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Abstract: The Korteweg-de Vries equation models the formation of solitary waves in the context of
shallow water in a channel. In our system, f or p = 2 and p = 3 (Korteweg-de Vries equations (KdV))
and (modified Korteweg-de Vries (mKdV) respectively), these equations have many applications in
Physics. (gKdV) is a Hamiltonian system. In this article we investigate the generalized Korteweg-de
Vries (gKdV) equation. A new topological approach is applied to prove the existence of at least one
classical solution. The arguments are based upon recent theoretical results.
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1. Introduction

If p is integer, the Korteweg-de Vries Equation [1] is as follows

∂tu + (uxx + |u|p)x = 0. (1)

It is particularly very important as a prototypical example of an exactly solvable non-
linear system (that is, completely integrable infinite dimensional system). The generalized
Korteweg-de Vries equation (gKdV) is a Hamiltonian system. In particular, three quantities
are conserved, at least formally ∫

udx =
∫

u0dx,

∫
u2dx =

∫
u2

0dx, (L2 −mass) (2)

E(u) =
1
2

∫
u2

xdx− 1
p + 1

∫
|u|p+1dx = E(0), (Energy)

The natural energy space for the study of this equation is therefore H1. Note however
that the first conservation law is little used, because it is not a signed quantity, and moreover
it is not in the energy space. Moreover, the equation admits a scale invariance: if u is
a solution of (gKdV), we have

uλ(x, t) = λ2/(p−1)u(λx, λ3t).
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Note that ∫
uλ = λ(3−p)/(p−1)

∫
u,

∫
u2

λ = λ(5−p)/(p−1)
∫

u2,

E(uλ) = λ(p+3)/(p−1)E(u).

Especially for p = 5, ‖uλ‖L2 = ‖u‖L2 and the equation is L2-critical for the invariance
of scale is (cKdV)

∂tu + (uxx + u5)x = 0.

The stability of these solutions was investigated in [2], whereas asymptotic stability
has been studied in [3,4].

In this paper, we investigate the Cauchy problem for the generalized Korteweg-de
Vries equation

∂tu + ∂3
xu + uk∂xu = 0, t ∈ [0, ∞), x ∈ R,

u(t = 0) = u0(x), x ∈ R,
(3)

under the next hypothesis

(Hyp1) k ≥ 0, u0 ∈ C3(R), 0 ≤ u0 ≤ B on R for some B > 0.

Let us now suppose

(Hyp2) There exist a function h ∈ C([0, ∞) × R), 0 < h on (0, ∞) × (R\{0}),
h(0, x) = h(t, 0) = 0, t ∈ [0, ∞), x ∈ R, and A > 0 such that

6 · 24(t2 + t + 1)(1 + |x|+ x2 + |x|3)
∫ t

0

∣∣∣∣ ∫ x
0 h(t2, x2)dx2

∣∣∣∣dt2 ≤ A, t ∈ [0, ∞), x ∈ R, (4)

and

(Hyp3) AB1 < B, B1 = max{2B, B + Bk+1}.

In the last section we will give examples for g, A, B and B1 that satisfy (Hyp2)
and (Hyp3).

The aim of this paper is to investigate the initial value problem Equation (3) for
existence of global classical solutions.

Theorem 1. Suppose (Hyp1) and (Hyp2). Then the initial value problem Equation (3) has at
least one solution u ∈ C1([0, ∞), C3(R)).

Theorem 2. Suppose (Hyp1), (Hyp2) and (Hyp3). Then the initial value problem Equation (3)
has at least one nonnegative solution u ∈ C1([0, ∞), C3(R)).

The present paper is marshaled as follows. In the second Section 2, we state some
useful auxiliary results and needed tools. In Section 3, we present and prove some needed re-
sults. In Section 4 we prove the main Theorem 1 and the second main result Theorem 2 will
be shown in Section 5. The last Section 6 will be an example illustrating our main results.

2. Preliminary Results

The first continuation theorems applicable to nonlinear problems were due to Leray
and Schauder (1934) [5] (Theorem 10.3.10). This result is the most famous and most general
result of the continuation theorems (see [5] pages 28,29). In [6] (1955), Scheafer formulated
a special case of Leray-Schauder continuation theorem in the form of an alternative, and
proves it as a consequence of Schauder fixed point theorem. In this paper, we will use some
nonlinear alternatives, in one hand, to develop a new fixed point theorem and in another
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hand to study the existence of solutions for Problem Equation (3). In what follows we recall
these alternatives.

Proposition 1. (Leray-Schauder nonlinear alternative [7]) Let C ⊂ E be a convex, closed subset
in a Banach space E, 0 ∈ V ⊂ C where V is an open set. Let f : V → C be a compact, continuous
map. Then

(a) either f has a fixed point in V,
(b) or there exist x ∈ ∂V, and λ ∈ (0, 1) such that x = λ f (x).

As a consequence, we obtain

Proposition 2. (Schaefer’s Theorem or Leray-Schauder alternative, [8], p124 or [5], p 29) Let E be
a Banach space and f : E→ E be completely continuous map. Then,

(a) either f has a fixed point in E,
(b) or for any λ ∈ (0, 1), the set {x ∈ E : x = λ f (x)} is unbounded.

Another version of Scheafer’s Theorem is given by:

Proposition 3. (Scheafer’s Theorem [6]) Let E be a Banach space and f : E → E be completely
continuous map. Then

(a) either there exists for each λ ∈ [0, 1] one small x ∈ E such that x = λ f (x),
(b) or the set {x ∈ E : x = λ f (x), 0 < λ < 1} is bounded in E.

The following theorem will be used to prove Theorems 1 and 2.

Theorem 3. Let E be a Banach space, Z a closed, convex subset of E,

V = {x ∈ Z : ‖x‖ < R},

with R > 0. Consider two operators W and G, where

Wx = ε x, x ∈ V,

for ε ∈ R, and G : V → E be such that

(i) I − G : V → Z continuous, compact and

(ii) {x ∈ Z : x = sgn(ε)λ(I − G)x, ‖x‖ = R} = ∅, for any λ ∈
(

0, 1
|ε|

)
,

where sgn(ε) is the signum of ε.

Then there exists x∗ ∈ V such that

Wx∗ + Gx∗ = x∗. (5)

Proof. We have that the operator 1
ε (I − G) : V → Z is continuous and compact.

Suppose that ∃x0 ∈ ∂V and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε
(I − G)x0,

that is
x0 = sgn(ε)

µ0

|ε| (I − G)x0.

This contradicts the condition (ii). From Leray-Schauder nonlinear alternative, it
follows that there exists x∗ ∈ V so that

x∗ =
1
ε
(I − G)x∗ (6)
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or
ε x∗ + Gx∗ = x∗, (7)

or
Wx∗ + Gx∗ = x∗. (8)

3. Auxiliary Results

Let X = C1([0, ∞), C3(R)) be endowed with the norm

‖u‖ = max{ sup
t∈[0,∞),x∈R

|u|, sup
t∈[0,∞),x∈R

|ut|,

sup
t∈[0,∞),x∈R

|ux|, sup
t∈[0,∞),x∈R

|uxx|,

sup
t∈[0,∞),x∈R

|uxxx|},

(9)

exists. ∀u ∈ X, we define

G1(u) = u− u0(x) +
∫ t

0

(
∂3

xu(s, x) + (u(s, x))k∂xu(s, x)
)

ds, t ∈ [0, ∞), x ∈ R. (10)

Lemma 1. Suppose (Hyp1) holds. If u ∈ X satisfies

G1(u) = 0, t ∈ [0, ∞), x ∈ R, (11)

then u is solution of Equation (3).

Proof. We have

G1(u) = u− u0(x) +
∫ t

0

(
∂3

xu(s, x) + (u(s, x))k∂xu(s, x)
)

ds

= 0, t ∈ [0, ∞), x ∈ R,
(12)

which we differentiate with respect to t and we have

0 = ∂tu + (u)k∂xu, t ∈ [0, ∞), x ∈ R. (13)

We put t = 0 in Equation (12) and we obtain

0 = u(t = 0)− u0(x), x ∈ R. (14)

Then, the functionu is solution to the initial value problem Equation (3), which com-
pletes our proof.

Lemma 2. Suppose (Hyp1) holds. If u ∈ X and B ≥ ‖u‖, then we have

|G1(u)| ≤ B1(t + 1), t ∈ [0, ∞), x ∈ R. (15)
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Proof. We have

|G1(u)| =

∣∣∣∣u− u0(x) +
∫ t

0

(
∂3

xu(s, x) + (u(s, x))k∂xu(s, x)
)

ds
∣∣∣∣

≤ |u|+ |u0(x)|+
∫ t

0

(
|∂3

xu(s, x)|+ |u(s, x)|k|∂xu(s, x)|
)

ds

≤ 2B +
∫ t

0

(
B + Bk+1

)
ds (16)

= 2B +
(

B + Bk+1
)

t

≤ B1(t + 1), t ∈ [0, ∞), x ∈ R.

This completes the proof.

For u ∈ X, define the operator

G2(u) =
∫ t

0

∫ x

0
(t− t2)(x− x2)

3h(t2, x2)G1(u)(t2, x2)dx2dt2, t ∈ [0, ∞), x ∈ R. (17)

Lemma 3. Suppose (Hyp1) and (Hyp2) hold. If u ∈ X satisfies

G2(u) = c, t ∈ [0, ∞), x ∈ R, (18)

for some constant c, then u is solution of Equation (3).

Proof. We differentiate two times in t and four times in x the Equation (18) to get

h(t, x)G1(u) = 0, t ∈ [0, ∞), x ∈ R. (19)

Then,
G1(u) = 0, t ∈ (0, ∞), x ∈ (R\{0}). (20)

As G1(u)(·, ·) is a continuous on [0, ∞)×R, we have

0 = G1(u)(0, x)

= lim
t→0

G1(u)

= lim
x→0

G1(u)

= G1(u)(t, 0), t ∈ [0, ∞), x ∈ R.

(21)

Therefore
G1(u) = 0, t ∈ [0, ∞), x ∈ R. (22)

By using Lemma 1, the desired result is obtained.

Lemma 4. Suppose (Hyp1) and (Hyp2) hold. If u ∈ X, ‖u‖ ≤ B, then

‖G2(u)‖ ≤ AB1. (23)

Proof. The next inequality

(z + w)q ≤ 2q(zq + wq), w, z, q ≥ 0,
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will be used. We have

|G2(u)| =

∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)(x− x2)

3h(t2, x2)G1(u)(t2, x2)dx2dt2

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)|x− x2|3h(t2, x2)|G1(u)(t2, x2)|dx2

∣∣∣∣dt2

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(t2 + 1)|x− x2|3h(t2, x2)dx2

∣∣∣∣dt2 (24)

≤ B1t(t + 1)24|x|3
∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and

|∂tG2(u)| =

∣∣∣∣ ∫ t

0

∫ x

0
(x− x2)

3h(t2, x2)G1(u)(t2, x2)dx2dt2

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
|x− x2|3h(t2, x2)|G1(u)(t2, x2)|dx2

∣∣∣∣dt2

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0
(t2 + 1)|x− x2|3h(t2, x2)dx2

∣∣∣∣dt2 (25)

≤ B1(t + 1)24|x|3
∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and

|∂xG2(u)| = 3
∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)(x− x2)

2h(t2, x2)G1(u)(t2, x2)dx2dt2

∣∣∣∣
≤ 3

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(x− x2)

2h(t2, x2)|G1(u)(t2, x2)|dx2

∣∣∣∣dt2

≤ 3B1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(t2 + 1)(x− x2)

2h(t2, x2)dx2

∣∣∣∣dt2 (26)

≤ B1t(t + 1)23|x|2
∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,
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and

|∂xxG2(u)| = 6
∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)(x− x2)h(t2, x2)G1(u)(t2, x2)dx2dt2

∣∣∣∣
≤ 6

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)|x− x2|h(t2, x2)|G1(u)(t2, x2)|dx2

∣∣∣∣dt2

≤ 6B1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(t2 + 1)|x− x2|h(t2, x2)dx2

∣∣∣∣dt2 (27)

≤ B1t(t + 1)12|x|
∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and

|∂xxxG2(u)| = 6
∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)h(t2, x2)G1(u)(t2, x2)dx2dt2

∣∣∣∣
≤ 6

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)h(t2, x2)|G1(u)(t2, x2)|dx2

∣∣∣∣dt2

≤ 6B1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(t2 + 1)h(t2, x2)dx2

∣∣∣∣dt2 (28)

≤ B1t(t + 1)6
∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R.

Thus,
‖G2(u)‖ ≤ AB1. (29)

This completes the proof.

4. Proof of Theorem 1

Below, assume that the hypotheses (Hyp1) and (Hyp2) are satisfied. Let Z̃ denote the
set of all equi-continuous families in X with respect to ‖ · ‖. Let also, Z = Z̃ be the closure
of Z̃,

V = {u ∈ Z : ‖u‖ < B}. (30)

For u ∈ V and ε > 0, define the operators

W(u) = εu,

G(u) = u− εu− εG2(u), t ∈ [0, ∞), x ∈ R. (31)
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For u ∈ V, we have

‖(I − G)(u)‖ = ‖εu + εG2(u)‖

≤ ε‖u‖+ ε‖G2(u)‖ (32)

≤ εB + εAB1.

Thus, G : V → X is continuous and (I − G)(V) resides in a compact subset of Z. Now,
suppose that there is a u ∈ Z so that ‖u‖ = B and

u = λ(I − G)(u)

or
u = λε (I + G2)(u), (33)

for some λ ∈
(

0, 1
ε

)
. Note that (Z, ‖ · ‖) is a Banach space. Assume that the set

A = {u ∈ Z : u = µ(I + G2)(u), 0 < µ < 1} (34)

is bounded. By Equation (33), it follows that the set A is not empty set. Then, by the
Schaefer’s Theorem, it follows that there is a u∗ ∈ Z such that

u∗ = (I + G2)(u∗), (35)

or
G2(u∗) = 0,

i.e., u∗ is solution to Equation (3). Assume that the setA is unbounded. Then, by Schaefer’s
Theorem, it follows that the equation

u = µ(I + G2)(u), u ∈ Z,

has at least one small solution u∗ ∈ Z for any µ ∈ [0, 1]. In particular, for µ = 1, there is a
u∗ ∈ Z such that Equation (35) holds and then it is solution to Equation (3). Let now,

{u ∈ Z : u = λ1(I − G)(u), ‖u‖ = B} = ∅∀λ1 ∈
(

0,
1
ε

)
.

Then, by Theorem 3, the operator W + G has a fixed point u∗ ∈ Z. Then

u∗ = W(u∗) + G(u∗)

= εu∗ + u∗ (36)

−εu∗ − εG2(u∗), t ∈ [0, ∞), x ∈ R,

immediately after which

G2(u∗) = 0, t ∈ [0, ∞), x ∈ R.

Then, u∗ is solution to the problem Equation (3). The proof is now completed.
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5. Proof of Theorem 2

Below, assume that the hypotheses (Hyp1), (Hyp2) and (Hyp3) are satisfied. Let Z̃
denote the set of all equi-continuous families in X with respect to ‖ · ‖. Let also, Z = Z̃ be
the closure of Z̃, so (Z, ‖ · ‖) is a Banach space. Denote

Z = {u ∈ Z : u ≥ 0}.

We have that Z is a closed, convex subset in Z. Let

Ω = {u ∈ Z : ‖u‖ < B}. (37)

Note that Ω is a compact set in Z. For u ∈ Ω and ε > 0, define the operators

W(u) = −ε u,

G(u) = u + ε u + ε G2(u)− 7ε B,
(38)

t ∈ [0, ∞), x ∈ R. For u ∈ Ω, we have

‖(I − G)(u)‖ = ‖ − εu− εG2(u) + 7εB‖

≤ ε‖u‖+ ε‖G2(u)‖+ 7εB

≤ ε(8B + AB1). (39)

Thus, I − G : Ω→ Z is continuous and (I − G)(Ω) resides in a compact subset of Z.

Let us suppose that there is a u ∈ Ω so that ‖u‖ = B and

u = −λ(I − G)(u) (40)

for some λ ∈
(

0, 1
ε

)
. Hence, we find

1
λ

u = εu + εG2(u)− 7εB. (41)

From the assumption (Hyp3), we get ‖G2(u)‖ ≤ B.

Hence, we have u ≥ 0 and G2(u)− B ≤ 0 on [0, ∞)×R, whereupon

0 ≤
(

1
λ − ε

)
u = εG2(u)− εB− 6εB

< 0,

which is contradicts our claim. Then, from Theorem 3, it follows that the operator W + G
has a fixed point u∗ ∈ Ω. Then

u∗ = W(u∗) + G(u∗)

= εu∗ + u∗

−εu∗ + εG2(u∗)− 7εB, t ∈ [0, ∞), x ∈ R, (42)
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immediately after which

G2(u∗) = 7B, t ∈ [0, ∞), x ∈ R.

Then, u∗ is a nonnegative bounded solution to the problem Equation (3). This com-
pletes the proof.

6. An Example

Here, we shall illustrate our two main results. For k = 2, B = 10, we have

B1 = max
{

20, 10 + 103
}
= 10 + 103 (43)

and
AB1 =

1
109 · (10 + 103) < B, (44)

i.e., (Hyp3) holds.

h(s) = log
1 + s11

√
2 + s22

1− s11
√

2 + s22
, l(s) = arctan

s11
√

2
1− s22 , s ∈ R, s 6= ±1. (45)

Then

h′(s) =
22
√

2s10(1− s22)

(1− s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s20)

1 + s40 , s ∈ R, s 6= ±1. (46)

Therefore

−∞ < lim
s→±∞

(s2 + s + 1)h(s) < ∞,

−∞ < lim
s→±∞

(s2 + s + 1)l(s) < ∞. (47)

Hence, there exists a positive constant C1 so that

(s2 + s + 1 + s3)

(
1

44
√

2
log

1 + s11
√

2 + s22

1− s11
√

2 + s22
+

1
22
√

2
arctan

s11
√

2
1− s22

)
≤ C1, s ∈ R

Note that lim
s→±1

l(s) = π
2 and by [9] (p. 707, Integral 79), we have

∫ dz
1 + z4 =

1
4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1
2
√

2
arctan

z
√

2
1− z2 .

Let

Q(s) =
s10

(1 + s44)(s2 + s + 1)2 , s ∈ R,

and
g1(t, x) = Q(t)Q(x), t ∈ [0, ∞), x ∈ R.
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Then there exists a constant C2 > 0 such that

6 · 24
(

t2 + t + 1
)(

1 + |x|+ x2 + |x|3
)

∫ t

0

∣∣∣∣ ∫ x

0
g1(t2, x2)dx2

∣∣∣∣∣dt2 ≤ C2, t ∈ [0, ∞), x ∈ R.

Let
h(t, x) =

A
C2

g1(t, x), t ∈ [0, ∞), x ∈ R. (48)

Then

6 · 24
(

t2 + t + 1
)(

1 + |x|+ x2 + |x|3
)

∫ t

0

∣∣∣∣ ∫ x

0
h(t2, x2)dx2

∣∣∣∣∣dt2 ≤ A, t ∈ [0, ∞), x ∈ R,

i.e., (Hyp2) holds. Therefore for the IVP

∂tu + ∂3
xu + u2∂xu = 0, t ∈ [0, ∞), x ∈ R,

u(0, x) = 1
1+x2 , x ∈ R,

(49)

are fulfilled all conditions of Theorems 1 and 2.

7. Conclusions

This paper concerning the problem of existence of solutions of the generalized
Korteweg-de Vries equation. The considered work represents a variant of classical question
about the structure of solutions of partial derivative system. It adds more to previous
results. The obtained theorems are very interesting, and the model is important and finds
applications, such as physical, chemical, biological, thermal and economics. Here, a new
topological approach is applied to prove the exis tence of at least one classical solution.
The arguments are based upon recent several axiomatic theoretical results. Our results are
illustrated by example.
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