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Abstract: Viscoelastic damping phenomena are ubiquitous in diverse kinds of wave motions of
nonlinear media. This arouses extensive interest in studying the existence, the finite time blow-up
phenomenon and various large time behaviors of solutions to viscoelastic wave equations. In this
paper, we are concerned with a class of variable coefficient coupled quasi-linear wave equations
damped by viscoelasticity with a long-term memory fading at very general rates and possibly damped
by friction but provoked by nonlinear interactions. We prove a local existence result for solutions to
our concerned coupled model equations by applying the celebrated Faedo-Galerkin scheme. Based
on the newly obtained local existence result, we prove that solutions would exist globally in time
whenever their initial data satisfy certain conditions. In the end, we provide a criterion to guarantee
that some of the global-in-time-existing solutions achieve energy decay at general rates uniquely
determined by the fading rates of the memory. Compared with the existing results in the literature,
our concerned model coupled wave equations are more general, and therefore our theoretical results
have wider applicability. Modified energy functionals (can also be viewed as certain Lyapunov
functionals) play key roles in proving our claimed general energy decay result in this paper.

Keywords: existence results; general energy decay; quasi-linear wave equations; variable coefficient
wave equations; viscoelastic damping
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1. Introduction

We are concerned, in this paper, with the initial boundary value problem (IBVP) for a
coupled system of two quasi-linear space-variable coefficient wave equations whose energy
is inhibited by viscoelastic dampings with long-term memories and possibly inhibited by
frictional dampings, but provoked by nonlinear interactions. More precisely, we consider



|∂tu|ρ1 ∂2
t u− µ1 div(A1∇u)− div(A1∇∂2

t u)

+
∫ t

−∞
g1(t− s)div(A1∇u)(s)ds

+ a11∂tu + a12∂tv = f1(u, v) in Ω× (0,+∞),

|∂tv|ρ2 ∂2
t v− µ2 div(A2∇v)− div(A2∇∂2

t v)

+
∫ t

−∞
g2(t− s)div(A2∇v)(s)ds

+ a21∂tu + a22∂tv = f2(u, v) in Ω× (0,+∞),

u = v = 0 on Γ× (0,+∞),

u = u0, v = v0 in Ω× (−∞, 0),

∂tu(0) = u1, ∂tv(0) = v1 in Ω,

(1)
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in which: u = u(x, t) and v = v(x, t), (x, t) ∈ Ω× (0,+∞), are the unknowns of IBVP (1);
Ω is a nonempty bounded open subset of the N-dimensional Euclidean space RN , of which,
the boundary, denoted by Γ (i.e., Γ = ∂Ω), is smooth enough (say, is in the C 2 class); N is
a given positive integer; ρ1 and ρ2, as well as µ1 and µ2, are given positive constants; A1
and A2 are given RN×N-valued functions depending merely on space variables; a11, a12,
a21 and a22 are given functions which depend merely on space variables; g1 and g2, the
so-called relaxation functions, are given functions mapping R+ (throughout this paper,
R+ denotes the closed interval [0,+∞); see our notational conventions at the rear of this
section) into itself; f1 and f2 are given real-valued functions defined in R2; the given
functions u0, v0, u1 and v1 are initial data of the unknowns of IBVP (1); ∂t denotes the
partial differential operator ∂

∂t ;∇ denotes, as usual, the gradient operator (∂x1 , . . . , ∂xN )
> on

the N-dimensional Euclidean space RN , with ∂xk denoting the partial differential operator
∂

∂xk
, k = 1, . . . , N; divϕ denotes formally the divergence of the vector field

ϕ = (ϕ1, . . . , ϕN)
> = (ϕ1(x1, . . . , xN), . . . , ϕN(x1, . . . , xN))

>,

that is, divϕ =
N

∑
k=1

∂xk ϕk. We shall explain later the sense in which the coupled quasi-linear

viscoelastic variable coefficient wave Equations (1)1 and (1)2, as well as the homogeneous
Dirichlet boundary condition ‘u = v = 0 on Γ× (0,+∞)’ (i.e., (1)3) are satisfied.

As with coupled parabolic equations (see [1,2] and the references cited therein), the
coupled wave equations in IBVP (1) have important implications in Physics. The assump-
tion that the coefficients A1 and A2 depend on space variables indicates that the underlying
media/material is inhomogeneous. The assumption that the constants ρ1 and ρ2 are posi-
tive indicates that some of the structural properties of the concerned media/material are
influenced significantly by the vibrating velocity. To include the terms∫ t

−∞
g1(t− s)div(A1∇u)(s)ds, and∫ t

−∞
g2(t− s)div(A2∇v)(s)ds

in the model Equations (1)1 and (1)2, we stress that, in our concerned scenario in this paper,
the wave motions of the concerned media/material are suppressed by its viscoelasticity
(the kinetic energy is inhibited, the viscosity is influenced by the velocity, and the aftereffect
or memory of div(A1∇u) sustains for infinitely long time in the media/material); see
Reference [3] for the description of viscoelasticity phenomenon and the explanation of
the inducing mechanism of this phenomenon. The terms a11∂tu + a12∂tv, a21∂tu + a22∂tv,
f1(u, v) and f2(u, v) are incorporated to emphasize that the waves u and v are ‘strongly’
coupled to a certain extent; we shall impose some suitable conditions on the coefficients
a11, a12, a21 and a22 (see Assumption 5) to ensure that the term a11∂tu + a12∂tv, together
with the term a21∂tu + a22∂tv, plays a role as frictional damping.

Partial differential equations describing the dynamics of viscoelastic materials have
enormous implications to applications of these materials in engineering and scientific
communities; the governing equations incorporate hereditary terms to stress that the
aftereffect in the materials can not be neglected (see References [3–6]). In theoretical study or
engineering applications, the aftereffect of some materials could be neglected for sufficiently
large time, while the aftereffect of the other materials could last in infinitely long time
periods. Let us point out again that, as indicated by the structure of the model equations in
IBVP (1), the aftereffect of the material concerned in this paper could last in infinitely long
time periods.

Since viscoelastic materials play important roles in diverse application areas (as al-
luded before), many experts in mathematical communities have been, in the last two
decades, attracted into studying the dynamics of viscoelastic materials from mathematical
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perspectives. Muñoz Rivera [4] studied the large time behaviour of a class of viscoelastic
equation, defined in bounded open subset of Euclidean spaces, in which the aftereffect
in large time was neglected, and proved that the associated energy decays exponentially
as time approaches infinity. Muñoz Rivera, Lapa and Barreto [5] established later some
similar energy decaying results for plate equations. Aassila, Cavalcanti and Soriano [7]
established exponentially decaying and polynomially decaying estimates for the energy
of a constant-coefficient wave equation governing the vibration of materials occupying a
domain whose boundary is of viscoelasticity under different conditions, respectively; in the
meanwhile, they justified that the assertion that the energy approaches zero as time goes
to infinity holds for all linear viscoelastic wave equations on bounded domains subject to
homogeneous Dirichlet boundary condition. The idea in References [5,7] is strikingly illu-
minating for later study of problems for viscoelastic wave equations; see References [8–27]
and the vast references cited therein. For example, Cavalcanti, Domingos Cavalcanti and
Ferreira [8] considered the following initial boundary value problem

|∂tu|ρ∂2
t u−∆u−∆∂2

t u +
∫ t

0
g(t− s)∆u(s)ds− γ∂tu = 0 in Ω× (0,+∞),

u = v = 0 on Γ× (0,+∞),

u = u0, ∂tu(0) = u1 in Ω;

(2)

they proved, under certain conditions on the relaxation function g, that IBVP (2) admits
global weak solutions in H1

0(Ω;R2) whenever γ > 0, and that the energy E(t) associated
to the corresponding u decays exponentially whenever γ > 0, where

E(t) =
1

ρ + 2

∫
Ω
|∂tu(t)|ρ+2dx +

1
2

∫
Ω
|∇u(t)|2dx +

1
2

∫
Ω
|∇∂tu(t)|2dx, t ∈ R+.

The (quasi-)linear wave equation (when ρ = 0, the model Equation (2)1 is linear) in

IBVP (2) includes two damping terms, namely, the viscoelastic damping
∫ t

0
g(t− s)∆u(s)ds

and the frictional damping ∂tu. If ρ = 0, these two dampings seem to be equivalent
in the sense that the energy of both IBVP (2) incorporating merely viscoelastic damping
and IBVP (2) incorporating merely frictional damping decays exponentially. Hence it is
interesting to compare the intensity of these two terms in inhibiting the energy of solutions
IBVP (2) with ρ > 0. In this direction, Cavalcanti and Portillo Oquendo [9] obtained some
interesting results. Berrimi and Messaoudi [10] studied viscoelastic equations including
nonlinear source terms, and proved that the associated energy decays to zero as time goes to
infinity whenever the initial values is sufficiently small. Cavalcanti, Domingos Cavalcanti
and Martinez [11] extended in a certain sense the results in Reference [8] and proved that
the energy of viscoelastic equations with general relaxation function g (which has a slow
decaying rate compared to the one in Reference [8]) could also approach zero as time goes
to infinity. The system of coupled viscoelastic wave equations has also been studied by
several mathematicians in recent years. Han and Wang [12] studied the initial boundary
value problem for a coupled system of viscoelastic wave equations with two nonlinear
frictional damping terms, that is

∂2
t u−∆u +

∫ t

0
g1(t− s)∆u(s)ds + |∂tu|m−1∂tu = f1(u, v) in Ω× (0,+∞),

∂2
t v−∆v +

∫ t

0
g2(t− s)∆v(s)ds + |∂tv|r−1∂tv = f2(u, v) in Ω× (0,+∞),

u = v = 0 on Γ× (0,+∞),

u(0) = u0, ∂tu(0) = u1, v(0) = v0, ∂tv(0) = v1 in Ω;

(3)

they proved, under some additional conditions, that IBVP (3) is globally well-posed and
provided a blow up criterion for IBVP (3) under some other conditions; as alluded above,
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the nonlinear terms |∂tu|m−1∂tu and |∂tv|m−1∂tv, playing roles as frictional dampings,
bring in dissipation mechanism in the energy of the system (3). Said-Houari, Messaoudi
and Guesmia [13] and Mustafa [14] extended the results in References [8–11] to IBVP (3)
with the nonlinear frictional dampings removed. As could be seen evidently from IBVP (3),
the structural properties of the concerned materials do not depend on the velocity of the
vibration of the materials. Liu [15] considered an initial boundary value problem which is
more close to IBVP (1), our working model problem in this paper, namely

|∂tu|ρ∂2
t u−∆u− γ1∆∂2

t u +
∫ t

0
g1(t− s)∆u(s)ds + f1(u, v) = 0 in Ω× (0,+∞),

|∂tv|ρ∂2
t v−∆v− γ2∆∂2

t v +
∫ t

0
g2(t− s)∆v(s)ds + f2(u, v) = 0 in Ω× (0,+∞),

u = v = 0 on Γ× (0,+∞),

u(0) = u0, ∂tu(0) = u1, v(0) = v0, ∂tv(0) = v1 in Ω,

(4)

with ρ > 0; he established under certain additional conditions some uniform decaying
estimates for the energy of IBVP (4). He [16] reported some uniform decaying results for
the energy associated to IBVP (4) under some other conditions. The other more interesting
existence and stability results concerning viscoelastic (quasi-)linear wave equations could
be seen in References [17–29] and the references therein.

As can be infered from the above review: The model equations considered in the
aforementioned references only reflect that the concerned materials are homogeneous in all
directions and that the aftereffect is all neglected for large time. But it seems to be more
realistic that the materials are inhomogeneous in directions and that the aftereffect could
influence the materials all the time. This motivates us to study space-varying viscoelastic
wave equations with infinitely long memory of which both improve the mathematical
difficulty of the paper. As could be seen later, we shall not assume that ρ1 = ρ2; it is
obvious that ρ1 6= ρ2 has significant physical implications. Aside from these innovations,
the nonlinearity in IBVP (1) seems to be more general than those studied in the existing
references. Our goal in this paper is to prove under some conditions that solutions to
IBVP (1) exist globally in time whenever their initial values are sufficiently small, and prove
under some additional conditions that the energy associated to some of the global in time
solutions approaches zero as time escapes to infinity.

Assumption 1. For i = 1, 2, Ai ∈ C 2(Ω̄;RN×N), the set of uniformly continuous functions of
which partial derivatives whose orders not exceeding 2 are all uniformly continuous Ω. For every
x ∈ Ω, the matrix Ai(x) is symmetric, i = 1, 2. And ϑi is assumed to be strictly positive, where
the constant ϑi is given by

ϑi = inf
x∈Ω,

ξ∈RN\{0}

ξ>Ai(x)ξ
ξ>ξ

, i = 1, 2. (5)

Assumption 2. The relaxation function gi is strictly monotonically decreasing, maps the closed
interval R+ into itself and satisfies

0 <
∫ +∞

0
gi(s)ds < µi, i = 1, 2.

The derivative function g′i , of the relaxation function gi, is locally Lebesgue integrable in R+(in
other words, the function gi is absolutely continuous in the interval R+), i = 1, 2. There exists
a nonincreasing absolutely continuous function ξi mapping R+ into itself and a function Ki ∈
C 2([0, ri];R) (with ri a given positive constant not less than gi(0)), which is strictly increasing
and strictly convex, and satisfies Ki(0) = K′i(0) = 0, such that
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K1(t) 6 K2(t) or K2(t) 6 K1(t) for all t ∈ [0, min(r1, r2)], (6)

that
g′i(t) 6 −ξi(t)Ki(gi(t)) for all t ∈ R+,

and that there exists a positive constant ki satisfying

lim
δ→0+

K′−1
i (δ)(

max(K1, K2)
)′−1

(δ)
= ki, i = 1, 2,

with
(
max(K1, K2)

)′−1 denoting the inverse of the derivative of the function max(K1, K2).

Assumption 3. The constants ρ1 and ρ2 satisfy min(ρ1, ρ2) > 0 and (N − 2)max(ρ1, ρ2) 6 2.

Assumption 4. fi is locally Lipschitz continuous in R2, and satisfies fi(0, 0) = 0, i = 1, 2. There
exists a function F(u, v), defined in the whole space R2, such that

F(u, v) =
∫ u

0
f1(ũ, 0)dũ +

∫ v

0
f2(u, ṽ)dṽ, u, v ∈ R, (7)

or equivalently ∂v f1(u, v) = ∂u f2(u, v), u, v ∈ R. fi satisfies the growth condition at infinity:
There exist four absolute constants Ł1, Ł2, p1 and p2 satisfying min(Ł1, Ł2, p1, p2) > 0 and
(N − 2)max(p1, p2) 6 2, such that, for every pair (u, v)> ∈ R2, it holds always that

| fi(u, v)| 6 Łi(|u|p1+1 + |u|p2+1 + |u|ρ1+1 + |v|p1+1 + |v|p2+1 + |v|ρ2+1), i = 1, 2. (8)

Assumption 5. For every x ∈ Ω: a12(x) = a21(x); and the matrix(
a11(x) a12(x)
a21(x) a22(x)

)
is semi-positive definite. aij belongs to the Banach space C (Ω̄), the totality of uniformly continuous
real-valued functions defined in Ω, i, j = 1, 2.

For the sake of convenience of our later presentation, we write

1
ζi

= inf
ϕ∈H1

0 (Ω)\{0}

1
‖∇ϕ‖2

L2(Ω;RN)

∫
Ω
∇>ϕAi∇ϕdx, i = 1, 2, (9)

and write for every p > 1 satisfying (N − 2)p 6 2N:

κp = sup
ϕ∈H1

0 (Ω)\{0}

‖ϕ‖Lp(Ω)

‖∇ϕ‖L2(Ω;RN)
. (10)

For every given α ∈ R+, we denote henceforth

fα = sup
(x,y)>∈R2

+\{(0,0)>}

xα + yα

(x + y)α
= 2max(1−α,0). (11)

Hereafter, we associate to aij (i, j = 1, 2) the following constant

κa11,a12,a21,a22 = sup
(ϕ1,ψ1)

> ,(ϕ2,ψ2)
>∈L2(Ω;R2),

‖(ϕ1,ψ1)
>‖L2(Ω;R2)=‖(ϕ2,ψ2)

>‖L2(Ω;R2)=1

|
∫

Ω

(
ϕ1
ψ1

)>(a11 a12
a21 a22

)(
ϕ2
ψ2

)
dx|. (12)
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To improve the readability, we would like to give some remarks on our list of five
standing assumptions (see Assumptions 1–5 for the details) of this paper.

Remark 1. By applying the celebrated Sobolev–Poincaré inequality (see [1], THEOREM 1, p. 292),
we can conclude that κp given by (10) is a positive constant. In light of Assumption 1 on the

coefficient matrix Ai(x), the term
∫

Ω
∇>ϕAi∇ϕdx is well-defined and ζi given by (9) is also a

positive constant obeying

1√
‖ tr

(
(Ai)2

)
‖L∞(Ω)

=
1√

‖ tr
(
(Ai)>Ai

)
‖L∞(Ω)

6 ζi 6
1
ϑi

,

where ϑi is given by (5), and tr denotes the trace operator of square matrice, i = 1, 2.

Remark 2. By imposing the restriction (6) in Assumption 2, our principal aim in this paper is
to guarantee the twice continuous differentiability of the function max(K1, K2) in the interval
[0, min(r1, r2)]. The restriction (6) can be probably removed via introducing the notion of subd-
ifferential in convex analysis, or via utilizing Dini’s derivatives, together with some complicated
calculations techniques.

Remark 3. Let α ∈ R+. We can prove, based on the notation fα given by (11), that

xα + yα 6 fα(x + y)α, (x, y) ∈ R2
+.

Based on Assumption 4 ((7) and (8), in particular), we could obtain the following lemma by
some routine but tedious calculations.

Lemma 1. Let F(u, v), f1(u, v) and f2(u, v) be three functions given as in Assumption 4. For
every pair (u, v)> ∈ R2, it holds always that

|F(u, v)|6 Ł1 + Ł2(p1 + 1)
p1 + 2

|u|p1+2 +
Ł1 + Ł2(p2 + 1)

p2 + 2
|u|p2+2

+
Ł1 + Ł2(ρ1 + 1)

ρ1 + 2
|u|ρ1+2 +

2Ł2|v|p1+2

p1 + 2
+

2Ł2|v|p2+2

p2 + 2

+
Ł2|v|ρ1+2

ρ1 + 2
+

Ł2|v|ρ2+2

ρ2 + 2
,

where Łi is exactly the one given in (8) in Assumption 4, i = 1, 2.

Remark 4. By some routine calculations, we have immediately that

(κa11,a12,a21,a22)
2 6 ‖(a11)

2 + (a12)
2 + (a21)

2 + (a22)
2‖L∞(Ω)

6 ‖a11‖2
L∞(Ω) + ‖a12‖2

L∞(Ω) + ‖a21‖2
L∞(Ω) + ‖a22‖2

L∞(Ω).

This, together with Assumption 5, implies that κa11,a12,a21,a22 , given by (12), is indeed a
non-negative constant.

Notational Conventions. R is the field of real numbers; R+ = [0,+∞); R− = (−∞, 0]. For
ϕ : Ω→ R, we write formally ∇>ϕ = (∇ϕ)>. For 1 6 p 6 +∞, Lp(Ω) denotes, as usual,
the classical Lebesgue space. The Hilbert space H1(Ω), equipped with the inner product

(ϕ, ψ)> 7→
∫

Ω
(ϕψ +∇>ϕ∇ψ)dx, (13)

denotes the totality of square-integrable functions defined in Ω whose first order partial
derivatives, in the distributional sense, are all square-integrable functions in Ω. H1

0(Ω)
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denotes the totality of functions in H1(Ω) having zero as their boundary values in the
trace sense, or equivalently, H1

0(Ω) is the completion of the totality C ∞
comp(Ω) of infinitely

differentiable functions defined in Ω having compact support in the Hilbert space H1(Ω);
inheriting the inner product (13) from H1(Ω), H1

0(Ω) is also a Hilbert space. We write
‖ · ‖H1(Ω) and ‖ · ‖H1

0 (Ω) for the norms induced by inner products of the Hilbert spaces

H1(Ω) and H1
0(Ω). Let H be an inner product space, we write 〈†, ‡〉H for the inner product

of the space H. Let X be a Banach space with X′ its topological dual, and J an interval; we
write 〈†, ‡〉X′ ,X for the duality pairing (of the Banach space X and its dual X′) and denote
by Cw(J; X) the following space{

ϕ : J → X; J 3 t→ 〈ψ, ϕ(t)〉X′ ,X ∈ R for every ψ ∈ X′
}

.

The rest of this paper is organized as follows. In Section 2, we prove that solutions to
IBVP (1) exist globally in time whenever their initial data are sufficiently small. In Section 3,
we provide a general decaying estimate on global-in-time solutions to IBVP (1); the estimate
implies that global-in-time solutions to IBVP (1) decrease to zero as time goes to infinity,
whenever their initial data satisfy some additional conditions. In Section 4, we provide
several concluding remarks.

2. Global Existence Results Concerning Solutions to IBVP (1)

In this section, our main aim is to prove the global existence of solutions, whose initial
data belonging to a certain function space, to IBVP (1). We shall first demonstrate the
local existence of solutions to IBVP (1) via utilizing the Faedo-Galerkin method, and shall
then prove the desired global existence by establishing a priori estimates and a standard
continuation argument. For the sake of convenience of our later presentation, we write, in
the sequel, for every T ∈ (0,+∞):

S[0,T] =
{
(u, v)>; u, v : Ω× (−∞, T]→ R,

u|Ω×[0,T], v|Ω×[0,T] ∈ Cw([0, T]; H1
0(Ω)),

∂tu|Ω×[0,T], ∂tv|Ω×[0,T] ∈ Cw([0, T]; H1
0(Ω)),

u|Ω×R− , v|Ω×R− ∈ L∞(R−; H1
0(Ω))

}
, (14)

and for every 0 < T 6 +∞, we write similarly

S[0,T) =
{
(u, v)>; u, v : Ω× (−∞, T)→ R,

(u, v)>|Ω×(−∞,T̃] ∈ S[0,T̃], ∀T̃ ∈ (0, T)
}

. (15)

Definition 1. Let T ∈ (0,+∞). The pair (u, v)> ∈ S[0,T] is said to be a local weak solution,
in the interval [0, T], to IBVP (1) provided that the following two equalities hold for every pair
(ϕ, ψ)> ∈ H1

0(Ω;R2) of test functions:

1
ρ1 + 1

∫
Ω
|∂tu(t)|ρ1 ∂tu(t)ϕdx +

∫
Ω
∇>ϕA1∇∂tu(t)dx

− 1
ρ1 + 1

∫
Ω
|u1|ρ1 u1 ϕdx−

∫
Ω
∇>ϕA1∇u1dx

+
∫ t

0

∫
Ω
∇>ϕA1(∇u(s)−

∫ s

−∞
g1(s− τ)∇u(τ)dτ)dxds

=
∫ t

0

∫
Ω

ϕ( f1(u(s), v(s))− a11∂tu(s)− a12∂tv(s))dxds, t ∈ (0, T), (16)
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and
1

ρ2 + 1

∫
Ω
|∂tv(t)|ρ2 ∂tv(t)ψdx +

∫
Ω
∇>ψA2∇∂tv(t)dx

− 1
ρ2 + 1

∫
Ω
|v1|ρ2 v1ψdx−

∫
Ω
∇>ψA2∇v1dx

+
∫ t

0

∫
Ω
∇>ψA2(∇v(s)−

∫ s

−∞
g2(s− τ)∇v(τ)dτ)dxds

=
∫ t

0

∫
Ω

ψ( f2(u(s), v(s))− a21∂tu(s)− a22∂tv(s))dxds, t ∈ (0, T). (17)

Definition 2. Let 0 < T 6 +∞. (u, v)> : Ω× (−∞, T) → R2 is said to be a weak solution to
IBVP (1), in the interval [0, T), if for every 0 < T′ < T, (u, v)>|Ω×(−∞,T′ ] is a local weak solution,
in the interval [0, T′], to IBVP (1). In the case that T = +∞ (or equivalently, (u, v)> ∈ SR+

;
see (15) for the definition of SR+

), (u, v)> is called a global weak solution to IBVP (1); otherwise,
(u, v)> is still called a local weak solution to IBVP (1).

To every solution pair (u, v)> ∈ S[0,T) (see (15) for the definition of S[0,T)), with
0 < T 6 +∞, to IBVP (1), we associate the following functional (a certain Lyapunov
functional candidate)

Eu,v(t) =
1

ρ1 + 2
‖∂tu(t)‖ρ1+2

Lρ1+2(Ω)
+

1
ρ2 + 2

‖∂tv(t)‖ρ2+2
Lρ2+2(Ω)

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
2

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx +

1
2
(g1 �A1 ∇u)(t)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1
2

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx +

1
2
(g2 �A2 ∇v)(t)

−
∫

Ω
F(u(t), v(t))dx, t ∈ [0, T), (18)

where F is given by (7), and the operation “�”, associated to two given functions Φ ∈
L∞(Ω;RN×N) and g ∈ L∞(0,+∞), is defined, in a formal way, as follows: For every
ψ ∈ L2

loc([−∞, T); L2(Ω;RN)),

(g �Φ ψ)(t) =
∫ t

−∞
g(t− s)

∫
Ω
(ψ(t)−ψ(s))>Φ(ψ(t)−ψ(s))dxds. (19)

Lemma 2. Let Φ ∈W1,∞(Ω;RN×N), g ∈W1,∞(0,+∞). For every

ϕ ∈ L2
loc([−∞, T); H1

0(Ω))

satisfying ϕ|Ω×[0,T) ∈ H1
loc([0, T); H1

0(Ω)), it holds that

d
dt

(
(g �Φ ∇ϕ)(t)−

∫ +∞

0
g(s)ds

∫
Ω
∇>ϕ(t)Φ∇ϕ(t)dx

)
= (g′ �Φ ∇ϕ)(t)− 2

∫ t

−∞
g(t− s)

∫
Ω
∇>∂t ϕ(t)Φ∇ϕ(s)dxds, t ∈ (0, T).
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Proof. Conduct some routine calculations, to obtain

d
dt

(
(g �Φ ∇ϕ)(t)−

∫ +∞

0
g(s)ds

∫
Ω
∇>ϕ(t)Φ∇ϕ(t)dx

)
= (g′ �Φ ∇ϕ)(t)− 2

∫ +∞

0
g(s)ds

∫
Ω
∇>∂t ϕ(t)Φ∇ϕ(t)dx

+ 2
∫ t

−∞
g(t− s)

∫
Ω
∇>∂t ϕ(t)Φ(∇ϕ(t)−∇ϕ(s))dxds

= (g′ �Φ ∇ϕ)(t)− 2
∫ t

−∞
g(t− s)

∫
Ω
∇>∂t ϕ(t)Φ∇ϕ(s)dxds, t ∈ (0, T),

in which the “=” in the second line follows immediately from the very definition of the
expression (g �Φ ∇ϕ)(t) (see (19) for the detail).

The differential identity in Lemma 2 is of great importance in our later calculations
and will be used frequently in proving our main results in this paper. For example, we
shall employ Lemma 2 as one of the main ingredients in the procedure of deducing an a
priori inequality which plays a key role in proving the following local existence theorem.

Theorem 1. Suppose that Assumptions 1–4 hold true, and that the space-varying coefficient aij
belongs to the Banach space C (Ω̄), i, j = 1, 2. Then for every initial datum pair

(u0, v0)> ∈ L∞(R−; H1
0(Ω;R2))

and every initial datum pair (u1, v1)> ∈ H1
0(Ω;R2), IBVP (1) admits a local weak solution

(u, v)> ∈ S[0,T̃] (see (14) for the detailed definition of the notation S[0,T̃]), in the interval [0, T̃], in
which T̃ is a certain postive time instant depending merely on Ω, A1, A2, f1, f2, g1, g2, ρ1, ρ2, a11,
a12, a21, a22 , u0, v0, u1 and v1.

Please notice that we do not use Assumption 5 in Theorem 1 temporarily, instead, we
used a weaker condition that ‘aij belongs to the Banach space C (Ω̄), i, j = 1, 2’. We shall
prove Theorem 1 via the very standard Faedo-Galerkin procedure.

Proof. Thanks to Assumption 1, by recalling theory on elliptic partial differential equations,
one can find: One orthonormal basis, designated by {ein}∞

n=1, of the Hilbert space L2(Ω) is
composed of the solutions of the following eigenvalue problems{

div(Ai∇ei) = λiei in Ω,

ei = 0 on Γ.

By using mainly the divergence theorem, we have∫
Ω
∇>eik Ai∇ei`dx = −

∫
Ω

eik div(Ai∇ei`)dx

= λi`

∫
Ω

eik Aiei`dx

=

{
λi` if k = `,
0 if k 6= `.

Since Ai ∈ C 2(Ω̄;RN×N) (see Assumption 1), for any positive integer n, we have
ein ∈ C 2(Ω̄), i = 1, 2. Let us introduce the following two sequences of approximate
solutions

uk(x, t) =
k

∑
j=1

e1j ⊗ ũkj(x, t) =
k

∑
j=1

ũkj(t)e1j(x),

vk(x, t) =
k

∑
j=1

e2j ⊗ ṽkj(x, t) =
k

∑
j=1

ṽkj(t)e2j(x),


k ∈ N. (20)
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As with (20), to construct sequences of approximate solutions is one of the main steps
in applying the Faedo-Galerkin scheme to prove local existence result of evolution partial
differential equations. After some calculations, we can find that (uk, vk)

> given by (20) is
approximate solution pair to IBVP (1) if and only if

Uk(t) = (ũk1(t), . . . , ũkk(t), ũ′k1(t), . . . , ũ′kk(t),

ṽk1(t), . . . , ṽkk(t), ṽ′k1(t), . . . , ṽ′kk(t))
> (21)

is the solution to the following Cauchy problem

∫
Ω
|

k

∑
j=1

ũ′kj(t)e1j|ρ1
k

∑
j=1

ũ′′kj(t)e1je1`dx

+ λ1`ũk`(t) + λ1`ũ′′k`(t)− λ1`

∫ t

−∞
g1(t− s)ũk`(s)ds

+
k

∑
j=1

ũ′kj(t)
∫

Ω
a11e1je1`dx

+
k

∑
j=1

ṽ′kj(t)
∫

Ω
a12e2je1`dx

=
∫

Ω
f1(

k

∑
j=1

ũkj(t)e1j,
k

∑
j=1

ṽkj(t)e2j)e1`dx, t ∈ R+, ` = 1, . . . , k,

∫
Ω
|

k

∑
j=1

ṽ′kj(t)e2j|ρ2
k

∑
j=1

ṽ′′kj(t)e2je2mdx

+ λ2mṽkm(t) + λ2mṽ′′km(t)− λ2m

∫ t

−∞
g2(t− s)ṽkm(s)ds

+
k

∑
j=1

ṽ′kj(t)
∫

Ω
a21e2je2mdx

+
k

∑
j=1

ṽ′kj(t)
∫

Ω
a22e2je2mdx

=
∫

Ω
f2(

k

∑
j=1

ũkj(t)e1j,
k

∑
j=1

ṽkj(t)e2j)e2mdx, t ∈ R+, m = 1, . . . , k,

ũk`(t) =
∫

Ω
u0(t)e1`dx,

ṽk`(t) =
∫

Ω
v0(t)e2`dx, t ∈ R−, ` = 1, . . . , k,

ũ′k`(0) =
∫

Ω
u1e1`dx,

ṽ′k`(0) =
∫

Ω
v1e2`dx, ` = 1, . . . , k.

(22)

In accordance with (21), we write

U0
k (t) = (

∫
Ω

u0(t)e11dx, . . . ,
∫

Ω
u0(t)e1kdx,

∫
Ω

u1e11dx, . . . ,
∫

Ω
u1e1kdx,∫

Ω
v0(t)e21dx, . . . ,

∫
Ω

v0(t)e2kdx,
∫

Ω
v1e21dx, . . . ,

∫
Ω

v1e2kdx)>, t ∈ R−.

Then the Cauchy problem (22) can be recast into the following Cauchy problem for a
functional differential equation
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{
U′k(t) = Fk(Uk(t), Ukt), t ∈ R+,

Uk = U0
k in R−,

(23)

where Ukt(τ) = Uk(t + τ), τ ∈ R−, and Fk : R4k × L∞(R−;R4k)→ R4k is locally Lipschitz
continuous. Then by a variant of the classical Cauchy–Lipschitz existence theory, the
Cauchy problem (23), or equivalently, the Cauchy problem (22) is locally well-posed in
Hadamard’s sense. As a consequence, by applying a standard continuation argument,
we can prove, based on the aforementioned local well-posedness result, that the Cauchy
problem (22) (for system of ordinary differential equations) admits a unique solution

(ũk1(t), . . . , ũkk(t), ṽk1(t), . . . , ṽkk(t))>

in the classical sense in [0, T∗), the maximal interval of existence. Thus the pair (uk, vk)
> in

the form (20) is well-defined. Let us now introduce the following auxilliary functional

Ξk(t) = Euk ,vk (t) +
∫

Ω
F(uk(t), vk(t))dx

=
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
1

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>uk(t)A1∇uk(t)dx

+
1
2

∫
Ω
∇>∂tuk(t)A1∇∂tuk(t)dx +

1
2
(g1 �A1 ∇uk)(t)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>vk(t)A2∇vk(t)dx

+
1
2

∫
Ω
∇>∂tvk(t)A2∇∂tvk(t)dx +

1
2
(g2 �A2 ∇vk)(t), t ∈ [0, T∗). (24)

Differentiate Ξk(t) and simplify further the obtained result, to yield

Ξ′k(t) =
1
2
(g′1 �A1 ∇uk)(t) +

1
2
(g′2 �A2 ∇vk)(t)−

∫ t

−∞
g1(t− s)

∫
Ω
∇>∂tuk(t)A1∇uk(s)dxds

−
∫ t

−∞
g2(t− s)

∫
Ω
∇>∂tvk(t)A2∇vk(s)dxds−

∫ t

−∞
g1(t− s)

∫
Ω

∂tuk(t)div(A1∇uk(s))dxds

−
∫ t

−∞
g2(t− s)

∫
Ω

∂tvk(t)div(A2∇vk(s))dxds

+
∫

Ω
∂tuk(t) f1(uk(t), vk(t))dx +

∫
Ω

∂tvk(t) f2(uk(t), vk(t))dx

−
∫

Ω

(
∂tuk(t)
∂tvk(t)

)>(a11 a12
a21 a22

)(
∂tuk(t)
∂tvk(t)

)
dx

6
∫

Ω
∂tuk(t) f1(uk(t), vk(t))dx +

∫
Ω

∂tvk(t) f2(uk(t), vk(t))dx

+κa11,a12,a21,a22(‖∂tuk(t)‖2
L2(Ω) + ‖∂tvk(t)‖2

L2(Ω)), t ∈ [0, T∗). (25)

Before continuing our proof, it is worth noticing that the unique existence of solutions
to the Cauchy problem (22) and solutions to the Cauchy problem (22) depending continu-
ously on their initial data are both attributed to the local Lipschitz continuity of Fk in the
right hand side of the partial differential equation in the Cauchy problem (22), and that the
maximal existence time instant T∗, independent of k, depends on Ω, A1, A2, f1, f2, g1, g2,
ρ1, ρ2, a11, a12, a21, a22 , u0, v0, u1 and v1.

Thanks to
ρ1

ρ1 + 2
+

2
ρ1 + 2

= 1,

by the Fenchel–Young inequality, it holds that
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|ab| 6 ρ1

ρ1 + 2
|a|

ρ1+2
ρ1 +

2
ρ1 + 2

|b|
ρ1+2

2 , a, b ∈ R,

from which it follows further that∫
Ω

a11|∂tuk(t)|2dx 6
ρ1

ρ1 + 2
‖a11‖

ρ1+2
ρ1

L
ρ1+2

ρ1 (Ω)

+
2

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

, t ∈ [0, T∗). (26)

And similarly, we have

∫
Ω

a22|∂tvk(t)|2dx 6
ρ2

ρ2 + 2
‖a22‖

ρ2+2
ρ2

L
ρ2+2

ρ2 (Ω)

+
2

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

, t ∈ [0, T∗). (27)

In view of the Fenchel–Young inequality

|abc| 6 1
ρ1 + 2

|a|ρ1+2 +
1

ρ2 + 2
|b|ρ2+2 +

ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
|c|

(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2 , a, b, c ∈ R,

which follows directly from the identity

ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
+

1
ρ1 + 2

+
1

ρ2 + 2
= 1,

with the aid of the experience gained in the procedure of deriving (26) and (27), we have,
after some routine but careful calculations, that

|
∫

Ω
a12∂tuk(t)∂tvk(t)dx|6 1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
1

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

+
ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
‖a12‖

(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2

L
(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2 (Ω)

, t ∈ [0, T∗). (28)

And analogously, we have

|
∫

Ω
a21∂tuk(t)∂tvk(t)dx|6 1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
1

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

+
ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
‖a21‖

(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2

L
(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2 (Ω)

, t ∈ [0, T∗). (29)

By utilizing the growth condition (8) upon the nonlinearity fi (i = 1, 2) in Assumption 4,
we obtain immediately∫

Ω
∂tuk(t) f1(uk(t), vk(t))dx6Ł1

∫
Ω
|∂tuk(t)||uk(t)|p1+1dx + Ł1

∫
Ω
|∂tuk(t)||uk(t)|p2+1dx

+ Ł1

∫
Ω
|∂tuk(t)||uk(t)|ρ1+1dx + Ł1

∫
Ω
|∂tuk(t)||vk(t)|p1+1dx

+ Ł1

∫
Ω
|∂tuk(t)||vk(t)|p2+1dx + Ł1

∫
Ω
|∂tuk(t)||vk(t)|ρ2+1dx, t ∈ [0, T∗).
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By virtue of observing
1

ρ1 + 2
+

ρ1 + 1
ρ1 + 2

= 1, (30)

inspired by the experience gained in deducing (26)–(29), we have, by applying also the
Fenchel–Young inequality, immediately that∫

Ω
|∂tuk(t)||uk(t)|p1+1dx6

1
ρ1 + 2

∫
Ω
|∂tuk(t)|p1+2dx

+
ρ1 + 1
ρ1 + 2

∫
Ω
|uk(t)|

(p1+2)(ρ1+2)
ρ1+1 dx

=
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖uk(t)‖
(p1+1)(ρ1+2)

ρ1+1

L
(p1+1)(ρ1+2)

ρ1+1 (Ω)

, t ∈ [0, T∗). (31)

In view of the coercivity condition on A1 (see Assumption 1), we have by applying
the Sobolev–Poincaré inequality (see Remark 1) that

‖uk(t)‖
(p1+1)(ρ1+2)

ρ1+1

L
(p1+1)(ρ1+2)

ρ1+1 (Ω)

6 (κ (p1+1)(ρ1+2)
ρ1+1

)
(p1+1)(ρ1+2)

ρ1+1 ‖∇uk(t)‖
(p1+1)(ρ1+2)

ρ1+1

L2(Ω;RN)

6 (κ (p1+1)(ρ1+2)
ρ1+1

)
(p1+1)(ρ1+2)

ρ1+1 (ζ1)
(p1+1)(ρ1+2)

2ρ1+2 (
∫

Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2 ; (32)

see (9) and (10) for the detailed explanations on the notations ζ1 and κ (p1+1)(ρ1+2)
ρ1+1

, respec-

tively. Combine (31) and (32), to arrive at∫
Ω
|∂tuk(t)||uk(t)|p1+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+M 1
11(
∫

Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗), (33)

in which the positive constant M 1
11 is given by

M 1
11 =

ρ1 + 1
ρ1 + 2

(κ (p1+1)(ρ1+2)
ρ1+1

)
(p1+1)(ρ1+2)

ρ1+1 (ζ1)
(p1+1)(ρ1+2)

2ρ1+2 .

With the help of the experience of deriving (33), we conlude similarly that

∫
Ω
|∂tuk(t)||vk(t)|p1+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖vk(t)‖
(p1+1)(ρ1+2)

ρ1+1

L
(p1+1)(ρ1+2)

ρ1+1 (Ω)

6
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+M 1
12(
∫

Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗), (34)

in which the positive constant M 1
12 is given by

M 1
12 =

ρ1 + 1
ρ1 + 2

(κ (p1+1)(ρ1+2)
ρ1+1

)
(p1+1)(ρ1+2)

ρ1+1 (ζ2)
(p1+1)(ρ1+2)

2ρ1+2 .

With the help of the experience of deriving (33) and (34), we arrive at
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∫
Ω
|∂tuk(t)||uk(t)|p2+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖uk(t)‖
(p2+1)(ρ1+2)

ρ1+1

L
(p2+1)(ρ1+2)

ρ1+1 (Ω)

6
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+M 1
13(
∫

Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗), (35)

in which the positive constant M 1
13 is given by

M 1
13 =

ρ1 + 1
ρ1 + 2

(κ (p2+1)(ρ1+2)
ρ1+1

)
(p2+1)(ρ1+2)

ρ1+1 (ζ1)
(p2+1)(ρ1+2)

2ρ1+2 .

With the help of the experience of deriving (33)–(35), we conlude that

∫
Ω
|∂tuk(t)||vk(t)|p2+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖vk(t)‖
(p2+1)(ρ1+2)

ρ1+1

L
(p2+1)(ρ1+2)

ρ1+1 (Ω)

6
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+M 1
14(
∫

Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗), (36)

in which the positive constant M 1
14 is given by

M 1
14 =

ρ1 + 1
ρ1 + 2

(κ (p2+1)(ρ1+2)
ρ1+1

)
(p2+1)(ρ1+2)

ρ1+1 (ζ2)
(p2+1)(ρ1+2)

2ρ1+2 .

Based on the algebraic identity (30), we apply the Fenchel–Young inequality, to obtain∫
Ω
|∂tuk(t)||uk(t)|ρ1+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖uk(t)‖
ρ1+2
Lρ1+2(Ω)

, t ∈ [0, T∗). (37)

Mimicking steps in deriving (32), having the notations in (9) and (10) at our disposal,
and based on the coercivity condition on A1 (see Assumption 1), we apply the Sobolev–
Poincaré inequality (see Remark 1), to arrive at

‖uk(t)‖
ρ1+2
Lρ1+2(Ω)

6 (κρ1+2)
ρ1+2‖∇uk(t)‖

ρ1+2
L2(Ω;RN)

6 (κρ1+2)
ρ1+2(ζ1)

ρ1+2
2 (

∫
Ω
∇>uk(t)A1∇uk(t)dx)

ρ1+2
2 ,

which, together with (37), implies directly∫
Ω
|∂tuk(t)||uk(t)|ρ1+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+M 1
15(
∫

Ω
∇>uk(t)A1∇uk(t)dx)

ρ1+2
2 , t ∈ [0, T∗), (38)

in which the positive constant M 1
15 is given by

M 1
15 =

ρ1 + 1
ρ1 + 2

(κρ1+2)
ρ1+2(ζ1)

ρ1+2
2 .

With the aid of the experience of deriving (33)–(36), we conlude that
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∫
Ω
|∂tuk(t)||vk(t)|ρ2+1dx6

1
ρ1 + 2

‖∂tuk(t)‖
ρ1+2
Lρ1+2(Ω)

+
ρ1 + 1
ρ1 + 2

‖vk(t)‖
(ρ2+1)(ρ1+2)

ρ1+1

L
(ρ2+1)(ρ1+2)

ρ1+1 (Ω)

6
1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+M 1
16(
∫

Ω
∇>vk(t)A2∇vk(t)dx)

(ρ2+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗), (39)

in which the positive constant M 1
16 is given by

M 1
16 =

ρ1 + 1
ρ1 + 2

(κ (ρ2+1)(ρ1+2)
ρ1+1

)
(ρ2+1)(ρ1+2)

ρ1+1 (ζ2)
(ρ2+1)(ρ1+2)

2ρ1+2 .

Combine (33)–(39), to arrive, after some simple calculations, at∫
Ω

∂tuk(t) f1(uk(t), vk(t))dx6
6Ł1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+M 1
11Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 1
12Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 1
13Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

+M 1
14Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

+M 1
15Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

ρ1+2
2

+M 1
16Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(ρ2+1)(ρ1+2)
2ρ1+2 , t ∈ [0, T∗). (40)

Mimicking the steps as in deducing (40) from (33)–(39), we could prove similarly that∫
Ω

∂tvk(t) f2(uk(t), vk(t))dx6
6Ł2

ρ2 + 2
‖∂tuk(t)‖

ρ2+2
Lρ2+2(Ω)

+M 1
21Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

+M 1
22Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

+M 1
23Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

+M 1
24Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

+M 1
25Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(ρ1+1)(ρ2+2)
2ρ2+2

+M 1
26Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

ρ2+2
2 , t ∈ [0, T∗). (41)

in which the positive constants M 1
21, M 1

22, M 1
23, M 1

24, M 1
25 and M 1

26 are given by

M 1
21 =

ρ2 + 1
ρ2 + 2

(κ (p1+1)(ρ2+2)
ρ2+1

)
(p1+1)(ρ2+2)

ρ2+1 (ζ1)
(p1+1)(ρ2+2)

2ρ2+2 ,

M 1
22 =

ρ2 + 1
ρ2 + 2

(κ (p1+1)(ρ2+2)
ρ2+1

)
(p1+1)(ρ2+2)

ρ2+1 (ζ2)
(p1+1)(ρ2+2)

2ρ2+2 ,

M 1
23 =

ρ2 + 1
ρ2 + 2

(κ (p2+1)(ρ2+2)
ρ2+1

)
(p2+1)(ρ2+2)

ρ2+1 (ζ1)
(p2+1)(ρ2+2)

2ρ2+2 ,

M 1
24 =

ρ2 + 1
ρ2 + 2

(κ (p2+1)(ρ2+2)
ρ2+1

)
(p2+1)(ρ2+2)

ρ2+1 (ζ2)
(p2+1)(ρ2+2)

2ρ2+2 ,
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M 1
25 =

ρ2 + 1
ρ2 + 2

(κ (ρ1+1)(ρ2+2)
ρ2+1

)
(ρ1+1)(ρ2+2)

ρ2+1 (ζ1)
(ρ1+1)(ρ2+2)

2ρ2+2

and
M 1

26 =
ρ2 + 1
ρ2 + 2

(κρ2+2)
ρ2+2(ζ2)

ρ2+2
2 ,

respectively. Plug (26), (27), (28), (29), (40) and (41) into (25) and simplify the obtained
result further, to arrive at finally

Ξ′k(t)6M 2
1 +

4 + 6Ł1

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
4 + 6Ł2

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

+M 1
11Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 1
12Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 1
13Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

+M 1
14Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

+M 1
15Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

ρ1+2
2

+M 1
16Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(ρ2+1)(ρ1+2)
2ρ1+2

+M 1
21Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

+M 1
22Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

+M 1
23Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

+M 1
24Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

+M 1
25Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(ρ1+1)(ρ2+2)
2ρ2+2

+M 1
26Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

ρ2+2
2

+κa11,a12,a21,a22(‖∂tuk(t)‖2
L2(Ω) + ‖∂tvk(t)‖2

L2(Ω)), t ∈ [0, T∗), (42)

in which the positive constant M 2
1 is given by

M 2
1 =

ρ1

ρ1 + 2
‖a11‖

ρ1+2
ρ1

L
ρ1+2

ρ1 (Ω)

+
ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
‖a12‖

(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2

L
(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2 (Ω)

+
ρ2

ρ2 + 2
‖a22‖

ρ2+2
ρ2

L
ρ2+2

ρ2 (Ω)

+
ρ1ρ2 + ρ1 + ρ2

(ρ1 + 2)(ρ2 + 2)
‖a21‖

(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2

L
(ρ1+2)(ρ2+2)
ρ1ρ2+ρ1+ρ2 (Ω)

.

With the aid of the definition Ξk(t) (see (24) for the details), by some routine but
careful calculations, we arrive at
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M 1
11Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 1
12Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

6M 3
11(

1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

+M 3
11(

1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ1+2)
2ρ1+2

6M 3
11
(1

2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>uk(t)A1∇uk(t)dx

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>vk(t)A2∇vk(t)dx

) (p1+1)(ρ1+2)
2ρ1+2

6M 3
11
(
Ξk(t)

) (p1+1)(ρ1+2)
2ρ1+2 , (43)

in which the positive constant M 3
11 is given by

M 3
11 = Ł1f (p1+1)(ρ1+2)

2ρ1+2
max(M 1

11(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

(p1+1)(ρ1+2)
2ρ1+2 , M 1

12(
1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

(p1+1)(ρ1+2)
2ρ1+2 );

see (11) for the detailed explanation on the notation f (p1+1)(ρ1+2)
2ρ1+2

and see Remark 3 for its

applications. Take similar steps as in deriving (43), to get

M 1
13Ł1(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

+M 1
14Ł1(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ1+2)
2ρ1+2

6M 3
12
(
Ξk(t)

) (p2+1)(ρ1+2)
2ρ1+2 , (44)

in which the positive constant M 3
12 is given by

M 3
12 = Ł1f (p2+1)(ρ1+2)

2ρ1+2
max(M 1

13(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

(p2+1)(ρ1+2)
2ρ1+2 ,

M 1
14(

1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

(p2+1)(ρ1+2)
2ρ1+2 );

see (11) for the detailed explanation on the notation f (p2+1)(ρ1+2)
2ρ1+2

and see Remark 3 for its

applications. Take similar steps as in deriving (43) and (44), to get

M 1
21Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

+M 1
22Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p1+1)(ρ2+2)
2ρ2+2

6M 3
21
(
Ξk(t)

) (p1+1)(ρ2+2)
2ρ2+2 , (45)

in which the positive constant M 3
21 is given by

M 3
21 = Ł2f (p1+1)(ρ2+2)

2ρ2+2
max(M 1

21(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

(p1+1)(ρ2+2)
2ρ2+2 , M 1

22(
1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

(p1+1)(ρ2+2)
2ρ2+2 );

see (11) for the detailed explanation on the notation f (p1+1)(ρ2+2)
2ρ2+2

and see Remark 3 for its

applications. Take similar steps as in deriving (43), (44) and (45), to get
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M 1
23Ł2(

∫
Ω
∇>uk(t)A1∇uk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

+M 1
24Ł2(

∫
Ω
∇>vk(t)A2∇vk(t)dx)

(p2+1)(ρ2+2)
2ρ2+2

6M 3
22
(
Ξk(t)

) (p2+1)(ρ2+2)
2ρ2+2 , (46)

in which the positive constant M 3
22 is given by

M 3
22 = Ł2f (p2+1)(ρ2+2)

2ρ2+2
max(M 1

23(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

(p2+1)(ρ2+2)
2ρ2+2 ,

M 1
24(

1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

(p2+1)(ρ2+2)
2ρ2+2 );

see (11) for the detailed explanation on the notation f (p2+1)(ρ2+2)
2ρ2+2

and see Remark 3 for its

applications. By the Fenchel–Young inequality, we have

‖∂tuk(t)‖2
L2(Ω) + ‖∂tvk(t)‖2

L2(Ω)6 (
ρ1

ρ1 + 2
+

ρ2

ρ2 + 2
)meas Ω

+
2

ρ1 + 2
‖∂tuk(t)‖

ρ1+2
Lρ1+2(Ω)

+
2

ρ2 + 2
‖∂tvk(t)‖

ρ2+2
Lρ2+2(Ω)

. (47)

Plug (43), (44), (45), (46) and (47) into (42) and perform some simple computations, to
arrive at finally the semi-linear differential inequality

Ξ′k(t)6M 4
1 +M 4

2 Ξk(t)

+M 4
3 (Ξk(t))

ρ1+2
2 +M 4

4 (Ξk(t))
ρ2+2

2

+M 4
5 (Ξk(t))

(ρ2+1)(ρ1+2)
2ρ1+2 +M 4

6 (Ξk(t))
(ρ1+1)(ρ2+2)

2ρ2+2

+M 3
11
(
Ξk(t)

) (p1+1)(ρ1+2)
2ρ1+2 +M 3

12
(
Ξk(t)

) (p2+1)(ρ1+2)
2ρ1+2

+M 3
21
(
Ξk(t)

) (p1+1)(ρ2+2)
2ρ2+2 +M 3

22
(
Ξk(t)

) (p2+1)(ρ2+2)
2ρ2+2 , t ∈ [0, T∗), (48)

in which M 4
1 , M 4

2 , M 4
3 , M 4

4 , M 4
5 and M 4

6 are given by

M 4
1 = M 2

1 +κa11,a12,a21,a22(
ρ1

ρ1 + 2
+

ρ2

ρ2 + 2
)meas Ω,

M 4
2 = 4 + 6 max(Ł1, Ł2) + 2κa11,a12,a21,a22 ,

M 4
3 = M 1

15Ł1(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

ρ1+2
2 ,

M 4
4 = M 1

26Ł2(
1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

ρ2+2
2 ,

M 4
5 = M 1

16Ł1(
1
2
(µ2 −

∫ +∞

0
g2(s)ds))−

(ρ2+1)(ρ1+2)
2ρ1+2

and

M 4
6 = M 1

25Ł2(
1
2
(µ1 −

∫ +∞

0
g1(s)ds))−

(ρ2+1)(ρ1+2)
2ρ2+2 ,
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respectively. By careful calculations, we have

Ξk(0) =
1

ρ1 + 2
‖u0

k‖
ρ1+2
Lρ1+2(Ω)

+
1

ρ2 + 2
‖v0

k‖
ρ2+2
Lρ2+2(Ω)

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u0

k A1∇u0
kdx

+
1
2

∫
Ω
∇>u1

k A1∇u1
kdx +

1
2
(g1 �A1 ∇u0

k)(0)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v0

k A2∇v0
kdx

+
1
2

∫
Ω
∇>v1

k A2∇v1
kdx +

1
2
(g2 �A2 ∇v0

k)(0)

6
1

ρ1 + 2
(κρ1+2)

ρ1+2(ζ1)
ρ1+2

2 (
∫

Ω
∇>u0

k A1∇u0
kdx)

ρ1+2
2

+
1

ρ2 + 2
(κρ2+2)

ρ2+2(ζ2)
ρ2+2

2 (
∫

Ω
∇>v0

k A2∇v0
kdx)

ρ2+2
2

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u0

k A1∇u0
kdx

+
1
2

∫
Ω
∇>u1

k A1∇u1
kdx +

1
2
(g1 �A1 ∇u0

k)(0)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v0

k A2∇v0
kdx

+
1
2

∫
Ω
∇>v1

k A2∇v1
kdx +

1
2
(g2 �A2 ∇v0

k)(0)

6
1

ρ1 + 2
(κρ1+2)

ρ1+2(ζ1)
ρ1+2

2 (
∫

Ω
∇>u0 A1∇u0dx)

ρ1+2
2

+
1

ρ2 + 2
(κρ2+2)

ρ2+2(ζ2)
ρ2+2

2 (
∫

Ω
∇>v0 A2∇v0dx)

ρ2+2
2

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u0 A1∇u0dx

+
1
2

∫
Ω
∇>u1 A1∇u1dx +

1
2
(g1 �A1 ∇u0)(0)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v0 A2∇v0dx

+
1
2

∫
Ω
∇>v1 A2∇v1dx +

1
2
(g2 �A2 ∇v0)(0) 6 G0,

where the nonnegative constant G0 is given by

G0 =
1

ρ1 + 2
(κρ1+2)

ρ1+2(ζ1‖
√

tr((A1)2)‖L∞(Ω))
ρ1+2

2 ‖∇u0‖ρ1+2
L2(Ω;RN)

+
1

ρ2 + 2
(κρ2+2)

ρ2+2(ζ2‖
√

tr((A2)2)‖L∞(Ω))
ρ2+2

2 ‖∇v0‖ρ2+2
L2(Ω;RN)

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)‖

√
tr((A1)2)‖L∞(Ω)‖∇u0‖2

L2(Ω;RN)

+
1
2
‖
√

tr((A1)2)‖L∞(Ω)

(
‖∇u1‖2

L2(Ω;RN) +
∫ +∞

0
g1(s)ds‖∇u0‖2

L∞(R− ;L2(Ω;RN))

)
+

1
2
(µ2 −

∫ +∞

0
g2(s)ds)‖

√
tr((A2)2)‖L∞(Ω)‖∇v0‖2

L2(Ω;RN)

+
1
2
‖
√

tr((A2)2)‖L∞(Ω)

(
‖∇v1‖2

L2(Ω;RN) +
∫ +∞

0
g2(s)ds‖∇v0‖2

L∞(R− ;L2(Ω;RN))

)
.
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Let us introduce an auxiliary Cauchy problem

G ′=M 4
1 +M 4

2 G +M 4
3 G

ρ1+2
2 +M 4

4 G
ρ2+2

2

+M 4
5 G

(ρ2+1)(ρ1+2)
2ρ1+2 +M 4

6 G
(ρ1+1)(ρ2+2)

2ρ2+2

+M 3
11G

(p1+1)(ρ1+2)
2ρ1+2 +M 3

12G
(p2+1)(ρ1+2)

2ρ1+2

+M 3
21G

(p1+1)(ρ2+2)
2ρ2+2 +M 3

22G
(p2+1)(ρ2+2)

2ρ2+2 for t ∈ [0, T∗),

G (0) = G0.

(49)

Since the right hand side of the differential equation in the problem (49) is smooth (and
hence, is locally Lipschitz continuous), by the classical Cauchy–Lipschitz existence theory of
ordinary differential equations, the Cauchy problem (49) admits a unique solution, denoted
by G (t), in an interval [0, T∗∗), where T∗∗ is a certain constant fulfilling T∗∗ ∈ (0, T∗]. It is
not difficult to conclude: Both G (t) and T∗∗ are uniquely determined by Ω, A1, A2, f1, f2,
g1, g2, ρ1, ρ2, a11, a12, a21, a22 , u0, v0, u1 and v1; G (t) is strictly increasing in the interval
[0, T∗∗); and T∗∗ can be chosen arbitrarily in the interval (0, T̆] with T̆ given by

T̆ = min(T∗,
1

q(G0)α−1(α− 1)
)

in which q = max(ς, �) with ς given by

ς=M 4
1 +M 4

2 (1−
1
α
) +M 4

3 (1−
ρ1 + 2

2α
) +M 4

4 (1−
ρ2 + 2

2α
)

+M 4
5 (1−

(ρ2 + 1)(ρ1 + 2)
2α(ρ1 + 1)

) +M 4
6 (1−

(ρ1 + 1)(ρ2 + 2)
2α(ρ2 + 1)

)

+M 3
11(1−

(p1 + 1)(ρ1 + 2)
2α(ρ1 + 1)

) +M 3
12(1−

(p2 + 1)(ρ1 + 2)
2α(ρ1 + 1)

)

+M 3
21(1−

(p1 + 1)(ρ2 + 2)
2α(ρ2 + 1)

) +M 3
22(1−

(p2 + 1)(ρ2 + 2)
2α(ρ2 + 1)

),

� given by

� =
M 4

2
α

+
M 4

3 (ρ1 + 2)
2α

+
M 4

4 (ρ2 + 2)
2α

+
M 4

5 (ρ2 + 1)(ρ1 + 2)
2α(ρ1 + 1)

+
M 4

6 (ρ1 + 1)(ρ2 + 2)
2α(ρ2 + 1)

+
M 3

11(p1 + 1)(ρ1 + 2)
2α(ρ1 + 1)

+
M 3

12(p2 + 1)(ρ1 + 2)
2α(ρ1 + 1)

+
M 3

21(p1 + 1)(ρ2 + 2)
2α(ρ2 + 1)

+
M 3

22(p2 + 1)(ρ2 + 2)
2α(ρ2 + 1)

,

and α given by

α = max
(ρ1 + 2

2
,

ρ2 + 2
2

,

(ρ2 + 1)(ρ1 + 2)
2ρ1 + 2

,
(ρ1 + 1)(ρ2 + 2)

2ρ2 + 2
,

(p1 + 1)(ρ1 + 2)
2ρ1 + 2

,
(p2 + 1)(ρ1 + 2)

2ρ1 + 2
,

(p1 + 1)(ρ2 + 2)
2ρ2 + 2

,
(p2 + 1)(ρ2 + 2)

2ρ2 + 2
)
.
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Thanks to 0 6 Ξk(0) 6 G0, by standard comparison theory of ordinary differential equa-
tions, we deduce from (48) and (49) that

Ξk(t) 6 G (t) for t ∈ [0, T̆). (50)

Now let us put T̃ =
1
2

min(2, T̆) . In light of (50), we have by recalling that the function

G (t) is strictly increasing in the interval [0, T̆) ⊃ [0, T̃]

Ξk(t) 6 G (t) 6 G (T̃) for t ∈ [0, T̃],

and have further by recalling (24) and performing some more elementary calculations

max(‖uk(t)‖2
H1

0 (Ω)
, ‖∂tuk(t)‖2

H1
0 (Ω)

, ‖vk(t)‖2
H1

0 (Ω)
, ‖∂tvk(t)‖2

H1
0 (Ω)

)6
2(1 + (κ2)

2)

M 5
1

Ξk(t) 6 G (T̃) for t ∈ [0, T̃], (51)

in which: the positive constant M 5
1 is given by

M 5
1 = min(

1
ζ1

(µ1 −
∫ +∞

0
g1(s)ds),

1
ζ1

,
1
ζ2

(µ2 −
∫ +∞

0
g2(s)ds),

1
ζ2

), (52)

and G (T̃), a constant in the sense that it is independent of k and t, depends on Ω, A1, A2,
f1, f2, g1, g2, ρ1, ρ2, a11, a12, a21, a22 , u0, v0, u1 and v1.

Since ρi > 0 and pi > 0 (see Assumptions 3 and 4), we have

ρi + 2 < 2(ρi + 1),

pi + 2 < 2(pi + 1),

}
i = 1, 2.

This, together with Assumptions 3 and 4, and the Rellich–Kondrachov theorem (see [1],
Theorem 1, p. 286), implies that the Sobolev embeddings

H1
0(Ω) ↪→ Lρi+2(Ω), and

H1
0(Ω) ↪→ Lpi+2(Ω)

are both compact, i = 1, 2. By applying the Banach–Alaoglu theorem (see [30], Theorem 3.16,
p. 66), we can prove, via utilizing (51) and by applying the aforementioned compact
embeddings H1

0(Ω) ↪→↪→ Lρi+2(Ω) and H1
0(Ω) ↪→↪→ Lpi+2(Ω), i = 1, 2, that there exists

a pair (u, v)> (whose restriction to Ω× [0, T̃] could be proved to be weakly continuous
with respect to time t in the Hilbert space H1

0(Ω;R2)), and a subsequence {ik} of {k} (that
is, a strictly increasing sequence in N) such that

uik ⇀ u weakly∗ in L∞(0, T̃; H1
0(Ω)) as k→ ∞,

vik ⇀ v weakly∗ in L∞(0, T̃; H1
0(Ω)) as k→ ∞,

∂tuik ⇀ ∂tu weakly∗ in L∞(0, T̃; H1
0(Ω)) as k→ ∞,

∂tvik ⇀ ∂tv weakly∗ in L∞(0, T̃; H1
0(Ω)) as k→ ∞,

and such that

|∂tuik (t)|
ρ1 ∂tuik (t)→ |∂tu(t)|ρ1 ∂tu(t) in L

ρ1+2
ρ1+1 (Ω) as k→ ∞,

|∂tvik (t)|
ρ2 ∂tvik (t)→ |∂tv(t)|ρ2 ∂tv(t) as k→ ∞,

f1(uik (t), vik (t))→ f1(u(t), v(t)) in Lmin( ρ1+2
ρ1+1 , ρ2+2

ρ2+1 , p1+2
p1+1 , p2+2

p2+1 )(Ω) as k→ ∞,

f2(uik (t), vik (t))→ f2(u(t), v(t)) in Lmin( ρ1+2
ρ1+1 , ρ2+2

ρ2+1 , p1+2
p1+1 , p2+2

p2+1 )(Ω) as k→ ∞.
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In addition, for every pair (ϕ, ψ)> ∈ H1
0(Ω;R2), it holds that

1
ρ1 + 1

∫
Ω
|∂tuik (t)|

ρ1 ∂tuik (t)ϕdx +
∫

Ω
∇>ϕA1∇∂tuik (t)dx

− 1
ρ1 + 1

∫
Ω
|

ik

∑
j=1

∫
Ω

u1e1jdxe1j|ρ1
ik

∑
j=1

∫
Ω

u1e1jdxe1j ϕdx

−
∫

Ω
∇>ϕA1∇(

ik

∑
j=1

∫
Ω

u1e1jdxe1j)dx

+
∫ t

0

∫
Ω
∇>ϕA1(∇uik (s)−

∫ s

−∞
g1(s− τ)∇uik (τ)dτ)dxds

=
∫ t

0

∫
Ω

ϕ( f1(uik (s), vik (s))− a11∂tuik (s)− a12∂tvik (s))dxds, t ∈ [0, T̃], (53)

and
1

ρ2 + 1

∫
Ω
|∂tvik (t)|

ρ2 ∂tvik (t)ψdx +
∫

Ω
∇>ψA2∇∂tvik (t)dx

− 1
ρ2 + 1

∫
Ω
|

ik

∑
j=1

∫
Ω

v1e2jdxe2j|ρ2
ik

∑
j=1

∫
Ω

v1e2jdxe2jψdx

−
∫

Ω
∇>ψA2∇(

ik

∑
j=1

∫
Ω

v1e2jdxe2j)dx

+
∫ t

0

∫
Ω
∇>ψA2(∇vik (s)−

∫ s

−∞
g2(s− τ)∇vik (τ)dτ)dxds

=
∫ t

0

∫
Ω

ψ( f2(uik (s), vik (s))− a21∂tuik (s)− a22∂tvik (s))dxds, t ∈ [0, T̃]. (54)

By recalling that

ik

∑
j=1

∫
Ω

u0(t)e1jdxe1j → u0 in L∞(R−; H1
0(Ω)) as k→ ∞,

ik

∑
j=1

∫
Ω

v0(t)e2jdxe2j → v0 in L∞(R−; H1
0(Ω)) as k→ ∞,

ik

∑
j=1

∫
Ω

u1e1jdxe1j → u1 in H1
0(Ω) as k→ ∞,

ik

∑
j=1

∫
Ω

v1e2jdxe2j → v1 in H1
0(Ω) as k→ ∞,

we could conclude, based on the idea of passing to the limit of (53) and (54), that (u, v)>,
the limit of (uik , vik )

>, satisfies (16), (17), (1)3 and (1)4.
Lastly, we can mimick steps in [9,23], to show that (u, v)> ∈ S[0,T̃]. To summarize,

(u, v)>, the limit of (uik , vik )
>, is indeed a local solution, in the interval [0, T̃], to IBVP (1) in

the sense of Definition 1. The proof is complete.

Remark 5. Illuminated by the integral identity
∫ t

0

∫
Ω
∇>ϕA1∇∂2

t uik
(s)dxds=

∫
Ω
∇>ϕA1∇∂tuik

(t)dx

−
∫

Ω
∇>ϕA1∇(

ik

∑
j=1

∫
Ω

u1e1jdxe1j)dx, t ∈ [0, T̃], ∀ϕ ∈ H1
0(Ω),
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and by the integral identity∫ t

0

∫
Ω
∇>ψA2∇∂2

t vik (s)dxds=
∫

Ω
∇>ψA2∇∂tvik (t)dx

−
∫

Ω
∇>ψA2∇(

ik

∑
j=1

∫
Ω

v1e2jdxe2j)dx, t ∈ [0, T̃], ∀ψ ∈ H1
0(Ω),

we conclude that

∂2
t uik → ∂2

t u weakly∗ in D′(0, T̃; H1
0(Ω)), as k→ ∞, and

∂2
t vik → ∂2

t v weakly∗ in D′(0, T̃; H1
0(Ω)), as k→ ∞.

Besides, enlightened by the integral identity

∫ t

0

∫
Ω
|∂tuik (s)|

ρ1 ∂2
t uik (s)ϕdxds=

1
ρ1 + 1

∫
Ω
|∂tuik (t)|

ρ1 ∂tuik (t)ϕdx

− 1
ρ1 + 1

∫
Ω
|

ik

∑
j=1

∫
Ω

u1e1jdxe1j|ρ1
ik

∑
j=1

∫
Ω

u1e1jdxe1j ϕdx, t ∈ [0, T̃], ∀ϕ ∈ L2(Ω),

and by the integral identity

∫ t

0

∫
Ω
|∂tvik (s)|

ρ2 ∂2
t vik (s)ψdxds=

1
ρ2 + 1

∫
Ω
|∂tvik (t)|

ρ2 ∂tvik (t)ψdx

− 1
ρ2 + 1

∫
Ω
|

ik

∑
j=1

∫
Ω

v1e2jdxe2j|ρ2
ik

∑
j=1

∫
Ω

v1e2jdxe2jψdx, t ∈ [0, T̃], ∀ψ ∈ L2(Ω),

we conclude that

|∂tuik |
ρ1 ∂2

t uik → |∂tu|ρ1 ∂2
t u weakly∗ in D′(0, T̃; L2(Ω)), as k→ ∞, and

|∂tvik |
ρ2 ∂2

t vik → |∂tv|ρ2 ∂2
t v weakly∗ in D′(0, T̃; L2(Ω)), as k→ ∞.

To sum up, the solution (u, v)> ∈ S[0,T̃] (see (14) for the definition of S[0,T̃]) in the sense of
Definition 1 whose existence justified by Theorem 1 satisfies automatically

∂2
t u, ∂2

t v ∈ D′(0, T̃; H1
0(Ω)), and |∂tu|ρ1 ∂2

t u, |∂tv|ρ2 ∂2
t v ∈ D′(0, T̃; L2(Ω)).

Remark 6. By re-checking the proof of Theorem 1, we may find that the restriction on the symmetric
matrices-valued Ai function, defined in the domain Ω, (see Assumption 1 for the details) could be
weakened to: Ai ∈W1,∞(Ω) satisfies

ess inf
x∈Ω,

ξ∈RN\{0}

ξ>Ai(x)ξ
ξ>ξ

> 0, i = 1, 2,

and may find that the restriction that aij ∈ C (Ω̄) on the coefficient aij in Assumption 5 could be
weakened to aij ∈ L∞(Ω), i, j = 1, 2. For the sake of convenience of our calculations, unless stated
otherwise, we abide by Assumptions 1 and 5 in the rest of the paper.

Theorem 2. Suppose that Assumptions 1–5 hold true. For every pair

(u0, v0)> ∈ L∞(R−; H1
0(Ω;R2))
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and every pair (u1, v1)> ∈ H1
0(Ω;R2), IBVP (1) admits a solution (u, v)> ∈ S[0,T) in the sense

of Definition 2, in which [0, T), is the maximal existence time interval of the solution pair (u, v)>

with the maximal existence time instant 0 < T 6 +∞ independent of (u, v)> but depending on Ω,
A1, A2, f1, f2, g1, g2, ρ1, ρ2, a11, a12, a21, a22 , u0, v0, u1 and v1.

Proof. Theorem 2 can be proved by a standard continuation procedure. And therefore we
choose to leave out the detailed steps in this paper.

Lemma 3. Suppose that Assumptions 1–5 hold true. Eu,v(t) defined as in (18), associated to
every pair (u, v)> of solution, in the interval [0, T), to IBVP (1) in the sense of Definition 2 (see
Theorem 2 for the existence of (u, v)>), is non-increasing in [0, T).

Proof. Mimicking steps conducted in (25), we have

d
dt

Eu,v(t) =
1
2
(g′1 �A1 ∇u)(t) +

1
2
(g′2 �A2 ∇v)(t)

−
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx, t ∈ [0, T), (55)

which, together with Assumptions 2 and 5, implies immediately that Eu,v(t) is indeed
non-increasing in the interval [0, T). The proof is complete.

Theorem 2, having Theorem 1 as its basis, states that to every initial-datum pair

(u0, v0)> ∈ L∞(R−; H1
0(Ω;R2))

and every initial-datum pair (u1, v1)> ∈ H1
0(Ω;R2), there corresponds a weak solution

pair (u, v)> ∈ S[0,T) in the sense of Definition 2 to IBVP (1), in which [0, T) is the maximal
existence time interval of the solution pair (u, v)>. Now it is natural to start to investigate
the global existence of solutions to IBVP (1).

To make it convenient to present our other results in the rest of this paper, let us
introduce two auxilliary functionals

I(t) =
1
4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
4

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx +

1
4
(g1 �A1 ∇u)(t)

+
1
4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1
4

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx +

1
4
(g2 �A2 ∇v)(t)−

∫
Ω

F(u(t), v(t))dx, t ∈ [0, T) (56)

and

J(t) =
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
2

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx +

1
2
(g1 �A1 ∇u)(t)

+
1
2
(µ1 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1
2

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx +

1
2
(g2 �A2 ∇v)(t)−

∫
Ω

F(u(t), v(t))dx, t ∈ [0, T). (57)

We shall see below that our global existence and general energy decay results hold
true only for solutions to IBVP (1) having small initial data. To measure such smallness, we
need introduce the following two constants



Axioms 2023, 12, 780 25 of 53

β1 =
4M 6

11
(
Ł1 + Ł2(p1 + 1)

)
p1 + 2

+
4M 6

12
(
Ł1 + Ł2(p2 + 1)

)
p2 + 2

+
4M 6

13
(
Ł1 + Ł2(ρ1 + 1)

)
ρ1 + 2

, (58)

and

β2 =
8Ł2M

6
21

p1 + 2
+

8Ł2M
6
22

p2 + 2
+

4Ł2M
6
23

ρ1 + 2
+

4Ł2M
6
24

ρ2 + 2
, (59)

in which the constants M 6
11, M 6

12, M 6
13, M 6

14, M 6
21, M 6

22, M 6
23 and M 6

24 are given by

M 6
11 = (

ζ1(κp1+2)
2

µ1 −
∫ +∞

0 g1(s)ds
)

p1+2
2 (4Eu,v(0))

p1
2 , (60)

M 6
12 = (

ζ1(κp2+2)
2

µ1 −
∫ +∞

0 g1(s)ds
)

p2+2
2 (4Eu,v(0))

p2
2 , (61)

M 6
13 = (

ζ1(κρ1+2)
2

µ1 −
∫ +∞

0 g1(s)ds
)

ρ1+2
2 (4Eu,v(0))

ρ1
2 , (62)

M 6
14 = (

ζ1(κρ2+2)
2

µ1 −
∫ +∞

0 g1(s)ds
)

ρ2+2
2 (4Eu,v(0))

ρ2
2 , (63)

M 6
21 = (

ζ2(κp1+2)
2

µ2 −
∫ +∞

0 g2(s)ds
)

p1+2
2 (4Eu,v(0))

p1
2 , (64)

M 6
22 = (

ζ2(κp2+2)
2

µ2 −
∫ +∞

0 g2(s)ds
)

p2+2
2 (4Eu,v(0))

p2
2 , (65)

M 6
23 = (

ζ2(κρ1+2)
2

µ2 −
∫ +∞

0 g2(s)ds
)

ρ1+2
2 (4Eu,v(0))

ρ1
2 , (66)

and

M 6
24 = (

ζ2(κρ2+2)
2

µ2 −
∫ +∞

0 g2(s)ds
)

ρ2+2
2 (4Eu,v(0))

ρ2
2 , (67)

respectively, where the constant ζi is given as in (9), i = 1, 2, and Eu,v(0) = Eu,v(t)|t=0 can
be formulated explicitly as

Eu,v(0) =
1

ρ1 + 2
‖u1‖ρ1+2

Lρ1+2(Ω)
+

1
ρ2 + 2

‖v1‖ρ2+2
Lρ2+2(Ω)

+
1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u0(0)A1∇u0(0)dx

+
1
2

∫
Ω
∇>u1 A1∇u1dx +

1
2
(g1 �A1 ∇u0)(0)

+
1
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v0(0)A2∇v0(0)dx

+
1
2

∫
Ω
∇>v1 A2∇v1dx +

1
2
(g2 �A2 ∇v0)(0)−

∫
Ω

F(u0, v0)dx.

Please consult (18) for the detailed expression of Eu,v(t).

Lemma 4. Suppose that Assumptions 1–5 hold true. For every weak solution pair (u, v)> ∈ S[0,T)

to IBVP (1) with [0, T) the maximal existence interval of (u, v)>, if the associated functional I(t)
given by (56) satisfies I(0) > 0 and the associated constants β1 and β2, given by (58) and (59),
respectively, satisfy max(β1, β2) < 1, then I(t) > 0 holds for all t ∈ [0, T).
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Proof. Thanks to the assumption that I(0) > 0 and to the continuity of the function I(t),
there exists a time T1 ∈ (0, T), such that

I(t) > 0, t ∈ [0, T1]. (68)

By the very definition of I(t) (see (56) for the details), we have

J(t) = I(t) +
1
4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
4

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx +

1
4
(g1 �A1 ∇u)(t)

+
1
4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1
4

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx +

1
4
(g2 �A2 ∇v)(t), t ∈ [0, T1], (69)

where the functional J(t), associated to the solution (u, v)> to IBVP (1), is defined as in (57).
Combine (68) and (69), to arrive at directly

1
4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx 6 J(t), t ∈ [0, T1]. (70)

In light of the definition (57) of the functional J(t), we have

J(t) 6 Eu,v(t) 6 Eu,v(0), t ∈ [0, T1], (71)

where the second ‘6’ follows from the non-increasing monotonicity (see Lemma 3 for the
details). Substitute (71) into (70), to arrive at immediately

(µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+ (µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx 6 4Eu,v(0), t ∈ [0, T1]. (72)

By Lemma 1, we have

|
∫

Ω
F(u(t), v(t))dx|6 Ł1 + Ł2(p1 + 1)

p1 + 2
‖u(t)‖p1+2

Lp1+2(Ω)
+

2Ł2

p1 + 2
‖v(t)‖p1+2

Lp1+2(Ω)

+
Ł1 + Ł2(p2 + 1)

p2 + 2
‖u(t)‖p2+2

Lp2+2(Ω)
+

2Ł2

p2 + 2
‖v(t)‖p2+2

Lp2+2(Ω)

+
Ł1 + Ł2(ρ1 + 1)

ρ1 + 2
‖u(t)‖ρ1+2

Lρ1+2(Ω)
+

Ł2

ρ1 + 2
‖v(t)‖ρ1+2

Lρ1+2(Ω)

+
Ł2

ρ2 + 2
‖v(t)‖ρ2+2

Lρ2+2(Ω)
, t ∈ [0, T1]. (73)

Having the notations in (9) and (10) at our disposal and based on the coercivity
condition on A1 (see Assumption 1), mimicking steps in deducing (32), we apply the
Sobolev–Poincaré inequality (see Remark 1), to conclude

‖u(t)‖p1+2
Lp1+2(Ω)

6 M 6
11(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx. (74)

And similarly, we have
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‖u(t)‖p2+2
Lp2+2(Ω)

6 M 6
12(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx, (75)

‖u(t)‖ρ1+2
Lρ1+2(Ω)

6 M 6
13(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx, (76)

and
‖u(t)‖ρ2+2

Lρ2+2(Ω)
6 M 6

14(µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx. (77)

Having the notations in (9) and (10) at our disposal and based on the coercivity
condition on A2 (see Assumption 1), mimicking steps in deducing (32) and (74)–(77), we
apply the Sobolev–Poincaré inequality (see Remark 1), to obtain

‖v(t)‖p1+2
Lp1+2(Ω)

6 M 6
21(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx. (78)

And analogously, we have

‖v(t)‖p2+2
Lp2+2(Ω)

6 M 6
22(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx, (79)

‖v(t)‖ρ1+2
Lρ1+2(Ω)

6 M 6
23(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx, (80)

and
‖v(t)‖ρ2+2

Lρ2+2(Ω)
6 M 6

24(µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx. (81)

Plug (74)–(81) into (73), to obtain

|
∫

Ω
F(u(t), v(t))dx|6 β1

4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
β2

4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx, t ∈ [0, T1],

where the constants β1 and β2 are defined as in (58) and (59), respectively. Owing to the
assumption that max(β1, β2) < 1, it follows that

|
∫

Ω
F(u(t), v(t))dx| < 1

4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx, t ∈ [0, T1]. (82)

This, together with the definition (56) of I(t), implies that

I(t) > 0 for t ∈ [0, T1]. (83)

Lastly, to finish the proof, we introduce

T2 = sup{0 < T′ 6 T; I(t) > 0, t ∈ [0, T′)}.

Obviously, T2 does not exceed T. By a contradiction argument, we shall show that T2
coincides actually with T. We assume to the contrary that T2 < T, then by the definition
of T2 as well as the continuity of I(t), we have immediately that I(T2) > 0. Enlightened
by the procedure of deriving (83) from (68), we have therefore I(T2) > 0. Thanks to the
continuity of I(t), there exists a T2 < T3 < T such that I(t) > 0 holds for all t ∈ [0, T3]. This
contradicts the definition of T2. This implies indeed that T2 coincides actually with T. In
other words, I(t) > 0 holds for all t ∈ [0, T).
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Theorem 3. Suppose that Assumptions 1–5 hold true. For every weak solution pair (u, v)> ∈
S[0,T) to IBVP (1) with [0, T) the maximal existence interval of (u, v)>, if the associated functional
I(t) given by (56) satisfies I(0) > 0 and the associated constants β1 and β2, given by (58) and (59),
respectively, satisfy max(β1, β2) < 1, then T = +∞. In other words, weak solutions to IBVP (1)
exist globally in time whenever their initial data satisfy I(0) > 0 and max(β1, β2) < 1.

Proof. We shall prove, by a contradiction argument, that T is exactly +∞. Let us assume
that T < +∞. Following the idea used to obtain (72) in the proof of Lemma 4, we have

(µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx

+ (µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
∫

Ω
∇>∂tv(t)A2∇∂tv(t)dx

6 4I(t) + (µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx + (g1 �A1 ∇u)(t)

+ (µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
∫

Ω
∇>∂tv(t)A2∇∂tv(t)dx + (g2 �A2 ∇v)(t)

= 4J(t) 6 4Eu,v(t) 6 4Eu,v(0), t ∈ [0, T).

This, together with (9) (see Remark 1 for the details), implies that

max(‖∇u(t)‖2
L2(Ω;RN), ‖∇∂tu(t)‖2

L2(Ω;RN),

‖∇v(t)‖2
L2(Ω;RN), ‖∇∂tv(t)‖2

L2(Ω;RN)) 6
4

M 5
1

Eu,v(0), t ∈ [0, T), (84)

which, together with (10) (see also Remark 1 for the details), implies further

max(‖u(t)‖2
H1

0 (Ω)
, ‖∂tu(t)‖2

H1
0 (Ω)

,

‖v(t)‖2
H1

0 (Ω)
, ‖∂tv(t)‖2

H1
0 (Ω)

) 6
4(1 + (κ2)

2)

M 5
1

Eu,v(0), t ∈ [0, T),

where the positive constant M 5
1 , given by (52), is independent of the time variable t. Now,

by a standard continution procedure, we could obtain a time T4 > T such that IBVP (1)
admits a solution in [0, T4). This contradicts the assumption that [0, T) is the maximal
existence interval of IBVP (1). This implies immediately that [0, T), the maximal existence
time interval of the solution (u, v)>, coincides actually with R+. In other words, the
solution (u, v)> exists globally in time. The proof is complete.

3. General Energy Decay Results Concerning Solutions to IBVP (1)

Let us now associate to every solution (u, v)> to IBVP (1) the functional

L1(t) =
1

ρ1 + 1

∫
Ω

u(t)|∂tu(t)|ρ1 ∂tu(t)dx +
∫

Ω
∇>u(t)A1∇∂tu(t)dx

+
1

ρ2 + 1

∫
Ω

v(t)|∂tv(t)|ρ2 ∂tv(t)dx +
∫

Ω
∇>v(t)A2∇∂tv(t)dx

+
1
2

∫
Ω

(
u(t)
v(t)

)>(
a11 a12

a21 a22

)(
u(t)
v(t)

)
dx. (85)
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As we shall see, L1(t) plays a role of the energy perturbation, and one differential
inequality concerning the functional L1(t) plays an important role in proving our main
results in this paper. This inequality can only be established for those solutions whose
initial data are small. To give a precise sense by which we mean the smallness, we need to
introduce two useful constants h̄1 and h̄2:

h̄1 = (4Eu,v(0))
p1
2 (Ł1 +

Ł1

p1 + 2
+

Ł2(p1 + 1)
p1 + 2

)(
ζ1(κp1+2)

2

µ1 −
∫ +∞

0 g1(s)ds
)

p1+2
2

+ (4Eu,v(0))
p2
2 (Ł1 +

Ł1

p2 + 2
+

Ł2(p2 + 1)
p2 + 2

)(
ζ1(κp2+2)

2

µ1 −
∫ +∞

0 g1(s)ds
)

p2+2
2

+ (4Eu,v(0))
ρ1
2 (Ł1 +

Ł2(ρ1 + 1)
ρ1 + 2

)(
ζ1(κρ1+2)

2

µ1 −
∫ +∞

0 g1(s)ds
)

ρ1+2
2

+
Ł1(ρ2 + 1)(4Eu,v(0))

ρ2
2

ρ2 + 2
(

ζ1(κρ2+2)
2

µ1 −
∫ +∞

0 g1(s)ds
)

ρ2+2
2 , (86)

h̄2 = (4Eu,v(0))
p1
2 (Ł2 +

Ł2

p1 + 2
+

Ł1(p1 + 1)
p1 + 2

)(
ζ2(κp1+2)

2

µ2 −
∫ +∞

0 g2(s)ds
)

p1+2
2

+ (4Eu,v(0))
p2
2 (Ł2 +

Ł2

p2 + 2
+

Ł1(p2 + 1)
p2 + 2

)(
ζ2(κp2+2)

2

µ2 −
∫ +∞

0 g2(s)ds
)

p2+2
2

+
Ł2(4Eu,v(0))

ρ1
2

ρ1 + 2
(

ζ2(κρ1+2)
2

µ2 −
∫ +∞

0 g2(s)ds
)

ρ1+2
2

+ (4Eu,v(0))
ρ2
2 (Ł2 +

Ł1(ρ2 + 1)
ρ2 + 2

)(
ζ2(κρ2+2)

2

µ2 −
∫ +∞

0 g2(s)ds
)

ρ2+2
2 . (87)

Lemma 5. Suppose that Assumptions 1–5 hold true. If the associated functional I(t) given by (56)
satisfies I(0) > 0, the associated constants β1 and β2, given by (58) and (59), respectively, satisfy
max(β1, β2) < 1, and the associated constants h̄1 and h̄2, given by (86) and (87), respectively,
satisfy max(h̄1, h̄2) <

1
4 , then weak solutions to IBVP (1) exist globally in time, and render the

associated functional L1(t) given by (85) to satisfy

L′1(t)6
1

ρ1 + 1

∫
Ω
|∂tu(t)|ρ1+2dx +

1
ρ2 + 1

∫
Ω
|∂tv(t)|ρ2+2dx

+
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx +

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

− 1
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx− 1

2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t)

+
1

µ2 −
∫ +∞

0 g2(s)ds

∫ +∞

0

(g2(s))2

g2(s)− Gg′2(s)
ds((g2 − Gg′2) �A2 ∇v)(t), t ∈ R+, (88)

where G is a positive constant yet to be determined later.

Proof. As mentioned in Lemma 5, thanks to the assumptions I(0) > 0 and max(β1, β2) < 1,
it follows from Theorem 3 that L1(t) exists globally in time. Recalling (85), we differentiate
L1(t), to arrive at
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L′1(t) =
1

ρ1 + 1

∫
Ω
|∂tu(t)|ρ1+2dx +

1
ρ2 + 1

∫
Ω
|∂tv(t)|ρ2+2dx

+
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx +

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

− µ1

∫
Ω
∇>u(t)A1∇u(t)dx− µ2

∫
Ω
∇>v(t)A2∇v(t)dx

+
∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇u(s)dxds

+
∫ t

−∞
g2(t− s)

∫
Ω
∇>v(t)A2∇v(s)dxds

+
∫

Ω
(u(t) f1(u(t), v(t)) + v(t) f2(u(t), v(t)))dx, t ∈ R+. (89)

By some routine calculations, we have∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇u(s)dxds− µ1

∫
Ω
∇>u(t)A1∇u(t)dx

=− (µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

−
∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1(∇u(t)−∇u(s))dxds, t ∈ R+. (90)

Since A1 satisfies the coercivity condition that ϑ1 > 0 with ϑ1 given by (5) (see
Assumption 1 for the details), from the Cauchy–Schwarz inequality it follows that

−
∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1(∇u(t)−∇u(s))dxds

6
( ∫ t

−∞

∫
Ω

(g1(t− s))2

g1(t− s)− Gg′1(t− s)
∇>u(t)A1∇u(t)dxds

) 1
2

·
( ∫ t

−∞

∫
Ω

(
g1(t− s)− Gg′1(t− s)

)
(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

) 1
2

=
( ∫

Ω
∇>u(t)A1∇u(t)dx

) 1
2
( ∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t)

) 1
2

6
µ1 −

∫ +∞
0 g1(s)ds

4

∫
Ω
∇>u(t)A1∇u(t)dx

+
1

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t), t ∈ R+,

which, together with (90), implies∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇u(s)dxds− µ1

∫
Ω
∇>u(t)A1∇u(t)dx

6− 3
4
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t), t ∈ R+, (91)

where G is a sufficiently large positive constant. Since A2 satisfies the coercivity condition
that ϑ2 > 0 with ϑ2 given by (5) (see Assumption 1 for the details), it follows by mimicking
steps in deducing (91) that
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∫ t

−∞
g2(t− s)

∫
Ω
∇>v(t)A2∇v(s)dxds− µ2

∫
Ω
∇>v(t)A2∇v(t)dx

6 − 3
4
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1

µ2 −
∫ +∞

0 g2(s)ds

∫ +∞

0

(g2(s))2

g2(s)− Gg′2(s)
ds((g2 − Gg′2) �A2 ∇v)(t), t ∈ R+. (92)

By recalling Assumption 4 (especially (8)), by recalling the experience of deriv-
ing (31), (33)–(36), and by utilizing mainly the Fenchel–Young inequality, we have

∫
Ω
(u(t) f1(u(t), v(t)) + v(t) f2(u(t), v(t)))dx

6 Ł1

∫
Ω
(|u(t)|p1+2 + |u(t)|p2+2 + |u(t)|ρ1+2)dx

+ Ł1

∫
Ω
|u(t)||v(t)|p1+1dx + Ł1

∫
Ω
|u(t)||v(t)|p2+1dx + Ł1

∫
Ω
|u(t)||v(t)|ρ2+1dx

+ Ł2

∫
Ω
(|v(t)|p1+2 + |v(t)|p2+2 + |v(t)|ρ2+2)dx

+ Ł2

∫
Ω
|v(t)||u(t)|p1+1dx + Ł2

∫
Ω
|v(t)||u(t)|p2+1dx + Ł2

∫
Ω
|v(t)||u(t)|ρ1+1dx

6 (Ł1 +
Ł1

p1 + 2
+

Ł2(p1 + 1)
p1 + 2

)‖u(t)‖p1+2
Lp1+2(Ω)

+ (Ł1 +
Ł1

p2 + 2
+

Ł2(p2 + 1)
p2 + 2

)‖u(t)‖p2+2
Lp2+2(Ω)

+ (Ł1 +
Ł2(ρ1 + 1)

ρ1 + 2
)‖u(t)‖ρ1+2

Lρ1+2(Ω)
+

Ł1(ρ2 + 1)
ρ2 + 2

‖u(t)‖ρ2+2
Lρ2+2(Ω)

+ (Ł2 +
Ł2

p1 + 2
+

Ł1(p1 + 1)
p1 + 2

)‖v(t)‖p1+2
Lp1+2(Ω)

+ (Ł2 +
Ł2

p2 + 2
+

Ł1(p2 + 1)
p2 + 2

)‖v(t)‖p2+2
Lp2+2(Ω)

+
Ł2

ρ1 + 2
‖v(t)‖ρ1+2

Lρ1+2(Ω)
+ (Ł2 +

Ł1(ρ2 + 1)
ρ2 + 2

)‖v(t)‖ρ2+2
Lρ2+2(Ω)

, t ∈ R+. (93)

With the aid of (74), (75), (76), (77), (78), (79), (80) and (81), we combine (89), (91), (92)
and (93), to obtain

L′1(t)6
1

ρ1 + 1

∫
Ω
|∂tu(t)|ρ1+2dx +

1
ρ2 + 1

∫
Ω
|∂tv(t)|ρ2+2dx

+
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx +

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

+ (h̄1 −
3
4
)(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+ (h̄2 −
3
4
)(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+
1

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t)

+
1

µ2 −
∫ +∞

0 g2(s)ds

∫ +∞

0

(g2(s))2

g2(s)− Gg′2(s)
ds((g2 − Gg′2) �A2 ∇v)(t), t ∈ R+.

This, together with the assumption

max(h̄1, h̄2) <
1
4

,
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implies that the proof of Lemma 5 is complete.

As with L1(t) defined by (85), the following energy perturbation functional associated
to each solution pair (u, v)> to IBVP (1) is of great importance:

L2(t) =
∫

Ω

(
div(A1∇∂tu(t))−

|∂tu(t)|ρ1 ∂tu(t)
ρ1 + 1

) ∫ t

−∞
g1(t− s)

(
u(t)− u(s)

)
dsdx

+
∫

Ω

(
div(A2∇∂tv(t))−

|∂tv(t)|ρ2 ∂tv(t)
ρ2 + 1

) ∫ t

−∞
g2(t− s)

(
v(t)− v(s)

)
dsdx. (94)

As with what we did in Lemma 5 for L1(t), we shall establish a useful differential
inequality for L2(t) in the following lemma.

Lemma 6. Suppose that Assumptions 1–5 hold true. If the associated functional I(t) given by (56)
satisfies I(0) > 0, the associated constants β1 and β2, given by (58) and (59), respectively, satisfy
max(β1, β2) < 1, then weak solutions to IBVP (1) exist globally in time, and render the associated
functional L2(t) given by (94) to satisfy

L′2(t)6 δ
∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx

+ δ
∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx

− (
∫ +∞

0
g1(s)ds− δg1(0))

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

− (
∫ +∞

0
g2(s)ds− δg2(0))

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

− 1
ρ1 + 1

∫ +∞

0
g1(s)ds

∫
Ω
|∂tu(t)|ρ1+2dx

− 1
ρ2 + 1

∫ +∞

0
g2(s)ds

∫
Ω
|∂tv(t)|ρ2+2dx

+
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx

+W11(g1 �A1 ∇u)(t) +W21(g2 �A2 ∇v)(t)

−W12(g′1 �A1 ∇u)(t)−W22(g′2 �A2 ∇v)(t), t ∈ R+, (95)

where the positive constant δ is given arbitrarily, the positive constants W11, W12, W21 and W22 are
given respectively by

W11 =
1
2δ

(µ1 −
∫ +∞

0
g1(s)ds)2 +

∫ +∞

0
g1(s)ds +

(κ2)
2κa11,a12,a21,a22 ζ1

4

∫ +∞

0
g1(s)ds

+
3(κ2Ł1)

2ζ1

δ

(
(κ2p1+2)

2p1+2(ζ1)
p1+1(

4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p1 + (κ2p2+2)

2p2+2(ζ1)
p2+1(

4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p2

+ (κ2ρ1+2)
2ρ1+2(ζ1)

ρ1+1(
4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)ρ1

)
, (96)

W12 =
1
2δ

+
(κ2)

2(κ2ρ1+2)
2ρ1+2(ζ1)

ρ1+2(4Eu,v(0))ρ1

2δ(ρ1 + 1)2 , (97)
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W21 =
1
2δ

(µ2 −
∫ +∞

0
g2(s)ds)2 +

∫ +∞

0
g2(s)ds +

(κ2)
2κa11,a12,a21,a22 ζ2

4

∫ +∞

0
g2(s)ds

+
3(κ2Ł2)

2ζ2

δ

(
(κ2p1+2)

2p1+2(ζ2)
p1+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p1 + (κ2p2+2)

2p2+2(ζ2)
p2+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p2

+ (κ2ρ2+2)
2ρ2+2(ζ2)

ρ2+1(
4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)ρ2

)
(98)

and

W22 =
1
2δ

+
(κ2)

2(κ2ρ2+2)
2ρ2+2(ζ2)

ρ2+2(4Eu,v(0))ρ2

2δ(ρ2 + 1)2 . (99)

Proof. As pointed in Lemma 6, in view of the assumptions I(0) > 0 and max(β1, β2) < 1,
we conclude by Theorem 3 that L2(t) exists globally in time. Differentiate both sides of the
Equation (94), to yield

L′2(t) = µ1

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇(u(t)− u(s))dxds

−
∫

Ω

∫ t

−∞
g1(t− s)∇>u(s)dsA1

∫ t

−∞
g1(t− s)∇(u(t)− u(s))dsdx

−
∫ t

−∞
g′1(t− s)

∫
Ω
∇>∂tu(t)A1∇(u(t)− u(s))dxds

−
∫ t

−∞
g′1(t− s)

∫
Ω

|∂tu(t)|ρ1 ∂tu(t)
ρ1 + 1

(u(t)− u(s))dxds−
∫ t

−∞
g1(t− s)

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dxds

− 1
ρ1 + 1

∫ +∞

0
g1(s)ds

∫
Ω
|∂tu(t)|ρ1+2dx + µ2

∫ t

−∞
g2(t− s)

∫
Ω
∇>v(t)A2∇(v(t)− v(s))dxds

−
∫

Ω

∫ t

−∞
g2(t− s)∇>v(s)dsA2

∫ t

−∞
g2(t− s)∇(v(t)− v(s))dsdx

−
∫ t

−∞
g′2(t− s)

∫
Ω
∇>∂tv(t)A2∇(v(t)− v(s))dxds−

∫ t

−∞
g′2(t− s)

∫
Ω

|∂tv(t)|ρ2 ∂tv(t)
ρ2 + 1

(v(t)− v(s))dxds

−
∫ t

−∞
g2(t− s)

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dxds− 1

ρ2 + 1

∫ +∞

0
g2(s)ds

∫
Ω
|∂tv(t)|ρ2+2dx

−
∫

Ω
f1(u(t), v(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx−

∫
Ω

f2(u(t), v(t))
∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

+
∫

Ω
(a11∂tu(t) + a12∂tv(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

+
∫

Ω
(a21∂tu(t) + a22∂tv(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx, t ∈ R+. (100)

We shall split (100) into several parts, and we shall treat each part separately. By some
routine calculations, it is not difficult to find that

µ1

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇(u(t)− u(s))dxds

−
∫

Ω

∫ t

−∞
g1(t− s)∇>u(s)dsA1

∫ t

−∞
g1(t− s)∇(u(t)− u(s))dsdx

=
∫

Ω

∫ t

−∞
g1(t− s)∇>(u(t)− u(s))dsA1

∫ t

−∞
g1(t− s)∇(u(t)− u(s))dsdx

+ (µ1 −
∫ +∞

0
g1(s)ds)

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇(u(t)− u(s))dxds, t ∈ R+. (101)
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But by exploiting the positive definiteness of A1 (see Assumption 1, especially (5), for
the details) and by mainly utilizing the Cauchy–Schwarz inequality, we have

ϕ>A1(x)ψ 6
δ

2(µ1 −
∫ +∞

0 g1(s)ds)
ϕ>A1(x)ϕ+

1
2δ

(µ1 −
∫ +∞

0
g1(s)ds)ψ>A1(x)ψ, ϕ, ψ ∈ RN , x ∈ Ω.

This implies immediately

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇(u(t)− u(s))dxds6

δ
∫ +∞

0 g1(s)ds

2(µ1 −
∫ +∞

0 g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+
1
2δ

(µ1 −
∫ +∞

0
g1(s)ds)(g1 �A1 ∇u)(t), t ∈ R+. (102)

Besides, by using again the positive definiteness of A1, as in (102), and by employing
Jensen’s inequality, we have∫ t

−∞
g1(t− s)(U(s))>dsA1

∫ t

−∞
g1(t− s)U(s)ds

6
∫ t

−∞
g1(t− s)ds

∫ t

−∞
g1(t− s)(U(s))>A1U(s)ds, U ∈ L2(−∞, t;RN), t ∈ R+,

which implies directly∫
Ω

∫ t

−∞
g1(t− s)∇>(u(t)− u(s))dsA1

∫ t

−∞
g1(t− s)∇(u(t)− u(s))dsdx

6
∫

Ω

∫ t

−∞
g1(t− s)ds

∫ t

−∞
g1(t− s)∇>(u(t)− u(s))A1∇(u(t)− u(s))dsdx

=
∫ +∞

0
g1(s)ds(g1 �A1 ∇u)(t), t ∈ R+. (103)

Plug (102) and (103) into (101), to obtain

µ1

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇(u(t)− u(s))dxds

−
∫

Ω

∫ t

−∞
g1(t− s)∇>u(s)dsA1

∫ t

−∞
g1(t− s)∇(u(t)− u(s))dsdx

6
δ

2

∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx +M 7

11(g1 �A1 ∇u)(t), t ∈ R+, (104)

with the positive constant M 7
11 given by

M 7
11 =

1
2δ

(µ1 −
∫ +∞

0
g1(s)ds)2 +

∫ +∞

0
g1(s)ds. (105)

And similarly, we have also

µ2

∫ t

−∞
g2(t− s)

∫
Ω
∇>v(t)A2∇(v(t)− v(s))dxds

−
∫

Ω

∫ t

−∞
g2(t− s)∇>v(s)dsA2

∫ t

−∞
g2(t− s)∇(v(t)− v(s))dsdx

6
δ

2

∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx +M 7

21(g2 �A2 ∇v)(t), t ∈ R+, (106)

where the positive constant M 7
21 is given by

M 7
21 =

1
2δ

(µ2 −
∫ +∞

0
g2(s)ds)2 +

∫ +∞

0
g2(s)ds. (107)
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Thanks to the positive definiteness of A1 (see Assumption 1, especially (5)), taking
steps similar to those in the derivation of (102), we can prove

−
∫ t

−∞
g′1(t− s)

∫
Ω
∇>∂tu(t)A1∇(u(t)− u(s))dxds

6
δg1(0)

2

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx− 1

2δ
(g′1 �A1 ∇u)(t), t ∈ R+, (108)

and

−
∫ t

−∞
g′2(t− s)

∫
Ω
∇>∂tv(t)A2∇(v(t)− v(s))dxds

6
δg2(0)

2

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx− 1

2δ
(g′2 �A2 ∇v)(t), t ∈ R+. (109)

Apply the Fenchel–Young inequality, use the notations introduced in (9) and (10), and
conduct some routine calculations, to obtain

−
∫ t

−∞
g′1(t− s)

∫
Ω

|∂tu(t)|ρ1 ∂tu(t)
ρ1 + 1

(u(t)− u(s))dxds

6 −
∫ t

−∞
g′1(t− s)

∫
Ω

(
δ

2(κ2ρ1+2)2ρ1+2(ζ1)ρ1+1(4Eu,v(0))ρ1
|∂tu(t)|2ρ1+2

+
(κ2ρ1+2)

2ρ1+2(ζ1)
ρ1+1(4Eu,v(0))ρ1

2δ(ρ1 + 1)2 |u(t)− u(s)|2
)

dxds

=
δg1(0)

2(κ2ρ1+2)2ρ1+2(ζ1)ρ1+1(4Eu,v(0))ρ1
‖∂tu(t)‖2ρ1+2

L2ρ1+2(Ω)

−
(κ2ρ1+2)

2ρ1+2(ζ1)
ρ1+1(4Eu,v(0))ρ1

2δ(ρ1 + 1)2

∫ t

−∞
g′1(t− s)

∫
Ω
|u(t)− u(s)|2dxds

6
δg1(0)

2(κ2ρ1+2)2ρ1+2(ζ1)ρ1+1(4Eu,v(0))ρ1
‖∂tu(t)‖2ρ1+2

L2ρ1+2(Ω)
−M 7

12(g′1 �A1 ∇u)(t), t ∈ R+, (110)

with the positive constant M 7
12 given by

M 7
12 =

(κ2)
2(κ2ρ1+2)

2ρ1+2(ζ1)
ρ1+2(4Eu,v(0))ρ1

2δ(ρ1 + 1)2 . (111)

To proceed further, we need the help of the following inequality∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx +

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

6 4I(t) + (µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx +

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx + (g1 �A1 ∇u)(t)

+ (µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx +

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx + (g2 �A2 ∇v)(t)

= 4J(t) 6 4Eu,v(0), t ∈ R+, (112)

which can be proved via applying Lemma 4 and using (56) as well as (57). With the help
of (112), we can prove easily

‖∂tu(t)‖2ρ1+2
L2ρ1+2(Ω)

6 (κ2ρ1+2)
2ρ1+2(ζ1)

ρ1+1(
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx)ρ1+1

6 (κ2ρ1+2)
2ρ1+2(ζ1)

ρ1+1(4Eu,v(0))ρ1

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx. (113)

This, together with (110), implies



Axioms 2023, 12, 780 36 of 53

−
∫ t

−∞
g′1(t− s)

∫
Ω

|∂tu(t)|ρ1 ∂tu(t)
ρ1 + 1

(u(t)− u(s))dxds

6
δg1(0)

2

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx−M 7

12(g′1 �A1 ∇u)(t), t ∈ R+. (114)

By applying (112), we take steps similar to those used to obtain (113), to arrive at

‖∂tv(t)‖2ρ2+2
L2ρ2+2(Ω)

6 (κ2ρ2+2)
2ρ2+2(ζ2)

ρ2+1(4Eu,v(0))ρ2

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx.

With this at our hand, we can use the idea similar to the one utilized to establish the
inequality (114), to prove successfully that

−
∫ t

−∞
g′2(t− s)

∫
Ω

|∂tv(t)|ρ2 ∂tv(t)
ρ2 + 1

(v(t)− v(s))dxds

6
δg2(0)

2

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx−M 7

22(g′2 �A2 ∇v)(t), t ∈ R+, (115)

where the positive constant M 7
22 is given by

M 7
22 =

(κ2)
2(κ2ρ2+2)

2ρ2+2(ζ2)
ρ2+2(4Eu,v(0))ρ2

2δ(ρ2 + 1)2 . (116)

With the help of Assumption 5 and the notations in (9), (10) and (12), by mainly
exploiting the Cauchy–Schwarz inequality and Jensen’s inequality, we have∫

Ω
(a11∂tu(t) + a12∂tv(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

+
∫

Ω
(a21∂tu(t) + a22∂tv(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

=
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)
dx

6
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx

+
1
4

∫
Ω

(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)>(
a11 a12
a21 a22

)(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)
dx

6
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx

+
κa11,a12,a21,a22

4

∫
Ω

[( ∫ t

−∞
g1(t− s)(u(t)− u(s))ds

)2
+
( ∫ t

−∞
g2(t− s)(v(t)− v(s))ds

)2
]

dx

6
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx

+
κa11,a12,a21,a22

4

∫
Ω

[∫ t

−∞
g1(t− s)ds

∫ t

−∞
g1(t− s)|u(t)− u(s)|2ds

+
∫ t

−∞
g2(t− s)ds

∫ t

−∞
g2(t− s)|v(t)− v(s)|2ds

]
dx

6
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx +M 7

13(g1 �A1 ∇u)(t) +M 7
23(g2 �A2 ∇v)(t), t ∈ R+, (117)

where the positive constants M 7
13 and M 7

23 are given respectively by
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M 7
13 =

(κ2)
2κa11,a12,a21,a22 ζ1

4

∫ +∞

0
g1(s)ds, (118)

and

M 7
23 =

(κ2)
2κa11,a12,a21,a22 ζ2

4

∫ +∞

0
g2(s)ds. (119)

With the growth condition (8) in Assumption 4 at our hand, we can prove via applying
the Cauchy–Schwarz inequality and using the notations in (9) and (10) that

−
∫

Ω
f1(u(t), v(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

−
∫

Ω
f2(u(t), v(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

6
δ1

2

∫ t

−∞
g1(t− s)

∫
Ω
| f1(u(t), v(t))|2dxds +

1
2δ1

∫ t

−∞
g1(t− s)

∫
Ω
|u(t)− u(s)|2dxds

+
δ2

2

∫ t

−∞
g2(t− s)

∫
Ω
| f2(u(t), v(t))|2dxds +

1
2δ2

∫ t

−∞
g2(t− s)

∫
Ω
|v(t)− v(s)|2dxds

6 3δ1(Ł1)
2
∫ t

−∞
g1(t− s)

(
‖u(t)‖2p1+2

L2p1+2 + ‖u(t)‖
2p2+2
L2p2+2 + ‖u(t)‖

2ρ1+2
L2ρ1+2

+‖v(t)‖2p1+2
L2p1+2 + ‖v(t)‖

2p2+2
L2p2+2 + ‖v(t)‖

2ρ2+2
L2ρ2+2

)
ds +

(κ2)
2ζ1

2δ1
(g1 �A1 ∇u)(t)

+ 3δ2(Ł2)
2
∫ t

−∞
g2(t− s)

(
‖u(t)‖2p1+2

L2p1+2 + ‖u(t)‖
2p2+2
L2p2+2 + ‖u(t)‖

2ρ1+2
L2ρ1+2

+‖v(t)‖2p1+2
L2p1+2 + ‖v(t)‖

2p2+2
L2p2+2 + ‖v(t)‖

2ρ2+2
L2ρ2+2

)
ds +

(κ2)
2ζ2

2δ2
(g2 �A2 ∇u)(t)

= 3δ1(Ł1)
2
∫ +∞

0
g1(s)ds

(
‖u(t)‖2p1+2

L2p1+2 + ‖u(t)‖
2p2+2
L2p2+2 + ‖u(t)‖

2ρ1+2
L2ρ1+2

+‖v(t)‖2p1+2
L2p1+2 + ‖v(t)‖

2p2+2
L2p2+2 + ‖v(t)‖

2ρ2+2
L2ρ2+2

)
+

(κ2)
2ζ1

2δ1
(g1 �A1 ∇u)(t)

+ 3δ2(Ł2)
2
∫ +∞

0
g2(s)ds

(
‖u(t)‖2p1+2

L2p1+2 + ‖u(t)‖
2p2+2
L2p2+2 + ‖u(t)‖

2ρ1+2
L2ρ1+2

+‖v(t)‖2p1+2
L2p1+2 + ‖v(t)‖

2p2+2
L2p2+2 + ‖v(t)‖

2ρ2+2
L2ρ2+2

)
+

(κ2)
2ζ2

2δ2
(g2 �A2 ∇u)(t), t ∈ R+. (120)

In view of the assumptions I(0) > 0 and max(β1, β2) < 1, we conclude by Theorem 3
the inequality (72) holds true in R+. This, together with the notations in (9) and (10),
implies

‖u(t)‖2p1+2
L2p1+2 6 (κ2p1+2)

2p1+2(ζ1)
p1+1(

∫
Ω
∇>u(t)A1∇u(t)dx)p1+1

6 (κ2p1+2)
2p1+2(ζ1)

p1+1(
4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p1

∫
Ω
∇>u(t)A1∇u(t)dx, (121)

‖u(t)‖2p2+2
L2p2+2 6 (κ2p2+2)

2p2+2(ζ1)
p2+1(

4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p2

∫
Ω
∇>u(t)A1∇u(t)dx, (122)

‖u(t)‖2ρ1+2
L2ρ1+2 6 (κ2ρ1+2)

2ρ1+2(ζ1)
ρ1+1(

4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)ρ1

∫
Ω
∇>u(t)A1∇u(t)dx, (123)

‖v(t)‖2p1+2
L2p1+2 6 (κ2p1+2)

2p1+2(ζ2)
p1+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p1

∫
Ω
∇>v(t)A2∇v(t)dx, (124)
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‖v(t)‖2p2+2
L2p2+2 6 (κ2p2+2)

2p2+2(ζ2)
p2+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p2

∫
Ω
∇>v(t)A2∇v(t)dx, (125)

and

‖v(t)‖2ρ2+2
L2ρ2+2 6 (κ2ρ2+2)

2ρ2+2(ζ2)
ρ2+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)ρ2

∫
Ω
∇>v(t)A2∇v(t)dx. (126)

Plug (121), (122), (123), (124), (125) and (126) into (120), to get

−
∫

Ω
f1(u(t), v(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

−
∫

Ω
f2(u(t), v(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

= 3δ1(Ł1)
2M 7

14

∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx +

(κ2)
2ζ1

2δ1
(g1 �A1 ∇u)(t)

+ 3δ2(Ł2)
2M 7

24

∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx

+
(κ2)

2ζ2

2δ2
(g2 �A2 ∇u)(t), t ∈ R+,

where the positive constant δi is given in an arbitrary way, the positive constants M 7
14 and

M 7
24 are given respectively by

M 7
14 = (κ2p1+2)

2p1+2(ζ1)
p1+1(

4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p1

+ (κ2p2+2)
2p2+2(ζ1)

p2+1(
4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)p2

+ (κ2ρ1+2)
2ρ1+2(ζ1)

ρ1+1(
4Eu,v(0)

µ1 −
∫ +∞

0 g1(s)ds
)ρ1 , (127)

and

M 7
24 = (κ2p1+2)

2p1+2(ζ2)
p1+1(

4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p1

+ (κ2p2+2)
2p2+2(ζ2)

p2+1(
4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)p2

+ (κ2ρ2+2)
2ρ2+2(ζ2)

ρ2+1(
4Eu,v(0)

µ2 −
∫ +∞

0 g2(s)ds
)ρ2 . (128)

Pick δ1 and δ2 so that

3δ1(Ł1)
2M 7

14 = 3δ2(Ł2)
2M 7

24 =
δ

2
,

to yield

−
∫

Ω
f1(u(t), v(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

−
∫

Ω
f2(u(t), v(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

6
δ

2

∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx +

δ

2

∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx

+
3(κ2Ł1)

2ζ1M
7
14

δ
(g1 �A1 ∇u)(t) +

3(κ2Ł2)
2ζ2M

7
24

δ
(g2 �A2 ∇v)(t), t ∈ R+. (129)
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Plug (104), (106), (108), (109), (114), (115), (117) and (129) into (100) and perform some
routine but tedious calculations, to finish the proof of Lemma 6.

Remark 7. In some occasions, we are inclined to establish an inequality similar to (117) without
the term ∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx. (130)

To this end, we actually have several different approaches. For example, by using the Cauchy–
Schwarz inequalities (in several different forms), we have∫

Ω
(a11∂tu(t) + a12∂tv(t))

∫ t

−∞
g1(t− s)(u(t)− u(s))dsdx

+
∫

Ω
(a21∂tu(t) + a22∂tv(t))

∫ t

−∞
g2(t− s)(v(t)− v(s))dsdx

=
∫

Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)
dx

6
1

2(κ2)2

∫
Ω

(
∂tu(t)
∂tv(t)

)> ∫ +∞
0 g1(s)ds−δg1(0)

ζ1
0

0
∫ +∞

0 g2(s)ds−δg2(0)
ζ2

(∂tu(t)
∂tv(t)

)
dx

+
(κ2)

2

2

∫
Ω

(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)>(
a11 a12
a21 a22

)>

·

 ζ1∫ +∞
0 g1(s)ds−δg1(0)

0

0 ζ2∫ +∞
0 g2(s)ds−δg2(0)

(a11 a12
a21 a22

)(∫ t
−∞ g1(t− s)(u(t)− u(s))ds∫ t
−∞ g2(t− s)(v(t)− v(s))ds

)
dx

6
1
2
(
∫ +∞

0
g1(s)ds− δg1(0))

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

+
1
2
(
∫ +∞

0
g2(s)ds− δg2(0))

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

+
(κ2)

2κa11,a12,a21,a22

8
max(

ζ1∫ +∞
0 g1(s)ds− δg1(0)

,
ζ2∫ +∞

0 g2(s)ds− δg2(0)
)

·
∫

Ω

[( ∫ t

−∞
g1(t− s)(u(t)− u(s))ds

)2
+
( ∫ t

−∞
g2(t− s)(v(t)− v(s))ds

)2
]

dx

6
1
2
(
∫ +∞

0
g1(s)ds− δg1(0))

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

+
1
2
(
∫ +∞

0
g2(s)ds− δg2(0))

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

+
(κ2)

2κa11,a12,a21,a22

8
max(

ζ1∫ +∞
0 g1(s)ds− δg1(0)

,
ζ2∫ +∞

0 g2(s)ds− δg2(0)
)

∫
Ω

[∫ t

−∞
g1(t− s)ds

∫ t

−∞
g1(t− s)|u(t)− u(s)|2ds

+
∫ t

−∞
g2(t− s)ds

∫ t

−∞
g2(t− s)|v(t)− v(s)|2ds

]
dx

6
1
2
(
∫ +∞

0
g1(s)ds− δg1(0))

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

+
1
2
(
∫ +∞

0
g2(s)ds− δg2(0))

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

+ M̃ 7
13(g1 �A1 ∇u)(t) + M̃ 7

23(g2 �A2 ∇v)(t), t ∈ R+, (131)
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where the positive constants M̃ 7
13 and M̃ 7

23, slightly different from M 7
13 and M 7

23 in (117)
(see (118) and (119) for the details), are given by

M̃ 7
13 =

(κ2)
4κa11,a12,a21,a22 ζ1

8
max(

ζ1∫ +∞
0 g1(s)ds− δg1(0)

,

ζ2∫ +∞
0 g2(s)ds− δg2(0)

)
∫ +∞

0
g1(s)ds, (132)

and

M̃ 7
23 =

(κ2)
4κa11,a12,a21,a22 ζ2

8
max(

ζ1∫ +∞
0 g1(s)ds− δg1(0)

,

ζ2∫ +∞
0 g2(s)ds− δg2(0)

)
∫ +∞

0
g2(s)ds. (133)

As mentioned above, compared to the estimate (117), the last three lines of the sequence (131)
of inequalities do not include the term (130). As will be seen, this could be beneficial to relatively
wide choice of portions of the energy functional Eu,v(t) (see (18)), in the procedure of constructing
modified energy functionals.

As with L1(t) and L2(t) (see (85) and (94), respectively), the following energy per-
turbation functional will be useful in our later presentation: To every pair (u, v)> ∈ SR+

(see (15) for the definition of SR+
), we associate the functional

L3(t) =
µ1 −

∫ +∞
0 g1(s)ds∫ +∞

0 g1(s)ds

∫ +∞

0
g1(s)

∫ t

t−s

∫
Ω
∇>u(r)A1∇u(r)dxdrds

+
µ2 −

∫ +∞
0 g2(s)ds∫ +∞

0 g2(s)ds

∫ +∞

0
g2(s)

∫ t

t−s

∫
Ω
∇>v(r)A2∇v(r)dxdrds, t ∈ R+. (134)

Lemma 7. Suppose that Assumptions 1–5 hold true. If the associated functional I(t) given by (56)
satisfies I(0) > 0, the associated constants β1 and β2, given by (58) and (59), respectively, satisfy
max(β1, β2) < 1, then weak solutions to IBVP (1) exist globally in time, and render the associated
functional L3(t) given by (134) to satisfy

L′3(t)6 2(µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

+ 2(µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

−
µ1 −

∫ +∞
0 g1(s)ds

2
∫ +∞

0 g1(s)ds
(g1 �A1 ∇u)(t)

−
µ2 −

∫ +∞
0 g2(s)ds

2
∫ +∞

0 g2(s)ds
(g2 �A2 ∇v)(t), t ∈ R+. (135)

Proof. Differentiate directly L3(t) (see (134)) with respect to t, to arrive at
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L′3(t) =
µ1 −

∫ +∞
0 g1(s)ds∫ +∞

0 g1(s)ds

∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx

−
µ1 −

∫ +∞
0 g1(s)ds∫ +∞

0 g1(s)ds

∫ +∞

0
g1(s)

∫
Ω
∇>u(t− s)A1∇u(t− s)dxds

+
µ2 −

∫ +∞
0 g2(s)ds∫ +∞

0 g2(s)ds

∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx

−
µ2 −

∫ +∞
0 g2(s)ds∫ +∞

0 g2(s)ds

∫ +∞

0
g2(s)

∫
Ω
∇>v(t− s)A2∇v(t− s)dxds

= (µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

−
µ1 −

∫ +∞
0 g1(s)ds∫ +∞

0 g1(s)ds

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(s)A1∇u(s)dxds

+ (µ2 −
∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

−
µ2 −

∫ +∞
0 g2(s)ds∫ +∞

0 g2(s)ds

∫ t

−∞
g2(t− s)

∫
Ω
∇>v(s)A2∇v(s)dxds, t ∈ R+. (136)

By direct calculations, we have

∫ t

−∞
g1(t− s)

∫
Ω
∇>u(s)A1∇u(s)dxds=

1
2

∫ t

−∞
g1(t− s)

∫
Ω
(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

+
1
2

∫ t

−∞
g1(t− s)

∫
Ω
(∇>u(t) +∇>u(s))A1(∇u(t) +∇u(s))dxds

−
∫ t

−∞
g1(t− s)

∫
Ω
∇>u(t)A1∇u(t)dxds

=
1
2

∫ t

−∞
g1(t− s)

∫
Ω
(∇>u(t) +∇>u(s))A1(∇u(t) +∇u(s))dxds

+
1
2
(g1 �A1 ∇u)(t)−

∫ +∞

0
g1(s)ds

∫
Ω
∇>u(t)A1∇u(t)dx, t ∈ R+. (137)

And we have analogously∫ t

−∞
g2(t− s)

∫
Ω
∇>v(s)A2∇v(s)dxds=

1
2

∫ t

−∞
g2(t− s)

∫
Ω
(∇>v(t) +∇>v(s))A2(∇v(t) +∇v(s))dxds

+
1
2
(g2 �A2 ∇v)(t)−

∫ +∞

0
g2(s)ds

∫
Ω
∇>v(t)A2∇v(t)dx, t ∈ R+.

This, together with (136) and (137), implies immediately

L′3(t) = 2(µ1 −
∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx + 2(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

−
µ1 −

∫ +∞
0 g1(s)ds

2
∫ +∞

0 g1(s)ds

∫ t

−∞
g1(t− s)

∫
Ω
(∇>u(t) +∇>u(s))A1(∇u(t) +∇u(s))dxds

−
µ2 −

∫ +∞
0 g2(s)ds

2
∫ +∞

0 g2(s)ds

∫ t

−∞
g2(t− s)

∫
Ω
(∇>v(t) +∇>v(s))A2(∇v(t) +∇v(s))dxds

−
µ1 −

∫ +∞
0 g1(s)ds

2
∫ +∞

0 g1(s)ds
(g1 �A1 ∇u)(t)−

µ2 −
∫ +∞

0 g2(s)ds

2
∫ +∞

0 g2(s)ds
(g2 �A2 ∇v)(t), t ∈ R+. (138)
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Thanks to Assumptions 1 and 2, it holds that∫ t

−∞
g1(t− s)

∫
Ω
(∇>u(t) +∇>u(s))A1(∇u(t) +∇u(s))dxds > 0,∫ t

−∞
g2(t− s)

∫
Ω
(∇>v(t) +∇>v(s))A2(∇v(t) +∇v(s))dxds > 0,

 t ∈ R+,

which, together with (138), implies that the proof of Lemma 7 is complete.

To obtain our claimed general energy decay result, we need to design various mod-
ified (perturbed) energy functionals by adding energy perturbation functionals to the
conventional energy functional Eu,v(t) (see (18) for the precise definition). Here, we are in
a position to introduce the modified energy functional

i(t) = m0Eu,v(t) +m1L1(t) +m2L2(t), t ∈ R+, (139)

where mk is a positive constant yet to be determined later, k = 0, 1, 2.

Lemma 8. Suppose that Assumptions 1–5 hold true. Then there exists a triple

(m0,m1,m2)
> ∈ (0,+∞)3,

such that each solution (u, v)> to IBVP (1) makes the following differential inequality hold:

i′(t)6 − 1
ρ1 + 1

∫
Ω
|∂tu(t)|ρ1+2dx− 1

ρ2 + 1

∫
Ω
|∂tv(t)|ρ2+2dx

− 3
2
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

− 3
2
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

−
∫

Ω
∇>∂tu(t)A1∇∂tu(t)dx−

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

+
µ1 −

∫ +∞
0 g1(s)ds

3
∫ +∞

0 g1(s)ds
(g1 �A1 ∇u)(t) +

µ2 −
∫ +∞

0 g2(s)ds

3
∫ +∞

0 g2(s)ds
(g2 �A2 ∇v)(t) for a.e. t ∈ R+, (140)

whenever its initial datum (u0, v0, u1, v1)> ∈ L∞(R−; H1
0(Ω;R2)) × H1

0(Ω;R2) render the
associated functional I(t) given by (56) to satisfy I(0) > 0, the associated constants β1 and β2,
given by (58) and (59), respectively, to satisfy max(β1, β2) < 1, the associated constants h̄1 and
h̄2, given by (86) and (87), respectively, satisfy max(h̄1, h̄2) <

1
4 , and the constants W11 and W21,

given by (96) and (98), respectively, to satisfy

W11 6
µ1 −

∫ +∞
0 g1(s)ds

6
∫ +∞

0 g1(s)ds max(
10∫ +∞

0 g1(s)ds
,

10∫ +∞
0 g2(s)ds

)
,

W21 6
µ2 −

∫ +∞
0 g2(s)ds

6
∫ +∞

0 g2(s)ds max(
10∫ +∞

0 g1(s)ds
,

10∫ +∞
0 g2(s)ds

)
.


(141)

Proof. Thanks to (139), it follows that

i′(t) = m0
d
dt

Eu,v(t) +m1L′1(t) +m2L′2(t) for a.e. t ∈ R+,

where (m0,m1,m2)
> ∈ (0,+∞)3, as in (139), is yet to be determined later. By Lemmas 3, 5

and 6, this, together with (55), (88) and (95), implies
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i′(t)6 1
ρ1 + 1

(
m1 −m2

∫ +∞

0
g1(s)ds

) ∫
Ω
|∂tu(t)|ρ1+2dx +

1
ρ2 + 1

(
m1 −m2

∫ +∞

0
g2(s)ds

) ∫
Ω
|∂tv(t)|ρ2+2dx

+
(
δm2

∫ +∞

0
g1(s)ds− m1

2
(µ1 −

∫ +∞

0
g1(s)ds)

) ∫
Ω
∇>u(t)A1∇u(t)dx

+
(
δm2

∫ +∞

0
g2(s)ds− m1

2
(µ2 −

∫ +∞

0
g2(s)ds)

) ∫
Ω
∇>v(t)A2∇v(t)dx

+
(
m1 −m2(

∫ +∞

0
g1(s)ds− δg1(0))

) ∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

+
(
m1 −m2(

∫ +∞

0
g2(s)ds− δg2(0))

) ∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx +m2W11(g1 �A1 ∇u)(t)

+
m1

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− Gg′1(s)
ds((g1 − Gg′1) �A1 ∇u)(t) +m2W21(g2 �A2 ∇v)(t)

+
m1

µ2 −
∫ +∞

0 g2(s)ds

∫ +∞

0

(g2(s))2

g2(s)− Gg′2(s)
ds((g2 − Gg′2) �A2 ∇v)(t) +

(m0

2
−m2W12

)
(g′1 �A1 ∇u)(t)

+
(m0

2
−m2W22

)
(g′2 �A2 ∇v)(t) +

(
m2 −m0

) ∫
Ω

(
∂tu(t)
∂tv(t)

)>(a11 a12
a21 a22

)(
∂tu(t)
∂tv(t)

)
dx for a.e. t ∈ R+. (142)

Since gi : R+ → (0,+∞) is strictly decreasing, gi is of bounded variation and is
therefore Lebesgue measurable, i = 1, 2. For any G > 0, it is easy to show that

0 <
(gi(s))2

gi(s)− Gg′i(s)
< gi(s) 6 gi(0), s ∈ R+, i = 1, 2. (143)

It is also obvious to see that

lim
G→+∞

(gi(s))2

gi(s)− Gg′i(s)
= 0, s ∈ R+, i = 1, 2. (144)

By Lebesgue’s dominated convergence theorem, we combine (143) and (144), to obtain

lim
G→+∞

∫ +∞

0

(gi(s))2

gi(s)− Gg′i(s)
ds = 0, i = 1, 2. (145)

By recalling the limit theory of one-variable functions and in view of (145), we conclude
that there exists a G0 > 0 such that

∫ +∞

0

(gi(s))2

gi(s)− Gg′i(s)
ds <

(µi −
∫ +∞

0 gi(s)ds)2

24
∫ +∞

0 gi(s)ds
, G > G0, i = 1, 2. (146)

With (146) as one of the main tools, we have here by some routine computations

4

µ1 −
∫ +∞

0 g1(s)ds

∫ +∞

0

(g1(s))2

g1(s)− G0g′1(s)
ds((g1 − G0g′1) �A1 ∇u)(t)

=
4

µ1 −
∫ +∞

0 g1(s)ds

(∫ +∞

0

(g1(s))2

g1(s)− G0g′1(s)
ds−

(µ1 −
∫ +∞

0 g1(s)ds)2

24
∫ +∞

0 g1(s)ds

)
((g1 − G0g′1) �A1 ∇u)(t)

+
µ1 −

∫ +∞
0 g1(s)ds

6
∫ +∞

0 g1(s)ds
(g1 �A1 ∇u)(t)−

G0(µ1 −
∫ +∞

0 g1(s)ds)

6
∫ +∞

0 g1(s)ds
(g′1 �A1 ∇u)(t)

6
µ1 −

∫ +∞
0 g1(s)ds

6
∫ +∞

0 g1(s)ds
(g1 �A1 ∇u)(t)−

G0(µ1 −
∫ +∞

0 g1(s)ds)

6
∫ +∞

0 g1(s)ds
(g′1 �A1 ∇u)(t) for a.e. t ∈ R+. (147)
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With the aid of (146), we take several steps similar to (147), to arrive at

4

µ2 −
∫ +∞

0 g2(s)ds

∫ +∞

0

(g2(s))2

g2(s)− G0g′2(s)
ds((g2 − G0g′2) �A2 ∇v)(t)

6
µ2 −

∫ +∞
0 g2(s)ds

6
∫ +∞

0 g2(s)ds
(g2 �A2 ∇v)(t)

−
G0(µ2 −

∫ +∞
0 g2(s)ds)

6
∫ +∞

0 g2(s)ds
(g′2 �A2 ∇v)(t) for a.e. t ∈ R+. (148)

Now we are ready to choose appropriate values of the parameters δ and mi, i = 0, 1, 2.
Actually, there are many ways to accomplish this goal. For instance, we can pick

m1 = 4, m2 = max
( 10∫ +∞

0 g1(s)ds
,

10∫ +∞
0 g2(s)ds

)
, (149)

δ= min
(∫ +∞

0 g1(s)ds
2g1(0)

,
µ1 −

∫ +∞
0 g1(s)ds

2
∫ +∞

0 g1(s)ds max( 10∫ +∞
0 g1(s)ds

, 10∫ +∞
0 g2(s)ds

)
,

∫ +∞
0 g2(s)ds

2g2(0)
,

µ2 −
∫ +∞

0 g2(s)ds

2
∫ +∞

0 g2(s)ds max( 10∫ +∞
0 g1(s)ds

, 10∫ +∞
0 g2(s)ds

)

)
, (150)

and

m0 = max
(

max(
10∫ +∞

0 g1(s)ds
,

10∫ +∞
0 g2(s)ds

), 2 sup
{

max(W12 max(
10∫ +∞

0 g1(s)ds
,

10∫ +∞
0 g2(s)ds

)

+
G0(µ2 −

∫ +∞
0 g2(s)ds)

6
∫ +∞

0 g2(s)ds
, W22 max(

10∫ +∞
0 g1(s)ds

,
10∫ +∞

0 g2(s)ds
) +

G0(µ2 −
∫ +∞

0 g2(s)ds)

6
∫ +∞

0 g2(s)ds
);

max(β1, β2) < 1, max(h̄1, h̄2) <
1
4

and (141) is satisfied
})

. (151)

It is not difficult to find that when the parameters δ and mi, i = 0, 1, 2, take the values
shown above, it holds that

m1 −m2

∫ +∞

0
g1(s)ds 6 −1, m1 −m2

∫ +∞

0
g2(s)ds 6 −1,

δm2

∫ +∞

0
g1(s)ds− m1

2
(µ1 −

∫ +∞

0
g1(s)ds) 6 −3

2
(µ1 −

∫ +∞

0
g1(s)ds),

δm2

∫ +∞

0
g2(s)ds− m1

2
(µ2 −

∫ +∞

0
g2(s)ds) 6 −3

2
(µ2 −

∫ +∞

0
g2(s)ds),

m1 −m2(
∫ +∞

0
g1(s)ds− δg1(0)) 6 4− 10∫ +∞

0 g1(s)ds
(
∫ +∞

0
g1(s)ds−

∫ +∞
0 g1(s)ds

2g1(0)
· g1(0)) 6 −1,

m1 −m2(
∫ +∞

0
g2(s)ds− δg2(0)) 6 4− 10∫ +∞

0 g2(s)ds
(
∫ +∞

0
g2(s)ds−

∫ +∞
0 g2(s)ds

2g2(0)
· g2(0)) 6 −1,

m0

2
−m2W12 −

G0(µ1 −
∫ +∞

0 g1(s)ds)

6
∫ +∞

0 g1(s)ds
> 0,

m0

2
−m2W22 −

G0(µ2 −
∫ +∞

0 g2(s)ds)

6
∫ +∞

0 g2(s)ds
> 0,

m2 −m0 6 0, m2W11 6
µ1 −

∫ +∞
0 g1(s)ds

6
∫ +∞

0 g1(s)ds
, m2W21 6

µ2 −
∫ +∞

0 g2(s)ds

6
∫ +∞

0 g2(s)ds
.


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In view of the fact that the term (130) in (142) is non-negative, by some routine
calculations, we conclude immediately: This, together with (142), (147) and (148), implies
that the proof of Lemma 8 is complete.

Theorem 4. Suppose that Assumptions 1–5 hold true. For every quadruple

(u0, v0, u1, v1)> ∈ L∞(R−; H1
0(Ω;R2))× H1

0(Ω;R2)

of initial datum, if it renders the associated functional I(t) given by (56) to satisfy I(0) > 0, the
associated constants β1 and β2, given respectively by (58) and (59), to satisfy max(β1, β2) < 1,
the associated constants h̄1 and h̄2, given respectively by (86) and (87), to satisfy max(h̄1, h̄2) <

1
4 ,

and the associated constants W11 and W21, given respectively by (96) and (98), to satisfy (141), then
the corresponding global in time solution (u, v)> ∈ SR+

(see (15) for the definition of SR+
) to

IBVP (1) makes the associated energy Eu,v(t), given by (18), satisfy

Eu,v(t) 6 v1K
−1
(

v2

∫ t

0
min(ξ1(s), ξ2(s))ds)

)
for all t ∈ R+, (152)

where the positive constants v1 and v2, depending on (u0, v0, u1, v1)>, is independent of the time
variable t, and K −1 is the inverse function of K (t) which is given by

K (t) =
∫ min(r1,r2)

t

ds
sK′(s)

for all t ∈ (0, min(r1, r2)]. (153)

Remark 8. By Assumption 2 (in particular, the restriction (6)), we conclude that the K (t), given
by (153), is well-defined as a continuous function, that it takes non-negative real numbers as its
values, and that it obeys

K ′(t) = − 1
sK′(s)

for all t ∈ (0, min(r1, r2)].

This implies, in particular, that the function K (t) is strictly monotonically decreasing in the
interval (0, min(r1, r2)]. We have directly by applying the definition (153) of K (t)

lim
t→min(r1,r2)−

K (t) = K (min(r1, r2)) = 0.

We apply Assumption 2 again and the definition (153) of K (t), to get lim
t→0+

K (t) = +∞. In

conclusion, K (t), given by (153), is a strictly decreasing continuous function mapping the interval
(0, min(r1, r2)] onto the closed interval R+. This implies, among other things, the inverse function
K −1 of K , appearing in (152), is well-defined, and K −1 actually maps the closed interval R+

onto the interval (0, min(r1, r2)].

Proof of Theorem 4. In view of (18), (82) and (140), we have

i′(t)6 − (ρ1 + 2)(ρ2 + 2)
(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

Eu,v(t)

−
( 1

ρ1 + 1
− ρ2 + 2

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

) ∫
Ω
|∂tu(t)|ρ1+2dx

−
( 1

ρ2 + 1
− ρ1 + 2

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

) ∫
Ω
|∂tv(t)|ρ2+2dx

− 1
2

(
3− (ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

− 1
2

(
3− (ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx
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− 1
2

(
2− (ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

) ∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx

− 1
2

(
2− (ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

) ∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx

− (ρ1 + 2)(ρ2 + 2)
(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

∫
Ω

F(u(t), v(t))dx

+M 8
11(g1 �A1 ∇u)(t) +M 8

12(g2 �A2 ∇v)(t)

6 − (ρ1 + 2)(ρ2 + 2)
(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

Eu,v(t)

− 1
4

(
6− 3(ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
(µ1 −

∫ +∞

0
g1(s)ds)

∫
Ω
∇>u(t)A1∇u(t)dx

− 1
4

(
6− 3(ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
(µ2 −

∫ +∞

0
g2(s)ds)

∫
Ω
∇>v(t)A2∇v(t)dx

+M 8
11(g1 �A1 ∇u)(t) +M 8

12(g2 �A2 ∇v)(t)

6 −M 8
2 Eu,v(t) +M 8

11(g1 �A1 ∇u)(t) +M 8
12(g2 �A2 ∇v)(t) for a.e. t ∈ R+, (154)

in which the constants M 8
11, M 8

12 and M 8
2 are given respectively by

M 8
11 =

µ1 −
∫ +∞

0 g1(s)ds

3
∫ +∞

0 g1(s)ds
+

(ρ1 + 2)(ρ2 + 2)
2(ρ1 + 1)(ρ2 + 2) + 2(ρ1 + 2)(ρ2 + 1)

, (155)

M 8
12 =

µ2 −
∫ +∞

0 g2(s)ds

3
∫ +∞

0 g2(s)ds
+

(ρ1 + 2)(ρ2 + 2)
2(ρ1 + 1)(ρ2 + 2) + 2(ρ1 + 2)(ρ2 + 1)

, (156)

and

M 8
2 =

(ρ1 + 2)(ρ2 + 2)
(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

. (157)

Case I. K1 and K2 are both linear.
By some routine but tedious calculations, we have

i′(t)min(ξ1(t), ξ2(t)) 6−M 8
2 Eu,v(t)min(ξ1(t), ξ2(t)) +M 8

11 min(ξ1(t), ξ2(t))(g1 �A1 ∇u)(t)

+M 8
12 min(ξ1(t), ξ2(t))(g2 �A2 ∇v)(t),

6−M 8
2 Eu,v(t)min(ξ1(t), ξ2(t)) +M 8

11ξ1(t)(g1 �A1 ∇u)(t) +M 8
12ξ2(t)(g2 �A2 ∇v)(t),

6−M 8
2 Eu,v(t)min(ξ1(t), ξ2(t))−M 8

31(g′1 �A1 ∇u)(t)−M 8
32(g′2 �A2 ∇v)(t),

6−M 8
2 Eu,v(t)min(ξ1(t), ξ2(t))−M 8

4
d
dt

Eu,v(t) for a.e. t ∈ R+,

or equivalently, we have

d
dt
(
M 8

4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t))
)

=M 8
4

d
dt

Eu,v(t) +i′(t)min(ξ1(t), ξ2(t)) +i(t) d
dt

min(ξ1(t), ξ2(t))

6 −M 8
2 Eu,v(t)min(ξ1(t), ξ2(t)) for a.e. t ∈ R+. (158)

M 8
4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t)) ∼ Eu,v(t), more precisely, there exist two positive con-

stants M 8
5 and M 8

6 , such that

1
M 8

6
Eu,v(t) 6 M 8

4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t)) 6
1

M 8
5

Eu,v(t), t ∈ R+. (159)

Therefore, we deduce from (158) immediately that
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d
dt
(
M 8

4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t))
)
6 −M 8

2 M 8
5 min(ξ1(t), ξ2(t))

(
M 8

4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t))
)
.

This, together with Gronwall’s Lemma, implies

(
M 8

4 Eu,v(t) +i(t)min(ξ1(t), ξ2(t))
)
6
(
M 8

4 Eu,v(0) +i(0)min(ξ1(0), ξ2(0))
)
e−M 8

2 M 8
5
∫ t

0 min(ξ1(s),ξ2(s))ds, t ∈ R+.

By recalling the afore-mentioned equivalence (159), we realize that this implies

Eu,v(t) 6 M 8
7 e−M 8

2 M 8
5
∫ t

0 min(ξ1(s),ξ2(s))ds, t ∈ R+, (160)

where the positive constant M 8
7 is given by

M 8
7 = M 8

6
(
M 8

4 Eu,v(0) +i(0)min(ξ1(0), ξ2(0))
)
. (161)

Case II. K1 or K2 is non-linear.
We combine i(t) (with δ and mi, i = 0, 1, 2 given as in (149), (150) and (151), respec-

tively) and L3(t), to associate with each solution (u, v)> to IBVP (1) a new functional

z(t) = i(t) + 17
24

L3(t), t ∈ R+. (162)

Obviously, z(t) > 0 for all t ∈ R+. Besides, by Lemmas 7 and 8, there exists a positive
constant M 9

1 such that

z′(t) 6 −Eu,v(t)
M 9

1
for a.e. t ∈ R+. (163)

For example, we could put M 9
1 = 1

M 9
2

with

M 9
2 = min

(1
9

,
(ρ1 + 2)(ρ2 + 2)

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)
,

(µ1 −
∫ +∞

0 g1(s)ds)(µ2 −
∫ +∞

0 g2(s)ds)

24
∫ +∞

0 g2(s)ds(µ1 −
∫ +∞

0 g1(s)ds) + 24
∫ +∞

0 g1(s)ds(µ2 −
∫ +∞

0 g2(s)ds)

)
.

In this situation, we have

z′(t) =i′(t) + 17
24

L′3(t)

6− Eu,v(t)
M 9

1
−
( 1

ρ1 + 1
− ρ2 + 2

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
‖∂tu(t)‖ρ1+2

Lρ1+2(Ω)

−
( 1

ρ2 + 1
− ρ1 + 2

(ρ1 + 1)(ρ2 + 2) + (ρ1 + 2)(ρ2 + 1)

)
‖∂tv(t)‖ρ2+2

Lρ2+2(Ω)

− 17
18

∫
Ω
∇>∂tu(t)A1∇∂tu(t)dx− 17

18

∫
Ω
∇>∂tv(t)A2∇∂tv(t)dx− 1

48
(g1 �A1 ∇u)(t)

(µ1 −
∫ +∞

0 g1(s)ds∫ +∞
0 g1(s)ds

−
(µ1 −

∫ +∞
0 g1(s)ds)(µ2 −

∫ +∞
0 g2(s)ds)∫ +∞

0 g2(s)ds(µ1 −
∫ +∞

0 g1(s)ds) +
∫ +∞

0 g1(s)ds(µ2 −
∫ +∞

0 g2(s)ds)

)
− 1

48
(g2 �A2 ∇v)(t)

(µ2 −
∫ +∞

0 g2(s)ds∫ +∞
0 g2(s)ds

−
(µ1 −

∫ +∞
0 g1(s)ds)(µ2 −

∫ +∞
0 g2(s)ds)∫ +∞

0 g2(s)ds(µ1 −
∫ +∞

0 g1(s)ds) +
∫ +∞

0 g1(s)ds(µ2 −
∫ +∞

0 g2(s)ds)

)
6 −Eu,v(t)

M 9
1

for a.e. t ∈ R+,
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which implies directly∫ t

0
Eu,v(s)ds 6 −M 9

1

∫ t

0
z′(s)ds = M 9

1 (z(0)−z(t)) 6 M 9
1 z(0) for all t ∈ R+.

This, in turn, implies∫ +∞

0
Eu,v(t)dt = lim

t→+∞

∫ t

0
Eu,v(s)ds 6 lim sup

t→+∞

∫ t

0
Eu,v(s)ds 6 M 9

1 z(0). (164)

Fix provisionally t (sufficiently large if necessary) in the interval (0,+∞), write
U (t) =

∫ t

−∞

∫
Ω
(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds,

V (t) =
∫ t

−∞

∫
Ω
(∇>v(t)−∇>v(s))A2(∇v(t)−∇v(s))dxds,

and pick a q ∈ (0,+∞) such that

U (t) <
min(1, r1, r2)

qg1(0)
,

V (t) <
min(1, r1, r2)

qg2(0)
,

 t ∈ (0,+∞).

We assume first that U (t) ≡ 0 and V (t) ≡ 0. In this case, we deduce from (154) that

i′(t)6 −M 8
2 Eu,v(t) +M 8

11(g1 �A1 ∇u)(t) +M 8
12(g2 �A2 ∇v)(t)

6 −M 8
2 Eu,v(t) + g1(0)M 8

11U (t) + g2(0)M 8
12V (t)

= −M 8
2 Eu,v(t) for a.e. t ∈ R+.

This, together with the equivalence i(t) ∼ Eu,v(t), implies that the energy Eu,v(t)
associated to the system (1) the decays exponentially as time t escapes to infinity. Let us
now assume that U (t) > 0 and V (t) > 0 when t is sufficiently large. Without loss of
generality, we assume that U (t) > 0 and V (t) > 0 for all t ∈ R+. With Jensen’s inequality
as one of our main tools, by some routine but tedious computations, we arrive at

K1
(
q(g1 �A1 ∇u)(t)

)
= K1

(∫ t
−∞(qA (t)g1(t− s))

∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds∫ t

−∞

∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

)

6

∫ t
−∞ K1

(
(qA (t)g1(t− s))

) ∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds∫ t

−∞

∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

6
q
∫ t
−∞ ξ1(t− s)K1

(
g1(t− s)

) ∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

ξ1(t)

6
q
∫ t
−∞

(
−g′1(t− s)

) ∫
Ω(∇>u(t)−∇>u(s))A1(∇u(t)−∇u(s))dxds

ξ1(t)
= −

q(g′1 �A1 ∇u)(t)
ξ1(t)

for a.e. t ∈ R+. (165)

Since K1 is strictly increasing (see Assumption 2 for the details), it follows immediately

(g1 �A1 ∇u)(t) 6
1
q

K−1
1
(
−
q(g′1 �A1 ∇u)(t)

ξ1(t)
)

for a.e. t ∈ R+. (166)

And analogously, we can prove

(g2 �A2 ∇v)(t) 6
1
q

K−1
2
(
−q(g′2 �A2 ∇v)(t)

ξ2(t)
)

for a.e. t ∈ R+. (167)
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Combine (154), (166) and (167), to obtain

i′(t)6 −M 8
2 Eu,v(t) +M 8

11(g1 �A1 ∇u)(t) +M 8
12(g2 �A2 ∇v)(t)

6 −M 8
2 Eu,v(t) +

M 8
11
q

K−1
1
(
−
q(g′1 �A1 ∇u)(t)

ξ1(t)
)
+

M 8
12
q

K−1
2
(
−q(g′2 �A2 ∇v)(t)

ξ2(t)
)

for a.e. t ∈ R+. (168)

Let us define a new function K(t) by giving

K(t) = max(K1(t), K2(t)) for all t ∈ (0, min(r1, r2)].

It is not difficult to check that K(t) is strictly increasing and strictly convex. Put

\(t) = K′(ε0
Eu,v(t)
Eu,v(0)

)i(t) + Eu,v(t) for a.e. t ∈ R+, (169)

where the positive constant ε0 is suitably chosen so that

ε0
Eu,v(t)
Eu,v(0)

6 min(r1, r2) for all t ∈ R+.

By direct computations, we deduce from (168) and (169) that

\′(t) =
ε0i(t)
Eu,v(0)

K′′(ε0
Eu,v(t)
Eu,v(0)

)
d
dt

Eu,v(t) + K′(ε0
Eu,v(t)
Eu,v(0)

)i′(t) + d
dt

Eu,v(t)

6
d
dt

Eu,v(t)−M 8
2 Eu,v(t)K′(ε0

Eu,v(t)
Eu,v(0)

) +
M 8

11
q

K′(ε0
Eu,v(t)
Eu,v(0)

)K−1
1
(
−
q(g′1 �A1 ∇u)(t)

ξ1(t)
)

+
M 8

12
q

K′(ε0
Eu,v(t)
Eu,v(0)

)K−1
2
(
−q(g′2 �A2 ∇v)(t)

ξ2(t)
)

for a.e. t ∈ R+. (170)

By applying Assumption 2, we have

lim
δ→0+

K′−1
i (δ)

K′−1(δ)
= ki, i = 1, 2.

By applying the method of change variable, we have furthermore

lim
δ→0+

K′−1
i (K′(δ))

δ
= ki, i = 1, 2.

By recalling the limit theory of one-variable functions, we conclude that there exists a
positive constant ℘ 6 min(r1, r2), such that

K′−1
i (K′(δ)) < 2kiδ, i = 1, 2. (171)

whenever the positive variable δ does not exceed ℘. With (171) as one of our main tools, by
applying mainly the Fenchel–Young inequality, we have

K′(ε0
Eu,v(t)
Eu,v(0)

)K−1
1
(
−
q(g′1 �A1 ∇u)(t)

ξ1(t)
)
6K∗1(K

′(ε0
Eu,v(t)
Eu,v(0)

)) + K1(K−1
1
(
−
q(g′1 �A1 ∇u)(t)

ξ1(t)
)
)

6K′(ε0
Eu,v(t)
Eu,v(0)

)K′−1
1 (K′(ε0

Eu,v(t)
Eu,v(0)

))− K1(K′−1
1 (K′(ε0

Eu,v(t)
Eu,v(0)

)))

−
q(g′1 �A1 ∇u)(t)

ξ1(t)

6 2k1ε0
Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)−
q(g′1 �A1 ∇u)(t)

ξ1(t)
for a.e. t ∈ R+. (172)

By analogy to (172), we have
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K′(ε0
Eu,v(t)
Eu,v(0)

)K−1
2
(
−q(g′2 �A2 ∇v)(t)

ξ2(t)
)
6 2k2ε0

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)− q(g′2 �A2 ∇v)(t)
ξ2(t)

for a.e. t ∈ R+. (173)

We substitute (172) and (173) into (170), to conclude

\′(t)6
d
dt

Eu,v(t)−M 8
2 Eu,v(t)K′(ε0

Eu,v(t)
Eu,v(0)

)

+
2k1ε0M

8
11

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)−
M 8

11(g′1 �A1 ∇u)(t)
ξ1(t)

+
2k2ε0M

8
12

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)−
M 8

12(g′2 �A2 ∇v)(t)
ξ2(t)

6
2ε0k1M

8
11

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)−
M 8

11(g′1 �A1 ∇u)(t)
ξ1(t)

+
2ε0k2M

8
12

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)−
M 8

12(g′2 �A2 ∇v)(t)
ξ2(t)

−M 8
2 Eu,v(t)K′(ε0

Eu,v(t)
Eu,v(0)

) for a.e. t ∈ R+. (174)

With Lemma 3 (in particular, (55)) and (174) as our main tools, we perform some
routine computations, to arrive at

\′(t)min(ξ1(t), ξ2(t))6
2ε0k1M

8
11

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)min(ξ1(t), ξ2(t))

−
M 8

11(g′1 �A1 ∇u)(t)
ξ1(t)

min(ξ1(t), ξ2(t))

+
2ε0k2M

8
12

q

Eu,v(t)
Eu,v(0)

K′(ε0
Eu,v(t)
Eu,v(0)

)min(ξ1(t), ξ2(t))

−
M 8

12(g′2 �A2 ∇v)(t)
ξ2(t)

min(ξ1(t), ξ2(t))

−M 8
2 Eu,v(t)K′(ε0

Eu,v(t)
Eu,v(0)

)min(ξ1(t), ξ2(t))

6 −M 10
1 K(ε0

Eu,v(t)
Eu,v(0)

)min(ξ1(t), ξ2(t))−M 10
2

d
dt

Eu,v(t) for a.e. t ∈ R+, (175)

in which, M 10
1 , M 10

2 and K(t) are given respectively by

M 10
1 =

M 8
2 Eu,v(0)

ε0
− 2

q
(k1M

8
11 + k2M

8
12),

M 10
2 = 2 max(M 8

11, M 8
12),

and
K(t) = tK′(t) for all t ∈ (0, min(r1, r2)]. (176)

The strict increasing monotonicity of K′(t), the strict convexity of K(t) and the con-
tinuity of K(t) imply that the function K(t) is strictly increasing. For the sake our later
presentation, we introduce the auxiliary functional

\̃(t) = \(t)min(ξ1(t), ξ2(t)) +M 10
2 Eu,v(t) for all t ∈ R+. (177)
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Since M 10
2 > 0, \̃(t) ∼ Eu,v(t). More exactly, there exists, as with (159), positive

constants M 11
1 and M 11

2 , such that

M 11
1 \̃(t) 6 Eu,v(t) 6 M 11

2 \̃(t) for all t ∈ R+. (178)

With the help of (175) and the definition (177) of \̃(t), we have

\̃′(t) = \′(t)min(ξ1(t), ξ2(t)) + \(t)
d
dt

min(ξ1(t), ξ2(t)) +M 10
2

d
dt

Eu,v(t)

6 −M 10
1 K(ε0

Eu,v(t)
Eu,v(0)

)min(ξ1(t), ξ2(t)) for a.e. t ∈ R+,

which, together with the equivalence (178), implies

\̃′(t)6 −M 10
1 K(ε0

M 11
1 \̃(t)

Eu,v(0)
)min(ξ1(t), ξ2(t)) for a.e. t ∈ R+, (179)

where the positive constant ε0 is appropriately picked so that

ε0
M 11

1 \̃(t)
Eu,v(0)

6 min(r1, r2) for all t ∈ R+.

Based on the differential inequality (179), we perform some routine calculations, to
yield

M 10
1

∫ t

0
min(ξ1(s), ξ2(s))ds6

∫ t

0

−\̃′(s)

K(ε0
M 11

1 \̃(s)
Eu,v(0) )

ds

=
Eu,v(0)
ε0M

11
1

∫ ε0M11
1 \̃(0)

Eu,v(0)

ε0M11
1 \̃(t)

Eu,v(0)

ds
K(s)

6
Eu,v(0)
ε0M

11
1

∫ min(r1,r2)

ε0M11
1 \̃(t)

Eu,v(0)

ds
K(s)

=
Eu,v(0)
ε0M

11
1

K (
ε0M

11
1 \̃(t)

Eu,v(0)
) for all t ∈ R+, (180)

where the function K (t) is defined as in (153). It is not difficult to observe that

K (t) =
∫ min(r1,r2)

t

ds
K(s) for all t ∈ (0, min(r1, r2)],

where the function K(t) is given as in (176). By recalling that the function K (t) is strictly
decreasing (see Remark 8 for the detailed explanation), we deduce from (180) that

ε0M
11
1 \̃(t)

Eu,v(0)
6 K −1

( ε0M
10
1 M 11

1
Eu,v(0)

∫ t

0
min(ξ1(s), ξ2(s))ds)

)
for all t ∈ R+,

which, together with the equivalence (178), implies directly

Eu,v(t) 6
M 11

2 Eu,v(0)
ε0M

11
1

K −1
( ε0M

10
1 M 11

1
Eu,v(0)

∫ t

0
min(ξ1(s), ξ2(s))ds)

)
for all t ∈ R+.

This, together with (160), implies that the proof of Theorem 4 is complete.
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4. Conclusions

In this paper, we studied the initial boundary value problem (that is, IBVP (1)) for a
coupled system of two quasi-linear viscoelastic space-variable coefficient wave equations.
We proved (see Theorems 1 and 2 for the details), under some seemingly natural conditions
on A1, A2, µ1, µ2, ρ1, ρ2, f1, f2, g1, g2, a11, a12, a21 and a22, via the celebrated Faedo–Galerkin
method, that IBVP (1) admits a local solution in the sense of Definition 1 and 2 for every
initial datum in the space

L∞(R−; H1
0(Ω;R2))× H1

0(Ω;R2).

Based on our new obtained local existence results, we proved, via establishing a priori
inequalities, a global existence result for solutions, having small initial data, to IBVP (1) (see
Theorem 3 for the details). Based on our new established global existence result, we proved
via constructing various modified energy functionals (functionals, equivalent to the energy
functional Eu,v(t), defined by (18), of IBVP (1) and can be seen as Lyapunov functional
from other perspectives), that if the initial data satisfy some additional conditions, then
global in time solutions would decrease to zero, at the optimal decaying rate in a sense
given by Remark 2.3 in Reference [22], as time escapes to infinity; see Theorem 4.
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