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Abstract: Let 2 be a prime *-algebra. A product definedas U eV = UV* + VU forany U,V € ,
is called a bi-skew Jordan product. A map ¢ : A — 2, defined as é‘(pn (Lll, u,,..., Un>> =

YiqPn (Ul, Uy, ..., U1, E(Ug), Uga1, - -, LI,,) for all Uy, Uy, ..., U, € 2, is called a non-linear bi-
skew Jordan n-derivation. In this article, it is shown that ¢ is an additive *-derivation.
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1. Introduction

Let 2 be an associative *-algebra. Recall that a map ¢ : 2 — 2, is called an additive
derivationif (U + V) =¢(U) +¢(V) and {(UV) = ¢(U)V + UE(V) forall U,V € 2. Let
UxV =UV+VU*"and [U, V], = UV — VU* denote the skew Jordan product and skew
Lie product of elements U, V' € 2, respectively. These products are also called *-Jordan
product and *-Lie product, respectively. The difficulty of the representability of quadratic
functionals by sesqui-linear functionals on left-modules over *-algebras is greatly impacted
by the existence of such Jordan bracket-based products in regard to the so-called Jordan
*-derivations (see [1-3]). We say a map ¢ : 2 — 2, without considering the linearity
assumption, is called a multiplicative skew (or *)-Jordan derivation if

SUV)=¢UU)«V+UxZ(V)

forall U,V € 2. Furthermore, without the linearity assumption, a map ¢ : 2 — 2 is called
a multiplicative skew or x-Jordan triple derivation if it satisfies

CU*V«W)=¢U)*V«W+UxZ(V)«WH+U*V*Z(W)

forall U,V,W € 2. Amap ¢ : A — 2 is said to be an additive *-derivation if it is an
additive derivation and satisfies {(U*) = ¢(U)* for all U € 2. Many authors investigated
the structure of skew Jordan derivations and skew Jordan triple derivations on different
algebras, see, e.g., [2-6]. For instance, Taghavi et al. [5] showed that a non-linear *-Jordan
derivation on a factor von Neumann algebra is an additive *-derivation. Zhao and Li [6]
proved that every non-linear *-Jordan triple derivation on a von Neumann algebra with no
central summands of type I is an additive *-derivation. A lot of work was also carried out
by considering Lie product ([U, V] = UV — VU) and *-Lie product ([U, V]. = UV — VU¥)
(see [7-16]). In [15], Yu and Zhang proved that every non-linear Lie derivation on triangular
algebras has the standard form, i.e., it is a sum of an additive derivation and a central
valued map. Furthermore, the authors of [7,8], respectively, established that a non-linear
Lie triple derivation on triangular algebras and a non-linear Lie type derivation on von
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Neumann algebras have the standard form. The structure of non-linear *-Lie derivation on
factor von Neumann algebra was also explored by Yu and Zhang [16], and they proved
that such a map is an additive *-derivation. On similar grounds, the characterization of
non-linear skew Lie triple derivations on factor von Neumann algebras [11], non-linear
*-Lie derivations on standard operator algebras [9], non-linear *-Lie-type derivations on
von Neumann algebras [12] and non-linear *-Lie type derivations on standard operator
algebras [13] is performed, and they are proven to be additive *-derivations.

Let us recall the definition of a prime *-algebra. A prime *-algebra is an algebra 21
with involution #, in which UAV equates to (0), gives either U = 0 or V = 0. The class of
prime *-algebras is very important and has numerous applications in various disciplines.
In the context of operator theory and quantum mechanics, prime *-algebras are used to
study the behavior of operators on Hilbert spaces and provide insights into the nature of
physical observables and symmetries in quantum systems. Prime *-algebras are a larger
class containing factor von Neumann algebras and standard operator algebras. Therefore,
it would be of great importance to characterize a map on prime *-algebras. In recent years,
some mathematicians focus to explore the structure of *-Jordan type derivations on prime
x-algebras, see [17,18]. Inspired by skew Jordan product, very recently, Kong and Li [19]
introduced a new product, namely, bi-skew Jordan product, as U e V = UV* + VU* for all
U,V € 2. They proved that every non-linear/multiplicative bi-skew Jordan derivation, i.e.,
amap ¢ from 2 to itself, (where 2 is a prime *-algebra) satisfying (U e V) = (U)o V +Ue
¢(V) forall U,V € %, is an additive *-derivation on 2 provided dim(2) > 2. Later, Khan
and Alhazmi [20] extended the results of Kong and Li [19] to multiplicative bi-skew Jordan
triple derivation and proved that every multiplicative bi-skew Jordan triple derivation, i.e.,
amap ¢ : 2 — Asatisfying (UeVeW) =C(U)eVeW+Uel(V)e W+ UeVei(W)
forall U, V,W € %, is an additive *-derivation. We can naturally develop them further
when bi-skew Jordan derivations and bi-skew Jordan triple derivations are taken into
account. Let’s assume that n > 2 is a fixed positive integer and see the list of polynomials
with involution.

pi(th) = U,
p2(Uy, Up) = pl(ul).uz_u1.u2_u1u2+u2u1,
p3(Uy, Uz, Us) = pa(Uy, Up) eUs = Uy e U e Us,
pa(Uy, Up, Uz, Uy) p3(Uy, Uy, U3) Uy=Ujellellzelly

ey

Pn(ulr U2/ U3..., u}’l) == Pn—l(ulx UZI"'/ Un—l) L4 U}’l
= ul 0U20U30...Un_1 .u;q

Accordingly, a multiplicative bi-skew Jordan n-derivation is a mapping ¢ : A — 2,
satisfying the condition

§(Pn (ulrUZr : )) an <U1, . ,kalré((uk)rukﬂ/---,Un),

for all U, Uy, ..., U, € A. This is the best way to define multiplicative bi-skew Jordan
n-derivations, using this notion. Every multiplicative bi-skew Jordan derivation is a multi-
plicative bi-skew Jordan 2-derivation according to the definition, and every multiplicative
bi-skew Jordan triple derivation is a multiplicative bi-skew Jordan 3-derivation. One can
easily check that every multiplicative bi-skew Jordan derivation on any x-algebra is a
multiplicative bi-skew Jordan triple derivation but the converse is not true, in general.
Multiplicative bi-skew Jordan-type derivations refer to the multiplicative bi-skew Jordan 2-,
multiplicative bi-skew Jordan 3- and multiplicative bi-skew Jordan n-derivations. Inspired
by the above mentioned work in this article, we focus our study on multiplicative bi-skew
Jordan type derivations on prime *-algebras.



Axioms 2023, 12,753

30f13

2. Preliminaries

We need to give some preliminaries in order to state and prove our main theorem.
Throughout the work, 2 represents a prime x-algebra and C denotes the field of complex
numbers. Let H be a complex Hilbert space. We denote by B(H) the algebra of all bounded
linear operators on H. An operator P € B(H) is called a projection provided P* =
and P? = P. Any operator U € B(H) can be expressed as U = RU + iTU, where i is the
imaginary unit, RU = u%u* and TU = UE}F . Note that both SRU and U are self-adjoint.
Let P = P; € U be a projection. Write P, = I — P; and ;; = PAP;. Then, 2 = 2011 +
Ao + Ao + App. Let M = {M € Al M* = M} and N = {N € | N* = —N}, M =
{PLMP, + P,MP;| M € M} and M;; = PLMP; (i = 1,2). Thus, for every M € M, M =
Mi1 + Mip + My, for every My, € My, and M;; € M; (Z = 1,2).

In proving our main theorem, we frequently use the following lemma and remark.

Lemma 1. Forany U € 2, p, (U,%I,%I,...,%I) = %(U—I— u+).

Proof. By doing the recursive calculation, we obtain

pn(u,%l,%l,...,%l) pn_l(%(u+u*),%l,...,

1
2
1 1 1
= pn_z(i(u—i-u ),EI,,EI)
1 L1
— 1 *
= SU+U).
O

Remark 1. IfU € M, ie, U* = U, then
1.1 1
pn<u,§I,EI,...,§I> = U.

3. Main Result

Theorem 1. Let 2 be a prime x-algebra with dim(2A) > 2, containing the identity element I and a
non-trivial projection P. A map ¢ : A — 2 is a multiplicative bi-skew Jordan-type derivation if and
only if it is an additive x-derivation.

Only the necessity needs to be established. The proof of the theorem is demonstrated
in a series of claims, which are as follows.

Claim 1. £(0) =0.
Proof. It follows that

E0) = C(pn<0,0,...,0>) = pn(g(o),o,...,o,...,o) —i—pn(O,(;‘(O),...,O,...,O)

+ ...+pn(o,o,...,g(o),...,o) +...+pn(0,0,...,0,...,§(0))
= 0

O

Claim 2. {(M)* = ¢(M) for every M € M.
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Proof. Forany M € M, observe that M = p, (M, }1,..., 31). Thus,
EM) = cf,(pn(M,%I,...,%I))

= pn<§(M),%I,...,%I>+pn<M,§(%I),...,%I)

+ ...—i—pn(M,;I, g(%l))

= poa (5@ +E0)), 31, 31)

+ pua(MEGD” + G DM ,%1 50)

+ ...+pn,1(M,§1,. % )

= 2 (&0 +50m)) + (- ) (MEG D" +E(5DM).
This implies that

GM) = M)+ 200 - 1) (MEG D" +E(51M). &
It follows that

M) = E(M)+2(n - 1) (S(HM+ ME(3D)*). @

Combining (1) and (2), we obtain ¢(M)* = {(M). This completes the proof. [

Claim 3. Forany Uy € My1, Vip € Myp and Wy € Moy, we have

(i) ¢(Uy + Vio) = &(Uyy) +&(Viz);
(it) &(Via+ Wn) = ¢(Vi2) + &(Wa2).

Proof. (i) Let T = ¢&(Uy + Vip) — &(Up1) — &(Viz). It is obvious from Claim 2 that
T € M,ie., T* = T. Our aim is to show that T = Ty + Typ + Top = 0. In view of

Pn (Pz, U11,P1,%I,...,%I) = 0 and Claim 1, we have
g(Pn (P2, U1 + Voo, P, %1, e, %I )
= g(pn(Pz,Un,Pl,%I,...,%I))—i—@(pn(Pz,Vlz,Pl,%I,...,

1
= pn(g(PZ)lullrplr 511“-1 I) +Pn(P2/€(u11);P1/

~

~

NI = DN= N -
—

N— — ~—

~——

1
=1,...
2/

+ Pn(leunlﬁ(Pl)/%Lm, 1)+Pn(P2/U11,P1/C(%I)/---/ I

+ ...+pn(P2,U11,P1,%I,...,{:(%I))—|—pn(C(Pz),Vlz,Pl,%I,...,%I)

+ pn(Pz,C(Vlz),Pl,%I,...,%I)+pn(Pz,Vlz,é(Pl),%I,...,%I)

+ pn(Pz,Vlz,Pl,g(%I),...,%1)+...+pn(Pz,Vlz,Pl,%I,...,g(%l))

= (é‘(Pz),lln n Vlz,Pl,%I,...,%I) + pu (Pz,g(un) +E(Vi), Py I %1)

2
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o

p

1 1 1 1
+ P (P2, Uyt + Vi, (P1), EI’"'EI) + pn (Pz, Ui + Vo, P1,C(§1), e, 51)
1 1
+ '-~+p1’l(P2/u11+V12/P11511-"/§(§I))'

Furthermore, we have

g(Pn (Pz, Uy + Vi, Pi, %I,. .., %I))

1 1 1
- pﬂ(g(P2)1u11+V121Plr EL/EI> +pn(P2/€(u11+V12) Pl/ /§I>
1 1 1
+ <P2, Uy + Vi, &(P1), EI""’ 51) + P (P2/ Uy + V12,P1,C(21) / 51)
1 1
+ ---+Pn(P2,U11+V12,P1,§1,---,§(§1))'

From the last two expressions, we conclude that p, (Pz, T, Py, %I 51 ) = 0. Using

1

2
the primeness of 2, we obtain T;, = 0. Furthermore, since p, (P2 — P, Vip, %I, 1 51 ) 0,
we can write

1
4 (C(Pz—Pl) Ui + Vi, 51, -,EI)+pn<Pz—P1,§(U11+V12) I ,*I)
Py~ Py, Uny + Vi, 83 1), 1) oot pu (P2 — P Uiy + Vig 51, 65 1))
2= Py Un + Vi, 6(50), -0 5 pn(P2— P, Un +Vip, 5 5
1 1
o (P2 =P Uit + Vig 51, 5))
1 1 1
a(P2= Py Un, 5L, 50) ) +E(pa (B = Py Vi 51 5))
1 1 1 1
g(PZ Pl)lulllilr-' /EI) +pn(P2_Pllg(ull)/ilr”'/il)
1 1 1
Py =Py Uiy, E(30), s 51) + et pu(P2 = P Uy, 51, 6 ))
1 1 1
g(PZ - Pl)r V12/ Ir /51) +p'rl <P2 Pl/ VlZ /EI/ /§I>
1 1 1 1
Pr— Py, Viz &5 D)5 1) + ot pu (P2 = Pt Vi, 51,85 D)
1 1 1 1
¢(P2 = P1), Ui+ Vio, 51, 51) +Pn<P2—P1,§(U11)+§(V12),§1,---,§I)
1 1 1 1
Pz—P1,U11+V12,C(§I),--.,§I)+...+pn<P2—P1,U11+V12,§I,--.,C(§I))-

From this, we obtain p, (P, — P, T, %I, e, %I) = 0. Using Claim 2, we obtain P,T +
TP, — P,T — TP, = 0. Multiplying this equation by P; and P,, respectively, on both sides,
we obtain T;; = Tp; = 0. Therefore, T = 0. In a similar manner, we can establish (ii) .
Thereby the proof is completed. [

Claim 4. For any Uy € My, Vip € Myp and Wy € Moo, we have
¢(Unn + Via + Wao) = ¢(Un1) + &(Viz) + G(Wa2).

&(Ur) — ¢(Vip) —

, %I) =0, we have

Proof. We show that T = (U1 + Vip + Wap) —
Claim 3 and p, (P, Wap, Py, 31, ..

¢(Wp) = 0. In view of

‘:(Pn (Plr Ui + Vip + Wop, P, %I, s, %I))
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1
~1,..
2

1
= Pn (5(131)/ Uy + Vo, Py, 51,

1
+ Pn(Plfun + V1o, &(Py )’21""

1
+ et pa (P Ui+ Vig Pyl 8

)+e (Pl,W22,P1,%I,...,%I>)

(v
+ pu(P1,E(Un + Vi), P, %1%1)
1
2

~
N =
~
—

= §(Pn (PL Uy + Vi, Py,

~ ~
o) S—— ~——

N =

N[ = N =

1
+Pn(P1,U11+V12,P1,§(§1),~--,
1 1
I)) +p”(§( ) W22/P1/§I/"'I§I)
1 1 1 1
+ pn<P1,§(W22),P1,§I,. )+ pa (P W 2P, 51 5T)
1 1 1 1
+ Pn(Pl/WZZIPLg(EI),-~-,§I> +...+pn(P1,W22,P1l§I,_,‘16(51)>

~

1 1 1
= Pn(‘:(Pl),Un-i-Vlz,PlﬁI-.-, 1)+Pn(P1,§(U11)+§(V12),P1,§1,-~,*1)

1
27 2
4 pn<P1 Upy + Vi, &(Py), 21, .. 11) —|—pn(P1 Uy + Vi, P, €L, . 11)
7 7 /2 7 /2 7 7 7 2 7 /2
1 1 1 1
+ ...—l—pn(Pl,Un+V12,P1,§I,...,§(21)> —l—pn(é‘( D, sz,Pl,EI,...,EI)

%1%1) + P (Pl,W22,§(P1),%I,...,%I)

1 1 1 1
+ pa (Pl,wzz,Pl,g(EI),...,EI) F ot Pn (Pl,sz, Pl,EI,...,C(EID

1 1
= (C(Pl),un +Via+ Wa, P, 51, 51) + Pn (PLC(UH) +¢(Vi2) + &(Wa2),

1 1 1 1
b, EI""’ 51) + Pn (Pl/ull + Vip + Wap, ¢(Py), EI" e §1>

1
+ P (Pl/ull + Vip + Wy, P1,§(§1),---

+ Pn (Plré(wzz),PL

1
+ Pn <P1,U11 + Vio + Wp, PLEI,---,@(*I))-

Furthermore, we can write

‘:(Pn (Pl, U + Vip + Wop, P, 1[,. ., %1))

1 1 1 1
Pn(g( )U11+V12+W22,P1,§ . ,21) (Pl/ (Un+V12+W22),P1,§1,~--,§1)
1 1 1 1
Pn<P1,U11+V12+W22,§(P1 ,2 ,51) +Pn(P1,U11+V12+W22,P1,§(21), ~-,§1)
+Pn(P1,U11+V12+W22,P1,* oG5 I)>

Equating the above two relations, we have p,, (P, T, P, %I PR %I ) = 0. The primeness
of A and T* = T imply that T1; = T1p = 0. It remains to show that Ty = 0. Observe
that p, (P, Uy1, P2, %I, ..., %I ) = 0. Reasoning as above, we obtain T, = 0 and, hence,
T=0 0O

Claim 5. For any Uy, V1o € My, we have

&(Upp + Viz) = ¢(Uy2) +&(Vi2).
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Proof. Forany Ajy, Bip € 2y, assume that Uy = Aqp + A}, € Myppand Vi, = Byp +Bj, €
M]z. ThU.S,

1 1
pn(Py +A12+AT2,P2 +Blz+BT2,§I,...,§I)

= (A + AD) + (B2 + Bjp) + (A12Bj; + AjyB1z + B1aAj, + B A1)
= Up+ Vo + UV + VipUy,.

Note that U12V1*2 + Vi U{‘z = AlZBTZ + B12AT2 + ATZBH + Bik2A12 = Wit + X5z, where
Wi = A12B>1k2 + BlZATZ € Mj1and Xy = AT2B12 + Biszu € M. Since A1p + ATZ' Bip +
B}, € My, it follows from Claims 3 and 4 that

E(Upp + Vip) 4+ E(Wir) + & (X22)
¢(Ung + Vio + Wi + X22)
&(Upp + Vip + U2 Vi, + VipUp,)

= g(Pn(Pl+A12+AT2,P2+312+B1‘2,%I,...,11)
= pn((f )+ &(A12 + AL), Py + Bip + Bl <1, ...,
+ pu(Pr+ A+ Ay E(P2) + (B + B), 5L
+ Pn(Pl+A12+A12/P2+B12+B12r§(;l)/

(

)
1 1

+ Pn P1+A12+A12,P2+B12+Blz,21,,,_,§(§1))

pu(PuPy 31 2 0)) +E(pn (P B+ Bl oL 21))

.1 1 . L1 1
P (A12 +A12,P2,§I,...,§I)> —|—C(pn (Au + Ay, Bio + 312,51,...,51))
= §(Upp) + (Vi) + &(Un Vi + VipUy,)
= ¢(Upp)

+¢(Vi2) + &(W11) + ¢(X22).

Therefore, we have
$(Ua + Vi) = §(Up2) + &(Vi2).
O

Claim 6. For every U;;, Vi; € M;; (i = 1,2), we have

S(U;i + Vi) = &(Uj;) + (Vi)
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Proof. We will prove for i = 1, the other case can be proven analogously. To prove this, we

show that T = §(Uy; + V11) — &(U11) — €(V11) = 0. We have

C(Pn (PZ, Uy + Vi1, P, %I, eee, %I))

- §(pn(P2,U11,P2,%I,...,%I))+§(pn<P2,V11,P2,%I,...,

~

SN—

1 1
= pu(&(P2) Unt, oy 51 51) 4 pu(Po, (U, Pay 5

—

NI =N = DN -
—
— —

R
—~
N —
—~
N—
N

<

1
2
1 1
+ Pn(PZIUng(PZ)/EL---/§I>+ n(P2/Uler2/

p
1I,...,q"j(%l)) + P (C(Pz),Vn,Pz,

+ ...+pn<P2,U11,P2,2 %1%1)

+ Pn(Pzrﬁ(Vn)/Pz,%L---1%1)+Pn(leVn/@(Pz)/%L--~r%1)

+ pn(Pz,Vll,Pz,C(%I),...,%I)+...—|—pn(Pz,VH,PZ,%I,...,é(%l))

= pn(é( )U11+V11,P2,%I,...,%1)—i—pn(Pz,G(Un)+§(V11),P2,%1,...,71)

1 1 1 1
+ pu (P2/ Ui + Vi, 8(P2), 51, .., EI) + P (P2, Uy + V11,P2,§(§1),---, 51)

2

1 1
+ et <P2, Uy + Vit, Py, 5, .,5(71)).

Apparently, we can have

C(Pn (Pz, U + Vi1, Py, %I,. .., %I))

1 1 1 1

= Pn(C(Pz),Un+V11,Pz,51,...,51)+pn(Pz,§(U11+V11),P2,§I,...,§

1 1 1 1

+ Pn(Pz,Un+V11,C(P2),§1,~--,§1)+Pn(P2,U11+V11/P2,C(§I),-~-,§
(

1
+ ...+Pn<P2,U11 +V11,P2,§I,...,§ EI))

)
)

From the last two expressions, we have p, (P, T, P,, %I, e, %I ) = 0, and thus, the
primeness of 2 gives that T = T = 0. Now, to show that Ty; = 0, assume that W = A1y +

A%, € My for Ay € 2. Then pn(W, LIH,%I,...,%I),pn<W,VH,%I,...,%I) e My

Therefore, from Claim 5, we can write

pn(é‘( ) u11+V11r I. ,%I) +Pn(w &(Up + Vnp), ;I ,%I)
+ (W, Uit + Vi, &( ; ,%1)+ A pa(W, u11+vn,11,...,g(%1))
= §(Pn<W U11+V11,;1, ,%I )

= f:(Pn(W,Un,%,- ,; ))—l—é(pn(WVn,f,...,%I))
I,.

= Pn(é( )U11+V11, , ,%I)+ (W§u11)+§(vn),;1 %1)
£ pn (WU 4 Vi 8D, 1) 4t p (W, Uiy + Vi, 51, EGGD)).

Thus, we obtain pj, (W, T, %I,. .y %I) = 0. This gives T7; = 0. Hence, the proof is

completed. O
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Remark 2. It follows from Claims 3—6 that ¢ is additive on M.
Claim 7. ¢(I) = 0.

Proof. In view of Claim 2 and Remark 2, we have

&p) = C(pn(Pl,%I,...,%I))
= pn(é(Pl),%I,...,%I)+pn(P1,C(%I),...,%I>
+ ...+pn(P1,%1,...,g(%1))
= &)+ (- 1)(PEGGD +EGDP)
This implies

PIEG) +E(3 1P =0,

Multiplying the above equation by P, from left, right and by P; on both sides, respec-
tively, we obtain P,&(11)P; = 0, Py¢(31)P, = 0 and Pi&(11)P; = 0. By replacing P; with
P in the above calculation, we can obtain P,&(31)P, = 0. Therefore, we obtain &(3I) =0,
and thus, using Remark 2, we obtain {(I) = 0. O

Claim 8. {(N)* = —&(N), for every N € N.

Proof. Observe that p,(N,1,...,I) = 0 for any N € N, therefore, from Claim 7, we have
p y

0 = C(pn(N,I,...,I)) = pu(E(N),L,..., 1)
= 222 +EN)):
Thus, &(N)* = —&(N) forall N € . O
Claim 9. &(iT) € Z ().
Proof. Let M € M. Then, from Claim 8, we have
0=¢(pu(MiL 1., 1)) =22(e(nM - ME(iD) ).

This gives ¢(i[)M = M¢(il). Since for any U € A, U = M; + iM, for My, M; € M.
Therefore, UG(il) = ¢(iI)U for all U € 2, and, hence, (iI) € Z(A). O

Claim 10. Forany N € N, {(iN) = i{(N) + &(iI)N.
Proof. It follows from Claims 2, 7 and 8 that
(;‘(pn(N,iI,I,...,I)) = pn(g(N),iI,I,...,I) 3)
+ pa(NEG), - T)
= 2 (GUDN +ig(N)).
Furthermore, from Remark 2, we have

{f(pn(N, i1 1,. 1)) = o1 (g(iN)) @)
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Equations (3) and (4) lead to

¢(iN) = if(N) +¢(IN
O

Claim 11. ¢ is additive on N
Proof. Let Nj, N, € A. Then, from Claim 10 and Remark 2, we have

i§(Ny + Na2) +¢(iI)(Ny + Na)
= ¢(i(N1 + Np) = G(iN1) + G(iN2)
=i(¢(N1) +¢(N2)) + () (Ny + Np).

This gives
E(N1 + Nz) = G(N1) + E(No).
O

Claim 12. ¢ is additive on 2.

Proof. Let N, N’ € N. In view of Remark 2, Claims 7, 9 and 10, we have
271 (ig(N') + E(DN') = 2" 1¢(iN') = &(2"~1iN') (5)
_ g(pn (I, IL...,(N+ z’N’)))
= 2" 2E(N +iN")* +2"2E(N +iN’)
and
~2" 71 (ig(N) + E(iDN) = ~2"~1¢(iN) = &(~2"1iN) (6)
= §((N+iN’) il... 1)
= 2" 2iF(N +iN') + 2" 2i&(N +iN')* — 2" Y& (i[)N
So, we have from Equations (5) and (6) that
§(N +iN') = ¢(N) +ig(N') + ¢(il)N' )
forall N, N' € N. Now let U,V € 2Asuch that U = Uy +ill; and V = V; + iV, for all
Uy, Uy, Vi, Vo € N. Using Equation (7) and Claim 11, we have
dU+V)= C((Ul + Vi) +i(la+ Vz))
= Uy + V1) +ig(Uz + Vo) + G(I) (Uz + V2)
= (c(u ) +iE(Un) + &N U, )
¢W) +ig(V2) +§(11)Vz)

S(Uy +ilp) + &(Vy +iVa)
) +¢(v).

O

Claim 13. ¢(U*) = ¢(U)* forall U € 2A.
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Proof. We know that any element U € 2 can be expressed as U = U + illp for Uy, Uy € N,
so it follows from Equation (7) and Claim 8 that

gu)* = gty +ilh)" ®)
= (&) +ig(un) +2nt)
= (=) +ig(Uz) + (D) U
On the other hand,
SU*) = &(—Uy +illy) = ¢(—Uy) +iG(Uz) + ¢ (i) Up. ©)

From Equations (8) and (9), we obtain ¢(U*) = ¢(U)*. O
Claim 14. ¢ is a derivation on N.

Proof. Since for any N1, N, € N, NN, — N, N; € N, it follows from Claim 10 that

_2n—2§<N1N2+N2N1) = C(pn(Nl,Nz,I,...,I)) (10)
= p(EN) Ny L)

+ pn<N1,§(N2),I,...,I)
= —2"72Z(Ny)N; — 2" 2NpE(Ny)
2"72N1&(N;) — 2" %5 (Np) N

Moreover,
2”*2ig(N1N2 - N2N1> 4 2m2a(i]) (N1N2 - N2N1) (11)
= (2" %H(NN, - Ny )
_ g(pn(Nl,iN2,1,...,1))

= PG, iNa, o 1) 4 pu (N9 EGND), T )

= 2"7%E(Ny)Ny — 2" 2iNp&(Ny) + 2" %iN1 E(Na)
2" 2iF(No)Ny + 2" 2¢(iI) (N1 N2 — NaNy)

for all N7, N; € V. Equations (10) and (11) conclude that
¢(N1N2) = G(N1)N2 + N1G(N2)
for all Ny, N, € N. Hence, the proof. [
Claim 15. Z(il) = 0.
Proof. We know from Claim 7 that &(I ) = 0. Thus, by Remark 2 and Claim 14, we have
0=¢(-1) = &((DD) = EDED + (DE) = 2ig(il).
Thus, &(i[) =0. O

Claim 16. (i) = i¢(U) forall U € 2A.
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Proof. From Claims 10 and 15, we obtain §(iN) = i¢(N) for all N € N. Since for any
U € A, we can write U = Nj + iN, for Ny, N, € N. It follows from Claim 12 that

5(iU) = &(i(Ny +iNp)) = i(E(N) +iE(N2) ) = ig(U):

Hence, the result. O

Proof of Theorem 1. By Claims 12 and 13, ¢ is additive with ¢(U*) = ¢(U)*. The final
step in the proof is to demonstrate that ¢ is a derivation on 2.

Forany U,V € 2, assumethat U = Uy +illand V = V) + iV, forallUy, Up, V1, Vo € N.
Thus, it follows from Claims 14-16 that

cuv) = (U +ilh) (Vi +iVy)) (12)
= (hVh +ilh Vo +ilaVh — UpVa)
= ¢(U)V1+Uig(V1) +ig(Up)Va
+ ith¢(Va) +i(Uz) V1 +ilag (V1)
— ()2 — Uxg(V2)

On the other hand,
UV +Ug(V) = (U +illr) (Vi +iVy) (13)
+ (U1+iu2)€(V1+iV2)
= (&(U1) +i¢(Uz)) (V1 +1V2)
+ o (Up+ i) (E(V1) + 8 (V)

S(Up)Vy + U g(Vy) +i¢(Up) V2
+ iU (V2) +ig(Up) Vi +ilag (V1)
= $(Up)Vp — Uxg(V2)

Comparing Equations (12) and (13), we conclude that ¢ is a derivation on 2. This
completes the theorem’s proof. [

4. Discussion

Previously, the authors studied the structures of multiplicative /non-linear bi-skew
Jordan (i.e., n = 2) and Jordan triple (i.e., n = 3) derivations on prime *-algebras. In
this article, we have given a characterization of multiplicative/non-linear bi-skew Jordan
n-derivations (i.e., for any n > 2) on prime *-algebras. Therefore, our result is more general.
In particular, one can easily obtain the result for n = 2 (respectively, for n = 3) easily
in the case of multiplicative bi-skew Jordan (respectively Jordan triple) derivations on
prime x-algebras.

5. Conclusions

In this article we explored the structure of non-linear bi-skew Jordan n-derivation (¢)
acting on a prime *-algebra 2. Indeed, we proved that such a map is additive derivation
preserving the x-structure of algebra 2, i.e., {(U*) = ¢(U)* for all U € 2A. One can further
investigate the structure of non-linear bi-skew Jordan n-derivations on different algebras
such as triangular algebras, generalized matrix algebras, incidence algebras, etc.
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