

By Definition 2, c =
√

b̃
ã e

1
2 max

i∈M
{N0,i ln(µiθi)} is a constant, and 0 < ζ = e

1
2 max

i∈M
{ ln(µiθi)

τai
−ε∗i } <

1; we have
‖x(ς)‖≤ cζ(ς−ς0)‖x(ς0)‖. (29)

Therefore, System (4) is exponentially stable .

The following theorem provides sufficient conditions for resolving the controller gain
of System (4) based on Theorem 1.

Theorem 2. For System (4), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, and µi > 1, if
there exist matrices Xi > 0, Qi > 0, Ri > 0, and Yi > 0 satisfying

Θ1 0 Θ2 Θ3 Xj
∗ Θ4 Xi AT

1i Xi AT
1i 0

∗ ∗ −d−1R′i 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −Q′i

 < 0, (30)


Θ1

1 0 Θ1
2 Θ1

3 Xi
∗ Θ1

4 Xi AT
1i Xi AT

1i 0
∗ ∗ −d−1R′i 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −Q′i

 < 0, (31)

[
−µiXj Xj
∗ −Xi

]
≤ 0,

[
−µiQ′j Q′j
∗ −Q′i

]
≤ 0,

[
−µiR′j R′j
∗ −R′i

]
≤ 0, (32)

where

Θ1 = eαi (Xi − 2Xj), Θ2 = Xj AT
i + YT

j BT
i − Xj, Θ3 = Xj AT

i + YT
j BT

i , Θ4 = edαi (Q′i − 2Xi),

Θ1
1 = −e−βi Xi, Θ1

2 = Xi AT
i + YT

i BT
i − Xi, Θ1

3 = Xi AT
i + YT

i BT
i , Θ1

4 = e−dβi (Q′i − 2Xi).

Therefore, the corresponding state–feedback controller gain matrix Ki = YiX−1
i can be obtained.

Proof. Suppose the controller gain Ki = YiPi; let Xi = P−1
i , R−1

i = R′i and Q−1
i = Q′i.

Multiply both sides of (5) by diag{Xj, Xi, R′i, Xi} at the same time, and multiply both sides
of (6) by diag{Xi, Xi, R′i, Xi} at the same time. Through Lemma 1, we can obtain

− XjPiXj ≤ Xi − 2Xj,−XiQiXi ≤ Q′i − 2Xi. (33)

By Schur’s complement and (33), Conditions (30) and (31) are obtained. In addition,
Condition (32) is obtained by multiplying both sides of the inequality (7) by Xi, Q′i, and
R′i, respectively.

According to Theorem 1, we establish the exponential stability of System (4) in the
absence of perturbations and subsequently demonstrate that System (3) with perturbations
satisfies the sufficient conditions for H∞ performance.

Theorem 3. For System (3), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, µi > 1, and
γ > 0, if there exist matrices Pi > 0, Qi > 0, and Ri > 0 satisfying
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−eαi Pi + Qi 0 0 (Āij − I)T Ri ĀT
ij Pi C̄T

ij
∗ −edαi Qi 0 AT

1iRi AT
1iPi 0

∗ ∗ −γI BT
1iRi BT

1iPi 0
∗ ∗ ∗ −d−1Ri 0 0
∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −I


< 0, (34)



−e−βi Pi + Qi 0 0 (Āi − I)T Ri ĀT
i Pi C̄T

i
∗ −e−dβi Qi 0 AT

1iRi AT
1iPi 0

∗ ∗ −γI BT
1iRi BT

1iPi 0
∗ ∗ ∗ −d−1Ri 0 0
∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −I

 < 0, (35)

Pi ≤ µiPj, Qi ≤ µiQj, Ri ≤ µiRj, (36)

in f
ς>ς0

T−
σ(ς f )

(ς f+1 − ς f )

T+
σ(ς f )

(ς f+1 − ς f )
≥

αi + ε∗i
βi − ε∗i

, (37)

where f ∈ ψ(i) = σ(k f ) = i, i ∈ M, then the switched System (3) is exponentially stable and has
H∞ performance index γ̄ =

√
γ. Meanwhile, any MDADT switching signal satisfies

τai >
ln(µiθi)

ε∗i
. (38)

Proof. Consider System (3): denote F(ς) = zT(ς)z(ς)− γvT(ς)v(ς).
When ς ∈ [ςl , ςl + ∆l), the subsystem does not match the controller at this time; we

can obtain
Vασ(ςl)

(xς) ≤ eασ(ςl )Vασ(ςl)
(xς−1)− F(ς− 1). (39)

By iterating through the formula, we have

Vασ(ςl)
(xς)

≤ eασ(ςl )Vασ(ςl)
(xς−1)− F(ς− 1)

≤ eασ(ςl )(eασ(ςl )Vασ(ςl)
(xς−2)− F(ς− 2))− F(ς− 1)

· ··

≤ eασ(ςl )
(ς−ςl)Vασ(ςl)

(xςl )−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s).

(40)

When ς ∈ [ςl + ∆l , ςl+1), the subsystem is matched with the controller at this time; we
can obtain

Vβσ(ςl)
(xς) ≤ e−βi Vβσ(ςl)

(xς−1)− F(ς− 1). (41)

Similarly, we can obtain

Vβσ(ςl)
(xς)

≤ e−βσ(ςl )Vβσ(ςl)
(xς−1)− F(ς− 1)

≤ e−βσ(ςl )(e−βσ(ςl )Vσ(ςl)
(xς−2)− F(ς− 2))− F(ς− 1)

· ··

≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl+∆l )−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s).

(42)
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From (24), combined with equations (40) and (42), when ς ∈ [ςl , ςl+1), it can be
known that

Vσ(ςl)
(xς)

≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl+∆l )−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)Vασ(ςl)
(x−ςl+∆l

)−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l Vασ(ςl)

(xςl )−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))

−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l θσ(ςl)

Vβσ(ςl)
(x−ςl

)−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))

−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l θσ(ςl)

(µσ(ςl−1)
× e−βσ(ςl−1)

(ςl−ςl−1−∆l−1)(eασ(ςl−1)
∆l−1 θσ(ςl−1)

×Vβσ(ςl−1)
(x−ςl−1

)−
ςl−1+∆l−1−1

∑
s=ςl−1

eασ(ςl−1)
(ςl−1+∆l−1−s−1)F(s))−

ςl−1

∑
s=ςl−1+∆l−1

e−βσ(ςl−1)
(ς−s−1)F(s))

−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))−

ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ · · · ≤ e−βσ(ςl )
(ς−ςl−∆l) × (eασ(ςl )

∆l µσ(ςl)
θσ(ςl)

× · · · × µσ(ς1)
θσ(ς1)

× (e−βσ(ς0)
(ς1−ς0−∆0)

× (eασ(ς0)
∆0 Vσ(ς0)

(xς0)−
ς0+∆0−1

∑
s=ς0

eασ(ς0)
(ς0+∆0−s−1)F(s))−

ς1−1

∑
s=ς0+∆0

e−βσ(ς0)
(ς1−s−1)F(s))

− · · · −
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))−

ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

(43)

Under zero initial conditions, i.e., x(ς0) = 0, from (37) and (43), we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

vT(s)v(s). (44)

Multiply both sides of (44) by e
∑

i∈M, f∈ψ(i)
Nσ,i(s,ς f+1)ln(µiθi)

; we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)+Nσ,i(s,ς f+1)ln(µiθi)

zT(s)z(s)

≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)+Nσ,i(s,ς f+1)ln(µiθi)

vT(s)v(s).

(45)
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Multiply both sides of inequality (45) by e
∑

i∈M, f∈ψ(i)
−Nσ,i(ς f ,ς f+1)ln(µiθi)

; we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)−Nσ,i(ς f ,s)ln(µiθi)

zT(s)z(s)

≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)−Nσ,i(ς f ,s)ln(µiθi)

vT(s)v(s).

(46)

Note Nσ,i(ς f , s) <
s−ς f

τai
. From (38), we have

Nσ,i(ς f , s)ln(µiθi) ≤ ε∗i (s− ς f ). (47)

It follows from (46) and (47) that

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−ς f−1)

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

vT(s)v(s). (48)

Thus,

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (s−ς f )

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

vT(s)v(s). (49)

This implies

∞

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (s−ς f )

zT(s)z(s) ≤ γ
∞

∑
s=ς0

vT(s)v(s). (50)

According to Definition 3, System (3) is exponentially stable and has H∞ performance
index γ̄ =

√
γ.

The following theorem provides sufficient conditions for resolving the controller gain
of System (3) based on Theorem 3.

Theorem 4. For System (3), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, µi > 1, and
γ > 0, if there exist matrices Xi > 0, Qi > 0, Ri > 0, and Yi > 0 satisfying

Σ1 0 0 Σ2 Σ3 Σ4 Xj
∗ Σ5 0 Xi AT

1i Xi AT
1i 0 0

∗ ∗ −γI BT
1i BT

1i 0 0
∗ ∗ ∗ −d−1R′i 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −Q′i


< 0, (51)



Σ1
1 0 0 Σ1

2 Σ1
3 Σ1

4 Xi
∗ Σ1

5 0 Xi AT
1i Xi AT

1i 0 0
∗ ∗ −γI BT

1i BT
1i 0 0

∗ ∗ ∗ −d−1R′i 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −Q′i


< 0, (52)

[
−µiXj Xj
∗ −Xi

]
≤ 0,

[
−µiQ′j Q′j
∗ −Q′i

]
≤ 0,

[
−µiR′j R′j
∗ −R′i

]
≤ 0, (53)
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where

Σ1 = eαi (Xi − 2Xj), Σ2 = Xj AT
i + YT

j BT
i − Xj, Σ3 = Xj AT

i + YT
j BT

i , Σ4 = XjCT
i + YT

j DT
i ,

Σ5 = edαi (Q′i − 2Xi), Σ1
1 = e−βi Xi, Σ1

2 = Xi AT
i + YT

i BT
i − Xi, Σ1

3 = Xi AT
i + YT

i BT
i ,

Σ1
4 = XiCT

i + YT
i DT

i , Σ1
5 = e−dβi (Q′i − 2Xi).

Therefore, the corresponding state–feedback controller gain matrix Ki = YiX−1
i can be obtained.

Proof. Multiply both sides of (34) by diag{Xj, Xi, I, R′i, Xi, I} at the same time, and mul-
tiply both sides of (35) by diag{Xi, Xi, I, R′i, Xi, I} at the same time. Similarly, by Schur’s
complement, conditions (51)–(53) can be obtained.

4. Numerical Example

Consider the discrete time delay switching System (1) with three subsystems, whose
parameters are set as follows:

A1 =

[
−0.1 0

0 0.2

]
, B1 =

[
−0.4 0
−1.8 −0.6

]
, A11 =

[
−0.6 0
0.5 0.7

]
, B11 =

[
−0.07 0

0 −0.2

]
,

C1 =

[
−0.6 0.8
1.7 0.5

]
, D1 =

[
−1.9 1
0.8 1.2

]
, A2 =

[
0.01 0

0 −0.08

]
, B2 =

[
−1.1 −0.07
1.6 0.5

]
,

A12 =

[
0.1 0
0 −0.2

]
, B12 =

[
−0.3 0

0 −0.4

]
, C2 =

[
0.3 −1.4
−0.8 −1

]
, D2 =

[
1 0.1
−0.3 −1.5

]
,

A3 =

[
−0.1 0

0 0.1

]
, B3 =

[
−0.8 0.6
1.6 0.5

]
, A13 =

[
0.1 −0.1
0 −0.8

]
, B13 =

[
−0.008 0

0 −0.1

]
,

C3 =

[
−0.3 −1.6
−1.5 1.1

]
, D3 =

[
−0.4 0.7
0.2 −1.2

]
, v(ς) =

[
2−ςsin(2ς) 2−ςcos(2ς)

]T .

We compare this switched system under the MDADT switching strategy and the ADT
switching strategy. A set of appropriate data is chosen by contrasting the impact of each
parameter on the system, as illustrated in Table 1. The MDADT switching strategy makes
each subsystem have its own ADT; that is, the parameters of each subsystem are different.
Choose α1 = 1.7, β1 = 2.5, µ1 = 1.1, and ε∗1 = 1.7; then obtain τa1 > 9.99 s by solving (9);
similarly, choose α2 = 1.2, β2 = 2.1, µ2 = 2.2, and ε∗2 = 1.4 and obtain τa2 > 10.26 s; choose
α3 = 1.8, β3 = 2, µ3 = 2.3, and ε∗3 = 1.3 and obtain τa3 > 12.97 s. By solving (51)–(53), we
can get the gain matrix of the controller:

K1 =

[
0.4062 0.7363
−1.0538 −1.1525

]
, K2 =

[
−0.2024 −0.2399
−0.6497 0.1711

]
, K3 =

[
0.4055 −0.1867
−0.7019 −0.0834

]
,

The running time of each subsystem is the same when using the ADT switching
strategy, so choose α = 1.8, β = 2.5, µ = 1.03, and ε∗ = 1.7, and obtain τa > 10.15 s. By
solving (51)–(53), we can get the gain matrix of the controller:

K1 =

[
0.3793 1.0235
−1.0086 −1.2475

]
, K2 =

[
−0.1863 −0.2506
−0.7474 0.2720

]
, K3 =

[
0.5937 −0.3481
−0.8036 0.0012

]
,

To eliminate the impact of other variables, the MDADT switching strategy is chosen
with the values α1 = α2 = α3 = 1.8, β1 = β2 = β3 = 2.5, µ1 = µ2 = µ3 = 1.03,
ε∗1 = ε∗2 = ε∗3 = 1.7; however, two sets of distinct average dwell times τa1 = 11 s, τa2 = 12 s,
τa3 = 14 s and τa1 = 11 s, τa2 = 13 s, τa3 = 15 s are selected. Because the parameters of
these two groups are the same as those under the ADT switching strategy (but the dwell
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time of each subsystem is different), the controller gain matrices of these two groups are
the same as those under the ADT switching strategy.

Table 1. The parameters and calculation results of the system under the ADT switching signal and
the MDADT switching signal.

Switching
Schemes ADT MDADT MDADT MDADT

Parameters
α = 1.8, β = 2.5,

µ = 1.03, ε∗ = 1.7,
d = 4

α1 = α2 = 1.8,
α3 = 1.8, β1 = 2.5,

β2 = β3 = 2.5,
µ1 = µ2 = 1.03,

µ3 = 1.03, ε∗1 = 1.7,
ε∗2 = ε∗3 = 1.7,

d = 4

α1 = α2 = 1.8,
α3 = 1.8, β1 = 2.5,

β2 = β3 = 2.5,
µ1 = µ2 = 1.03,

µ3 = 1.03, ε∗1 = 1.7,
ε∗2 = ε∗3 = 1.7,

d = 4

α1 = 1.7, α2 = 1.2,
α3 = 1.8, β1 = 2.5,
β2 = 2.1, β3 = 2,

µ1 = 1.1, µ2 = 2.2,
µ3 = 2.3, ε∗1 = 1.7,
ε∗2 = 1.4, ε∗3 = 1.3,

d = 4

Dwell time τa = 11 τa1 = 11, τa2 = 12,
τa3 = 14

τa1 = 11, τa2 = 13,
τa3 = 15

τa1 = 11, τa2 = 12,
τa3 = 13

H∞ index 1.14 1.14 1.14 0.78

Figures 1–4 describe the switching signals of the subsystem and controller. When
v = 0, let x(0) = [0.3,−2.3]T . The motion trajectories of the system under the switching
strategy of ADT and MDADT are illustrated in Figures 5–8, respectively. According to the
graph, under the ADT switching strategy, the system gradually tends to be stable at 30 s,
but it is still accompanied by fluctuations until it stabilizes at 60 s. The highest amplitude
of the system is about 7.5, and the fluctuation is large before the system is stable. However,
under the MDADT switching strategy, we can see that the system has stabilized around
30 s. Figure 6 has obvious fluctuations around 60 s and 96 s, Figure 7 also has obvious
fluctuations around 62 s, and Figure 8 almost stabilizes after 30 s. Prior to achieving stability,
it is noticeable that the vibration amplitude in Figure 5 is considerably greater than that in
Figures 6–8 and exhibits a clear and dramatic variation. On the other hand, the paths of the
systems depicted in Figures 6–8 exhibit comparatively smaller fluctuations within a specific
range. Hence, we can observe that if the residence time of each subsystem is changed, the
motion path of the system will be changed accordingly. In line with the MDADT switching
strategy, we have the flexibility to select distinct parameters for each subsystem in order to
modify its residence time, thereby facilitating rapid stabilization of the system.
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Figure 1. ADT switching signal.
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Figure 2. MDADT switching signal with τa1 = 11, τa2 = 12, and τa3 = 14.
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Figure 3. MDADT switching signal with τa1 = 11, τa2 = 13, and τa3 = 15.
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Figure 4. MDADT switching signal with τa1 = 11, τa2 = 12, and τa3 = 13.
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Figure 5. State response of System (4) under ADT switching signal.
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Figure 6. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 12,
τa3 = 14.
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Figure 7. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 13, and
τa3 = 15.
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Figure 8. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 13.

Let x(0) = [0, 0]T when there is a disturbance. Figures 9–12 depict the switching
system’s movement trajectory under asynchronous switching based on the ADT switching
strategy and the MDADT switching strategy. The figure shows that when using the ADT
switching strategy, the system in Figure 9 experienced obvious drastic changes before it
was stable, and it began to stabilize at about 30 s, but it was still accompanied by obvious
fluctuations, and it was not completely stable until 57 s, with the largest amplitude being
0.038. In contrast, under the MDADT switching strategy, the system in Figure 10 tends to be
stable at about 30 s, but there are still obvious fluctuations around 59 s and 97 s. The system
in Figure 11 is generally stable around 33 s and has minimal fluctuations. The system in
Figure 12 is nearly stable around 25 s, has significantly reduced fluctuation compared to
Figure 9, and has a maximum amplitude of 0.021.
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Therefore, under the MDADT switching strategy, we can set the dwell time for each
subsystem so that the system can reach a stable state faster. However, the ADT switching
strategy limits the dwell time for each subsystem, resulting in equal dwell times for each
subsystem, which has certain limitations. Clearly, compared to the ADT switching strategy,
the MDADT switching strategy can better maintain the robust performance of the system.
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Figure 9. State response of System (3) under ADT switching signal.
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Figure 10. State response of system (3) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 14.
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Figure 11. State response of System (3) under MDADT switching signal with τa1 = 11, τa2 = 13, and
τa3 = 15.
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Figure 12. State response of System (3) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 13.

5. Conclusions

This study examines the asynchronous control problem for discrete time delay switched
linear systems based on MDADT. In order to address the independent switching delay
of the sub-controller in relation to the subsystem, a classification analysis is conducted,
and distinct Lyapunov functions are chosen for the matching and mismatching intervals
between the subsystem and the controller. According to the MDADT technique, the stabil-
ity of the asynchronous switching system can be achieved by modifying the proportion
between the matching period and the mismatching period. Ultimately, the simulation of a
discrete time delay switching system with three subsystems under the ADT technique and
the MDADT technique is given. The analysis of the data confirms the effectiveness of the
designed asynchronous control method.
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