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Abstract: In this paper, a novel strategy is employed in which a degradation model affects the implied
distribution of lifetimes differently compared to the traditional method. It is recognized that an
existing link between the degradation measurements and failure time constructs the underlying
time-to-failure model. We assume in this paper that the conditional survival function of a device
under degradation is a piecewise linear function for a given level of degradation. The multiplicative
degradation model is used as the underlying degradation model, which is often the case in many
practical situations. It is found that the implied lifetime distribution is a classical mixture model. In
this mixture model, the time to failure lies with some probabilities between two first passage times
of the degradation process to reach two specified values. Stochastic comparisons in the model are
investigated when the probabilities are changed. To illustrate the applicability of the results, several
examples are given in cases when typical degradation models are candidates.
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1. Introduction

The lack of observable failures often complicates reliability studies based on the time to
failure. Accelerated life tests can accelerate product failure during test intervals by stressing
the product beyond its typical use. Many tests supplement failure data with degradation
data, which may include measurements of product wear at one or more points during the
reliability test. The product life is defined as the time during which the degradation exceeds
a predetermined threshold. Collecting degradation data has become necessary in many
organizations, because extremely reliable equipment under test has few, if any, failures
during the limited test period. A complete reference on degradation analysis for various life
tests, including accelerated life tests, has shown that degradation analysis has the potential
to significantly improve reliability analysis. However, degradation analysis can raise the
possibility of inconsistencies in the experimenter’s treatment of the data. The perceived
relationship between the degradation measurements and the failure time is critical to the
study.

When a stochastic model for degradation is assumed, the distribution of lifetimes
is implied, as a consequence, and in many circumstances, these implied distributions of
lifetimes are awkward and do not match the experimenter’s expectations. The resulting es-
timate of the lifetime distribution usually must be solved numerically, with the uncertainty
in the estimate calculated using simulations and large replicate samples such as bootstrap
methods. The works related to the lifetime distributions have many applications, from
technical sciences to gerontology. In the context of degradation models, lifetime prediction
has many practical applications in various fields, including the following areas:
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1. Automobile components: A time-to-failure model based on a degradation model can be
used to predict the life of various automobile components such as engine components,
brakes, and tires. To anticipate the time to failure of these parts, the model can take into
account elements such as wear, corrosion, and mechanical stress.

2. Electronics: Time-to-failure models based on degradation models are extensively used
in the electronics industry to predict the life of various electronic components such as
capacitors, resistors, and transistors. To anticipate the time to failure of these compo-
nents, these models can take into account elements such as temperature, humidity, and
voltage stress.

3. Wind turbines: Based on degradation models, time-to-failure models can be used
to predict the life of wind turbine components such as rotor blades, gearboxes, and
generators. To anticipate the time to failure of these components, the models can take
into account parameters such as wind speed, temperature, and mechanical load.

4. Aerospace: Time-to-failure models based on degradation models are extensively used
in the aerospace industry to predict the life of various aircraft components such as
engines, avionics systems, and landing gear. To anticipate the time to failure of these
components, these models can take into account elements such as temperature, pressure,
and mechanical stress.

5. Medical equipment: based on degradation models, time-to-failure models can be used
to predict the life of various medical devices such as pacemakers, insulin pumps, and
prosthetic joints. To anticipate the time to failure of these devices, the models can take
into account elements such as wear, corrosion, and mechanical stress.

Reliability modeling and analysis of complex systems has always been an important
topic in engineering. Degradation-based modeling of failure time as a fundamental process
is a consistent method for analyzing the lifetime of complex systems in many practical
situations (see, e.g., Nikulin et al. [1], Pham [2], Pelletier et al. [3], Chen et al. [4], and Wang
et al. [5] for a monograph on this topic). The elements that deteriorate over time and have an
observable process of deterioration can be considered by a stochastic deterioration model.
In order to achieve and produce the high reliability of systems required by the majority of
consumers, it is necessary to identify weaker systems. The relationship between the failure
time and the degradation process may not be deterministic, and further investigation into
the distribution of degradation levels and their impact on failure time is warranted.

The stochastic-process-based degradation model of Albabtain et al. [6] is used to model
the lifetime of a system. The stochastic process is assumed to fluctuate around monotonic
pattern paths. In the traditional definition, the failure of an object is assumed to correspond
to the time when the degradation exceeds the given threshold Df. Suppose the degradation
process is {W(t), t ≥ 0}, W(0) = 0 with a monotonically increasing sample path, as is often
encountered in practice. The time to failure is denoted by T. Then, T is the time of the
first pass to threshold Df, i.e., T = inf{t : W(t) > Df}. The corresponding distribution
function of the failures is denoted by FT , and the implied survival function is denoted by
F̄T = 1− FT . We also denote by FW(t) and fW(t) the distribution and density functions of
W(t), respectively. We have

F̄T(t) = P(T > t) = P(W(t) ≤ Df) = FW(t)(Df). (1)

If {W(t), t ≥ 0}, W(0) = 0 possesses a monotonically decreasing sample path, then
the time to failure T is the first passage time to the threshold Uf i.e., T = inf{t : W(t) ≤ Uf}.
We obtain

F̄T(t) = P(T > t) = P(W(t) > Uf) = F̄W(t)(Uf). (2)

Degradation models differ significantly in the different areas of reliability modeling. In
this section, we discuss the dynamic degradation-based model for analyzing failure time data,
recently presented by Albabtain et al. [6]. The methodology underlying the model is applied
to situations where a unit exhibits stochastic behavior over the time that the degradation
occurs, and there is no specific value for the amount of degradation at which the unit fails. The
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flexible aspect of the dynamic degradation based failure time model is demonstrated when
it is assumed that the failure of the unit follows a stochastic rule as part of the degradation
process, as opposed to the traditional definition, where the failure of the unit is considered
deterministic once the degradation amount reaches a predetermined threshold.

Suppose that the extent of the depletion at time t by W(t) is denoted by pdf fW(t)(·)
and cdf FW(t)(·). It is considered a postulate for increasing (decreasing) degradation paths
that W(t1) ≤st (≥st)W(t2), for all t1 ≤ t2. The previous literature has assumed that for a
given threshold D f , a system fails under degradation as soon as W(t) > D f . This defines
a termination rule for T that must be determined, such that T ≡ inf{t ≥ 0 | W(t) > D f }.
This definition of downtime was used by Albabtain et al. [6], so that an existing stochastic
rule about the effect of degradation over time illustrates the process of item failure.

The failure time T under this modified setting has the sf

F̄T(t) =
∫ ∞

0
S(w; t) fW(t)(w) dw = E(S(W(t); t)), (3)

where S(w; t) is the limit of a conditional probability given, at the level of degradation w,
by

S(w; t) = lim
δ→0+

P(T > t |W(t) ∈ (w, w + δ]).

To satisfy the degradation model, the bivariate function S must satisfy the following
conditions for an increasing (or decreasing) degradation path:

(i) For all w ≥ 0 and for all t ≥ 0, S(w; t) ∈ [0, 1].
(ii) For any fixed w ≥ 0, S(w; t) is decreasing in t ≥ 0.
(iii) For any fixed t ≥ 0, S(w; t) is decreasing (respectively, increasing) in w ≥ 0.

Conditions (i)–(iii) guarantee that F̄T in (3) is a valid survival function. The model (3)
is a dynamic failure time model in that the construction of the model is modified depending
on how the survival rate of the item undergoing degradation at a given time may be
influenced by the extent of the degradation. This influence is accounted for by forming the
function S.

The selection of S depends primarily on the knowledge of the engineer or operator
who controls the performance of the system. For example, if a system hardly (strongly)
degrades with time then S(w; t) = exp{−γ(w)t}may be an appropriate choice. For a less
severe degradation process, S(w; t) = 1

(1+t)γ(w) may be more appropriate. However, if there

is no information about how the system degrades with time, then everything depends on
the failure time data (observations at T), and a model selection strategy can be performed,
i.e., some candidates are selected, and the best of them is chosen based on some possible
model selection criteria in the literature.

It is assumed that data on W(t) are not available for all t ≥ 0, since the stochastic
process {W(t), t ≥ 0} is usually partially observed with reference to the known sources
of degradation models. To proceed along the line of serious statistical survival models, a
common feature can be assumed for S(·; t), such that S(w; t) = Sγ(w)

0 (t) is the feature of the
proportional hazard rate model if S(w; t) is a survival function in t for each w ≥ 0, in which
γ > 0. The function γ may depend on some parameters. The initial probability (survival
rate)

S0(t) = lim
δ→0+

P(T > t |W(t) ∈ (0, δ])

measures the survival probability of the system at the time t when the extent of degradation
is zero. As a corollary, we may need to assume that S0(t) is itself a survival function in
t ≥ 0. For λ0 > 0, the exponential distribution may always be a good choice, so that
S0(t) = exp(−λ0t) describes an age-free behavior of the system under degradation. The
Lomax distribution with the survival function given by S0(t) = 1

1+λ0t is also a good choice
for the base survival rate.
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2. Stepwise Survival Rate at Interval Degradation Levels

In the literature, the correspondence between the randomness of the degradation and
the randomness of the implied lifetime distribution is assumed to be strong and direct, such
that failure occurs when the degradation level of the test object reaches a predetermined
threshold (D f ). In such a case, the resulting lifetime distribution follows from (3) when
S(w; t) = 1 for wD f . However, Equation (3) holds as sf of the time to failure of an item
under degradation when 0 < S(w; t) < 1 at some time t and degradation w. The model (3)
adds the possibility of undertaking situations in which the deterioration of an item is not
due to degradation alone. In real-world problems, the item subject to degradation ages
over time, and even if the extent of degradation does not change, it also ages. Therefore, the
life of a device subject to degradation may decrease as the level of degradation increases.
Therefore, at relatively high levels of degradation, the device will weaken, so that a given
threshold for the level of degradation can readily be considered a deterministic rule for
device failure. However, intervals for the degree of degradation can be specified to develop
a more dynamic time-to-failure model.

Let us consider a degradation process with increasing degradation path and assume
that s1 ≥ s2 ≥ . . . ≥ sk, where si ∈ [0, 1] for i = 1, 2, . . . , k are the survival rates of a unit
subject to degradation when W(t) = w, respectively, as the value w takes, lies in

(Df(0),Df(1)], (Df(1),Df(2)], · · · , (Df(i−1),Df(i)], · · · , (Df(k−1),Df(k)],

where Df(i−1) ≤ Df(i) for every i = 1, 2, . . . , k, such that Df(0) = −∞ and Df(k+1) = +∞.
Note that k = k throughout the paper. The degradation points that are adjacent to each
other may induce a same amount of probability of failure, in the way that the survival rate
at degradation level W(t) = w takes the form

S(w; t) =
k

∑
i=1

si I[w ∈ Ji], (4)

where I[A] is the indicator function of the set A, and Ji = (Df(i−1),Df(i)]. It is assumed
that si, i = 1, 2, . . . , k do not depend on w.

For example, in a multiplicative degradation model with an increasing mean degra-
dation path, we assume that the probability of failure does not change for degradation
amounts in given intervals, and when degradation exceeds the last point (the largest value)
in each interval, the probability of failure increases. Example: For high reliability products,
100 percent survive before the degradation level reaches Df(1), and when degradation
reaches Df(1), 10 percent of the products fail, and the remaining 90 percent survive before
degradation reaches Df(2), and all fail once degradation reaches Df(2); the time to failure is
then modeled by s(w; t) = I[w ∈ J1] + 0.9I[w ∈ J2].

By using (3) and taking s0 = 1 and sk+1 = 0, we obtain

F̄T(t) =
k

∑
i=1

siP[W(t) ∈ Ji]

=
k

∑
i=1

si(FW(t)(Df(i))− FW(t)(Df(i−1))). (5)

Note that if si = 1 for every i = 1, . . . , k and Df(k) = Df, where Df is the threshold for
degradation in the standard model, then F̄T(t) = ∑k

i=1 P[W(t) ∈ Ji] = FW(t)(Df), i.e., (5)
reduces to (1). The degradation process of a life unit does not always refer to products
with high reliability, where gradual failure is foreseen. It also refers to situations where
sudden failures are possible, with the probability of such failures increasing as the degree
of degradation increases. The model (5) may contribute effectively in such situations. Let
us suppose that Ti := inf{t ≥ 0 : W(t) > Df(i)}, i = 0, 1, . . . , k + 1 is the first passage time
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of the stochastic process {W(t), t ≥ 0} to the value of Df(i). By convention, T0 = 0, and
Tk+1 = +∞. If we denote by T the time to failure of the device degrading over time, then

pi = si − si+1 = P(Ti ≤ T < Ti+1). (6)

It is necessary that (5) and (8) have to be valid survival functions for the time to failure
T. For example, FW(+∞)(Df(i)) = 0, for all i = 0, 1, . . . k, and further, when FW(0)(Df(i)) = 1,
for every i = 0, 1, . . . k, then (5) defines a valid SF.

We can also consider a degradation process with a decreasing degradation path and
assume that sk+1 ≥ sk ≥ . . . ≥ s1, where si ∈ [0, 1] for i = 1, 2, . . . , k + 1 are the survival
rates of a unit subject to degradation when W(t) = w, respectively, as the value w lies in

(Uf(k),Uf(k+1)], (Uf(k−1),Uf(k)], · · · , (Uf(i−1),Uf(i)], · · · , (Uf(0),Uf(1)],

where Uf(i−1) ≤ Uf(i) for every i = 1, 2, . . . , k + 1, such that Uf(0) = −∞, and Uf(k+1) = +∞.
The survival rate at degradation level W(t) = w is

S(w; t) =
k+1

∑
i=1

si I[w ∈ J?i ], (7)

where J?i = (Uf(i−1),Uf(i)]. By appealing to (3) when sk+1 = 1 and s0 = 0, we can obtain

F̄T(t) =
k+1

∑
i=1

siP[W(t) ∈ J?i ]

=
k+1

∑
i=1

si(F̄W(t)(Uf(i−1))− F̄W(t)(Uf(i))). (8)

In this case, if s1 = 0 and si = 1 for every i = 2, . . . , k + 1, and Uf(1) = Uf, where
Uf is the threshold for degradation in the standard model, then F̄T(t) = ∑k+1

i=2 P[W(t) ∈
J?i ] = F̄W(t)(Uf), i.e., (5) reduces to (2). Let us assume that T?

i := inf{t ≥ 0 : W(t) ≤
Uf(k+1−i)}, i = 0, 1, . . . , k+ 1 is the first passage time of the stochastic process {W(t), t ≥ 0}
to the value of Uf(i). By convention, T?

0 = 0, and T?
k+1 = +∞. The time to failure of the

device is the random variable T, and

πi = si+1 − si = P(T?
k−i ≤ T < T?

k−i+1). (9)

The following lemma is essential in deriving future results. It shows that the SF of T
in the degradation model with an increasing degradation path is a convex transformation
of FW(t)(Df(i)), i = 0, 1, . . . , k, as pi ≥ 0 and ∑k

i=0 pi = 1. Further, the SF of T in the
degradation model with a decreasing degradation path is a convex transformation of
F̄W(t)(Uf(i)), i = 0, 1, . . . , k, as πi ≥ 0 and ∑k

i=0 πi = 1.

Lemma 1. Let W(t), the degradation process, stochastically increase with t. Then, F̄T(t) =

∑k
i=0 piFW(t)(Df(i)).
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Proof. From (5), we can write

F̄T(t) =
k

∑
i=1

(
siFW(t)(Df(i))− siFW(t)(Df(i−1))

)
=

k

∑
i=1

siFW(t)(Df(i))− si−1FW(t)(Df(i−1)) + si−1FW(t)(Df(i−1))− siFW(t)(Df(i−1))

=
k

∑
i=1

siFW(t)(Df(i))−
k

∑
i=1

si−1FW(t)(Df(i−1)) +
k

∑
i=1

(si−1 − si)FW(t)(Df(i−1))

= skFW(t)(Df(k))− s0FW(t)(Df(0)) +
k−1

∑
i=0

(si − si+1)FW(t)(Df(i))

= (sk − sk+1)FW(t)(Df(k)) +
k−1

∑
i=0

(si − si+1)FW(t)(Df(i))

=
k

∑
i=0

piFW(t)(Df(i)),

where s0 = 1, sk+1 = 0, FW(t)(Df(0)) = FW(t)(−∞) = 0 and pi = si − si+1.

The following lemma parallels Lemma 1.

Lemma 2. Let the degradation process W(t) be stochastically decreasing in t. Then, F̄T(t) =

∑k
i=0 πi F̄W(t)(Uf(i)).

Proof. In the spirit of (8), one obtains

F̄T(t) =
k+1

∑
i=1

(
si F̄W(t)(Uf(i−1))− si F̄W(t)(Uf(i))

)
=

k+1

∑
i=1

si F̄W(t)(Uf(i−1))− si−1 F̄W(t)(Uf(i−1)) + si−1 F̄W(t)(Uf(i−1))− si F̄W(t)(Uf(i))

=
k+1

∑
i=1

si−1 F̄W(t)(Uf(i−1))−
k+1

∑
i=1

si F̄W(t)(Uf(i)) +
k+1

∑
i=1

(si − si−1)F̄W(t)(Uf(i−1))

= s0 F̄W(t)(Uf(0))− sk+1 F̄W(t)(Uf(k+1)) +
k+1

∑
i=1

(si − si−1)F̄W(t)(Uf(i−1))

=
k

∑
i=0

πi F̄W(t)(Uf(i)),

where s0 = 0, F̄W(t)(Uf(0)) = F̄W(t)(−∞) = 1, F̄W(t)(Uf(k+1)) = F̄W(t)(+∞) = 0, and
πi = si+1 − si.

In the context of the standard families of degradation models studied by Bae et al. [7],
we develop the failure-time model (3) under the multiplicative degradation model.

The general multiplicative degradation model is stated as

W(t) = η(t)X, (10)

where η is the mean degradation path, and X is the random variation around η(t) having
PDF fX , CDF FX , and SF F̄X . If the mean degradation path is considered as a monotonically



Axioms 2023, 12, 786 7 of 18

increasing function, then we develop F̄T under the multiplicative degradation model (10).
Note that FW(t)(w) = FX

(
w

η(t)

)
; thus, it is deduced from Lemma 1 that

F̄T(t) = E(S(Xη(t); t))

= E

[
k

∑
i=1

si I(Xη(t) ∈ (Df(i−1),Df(i)])

]

=
k

∑
i=0

piFX

(
Df(i)

η(t)

)
. (11)

The PDF of T, the time to failure under the degradation model 10 when η(t) is
increasing in t ≥ 0 (η′(t) ≥ 0, for all t ≥ 0), having SF (11), is obtained as follows:

fT(t) =
η′(t)
η2(t)

k

∑
i=0

piDf(i) fX

(
Df(i)

η(t)

)
. (12)

The failure rate associated with the SF given in (11) is then derived as

rT(t) =
η′(t)∑k

i=0 piDf(i) fX(
Df(i)

η(t) )

η2(t)∑k
i=0 piFX(

Df(i)

η(t) )
. (13)

If the mean degradation path η(t) is a monotonically decreasing function, then the
time to failure is denoted by T1 with SF F̄T1 . This SF can be obtained in the setting of the

multiplicative degradation model (10). We see that F̄W(t)(w) = F̄X

(
w

η(t)

)
. Therefore, using

Lemma 2, we obtain

F̄T1(t) = E

[
k+1

∑
i=1

si I(Xη(t) ∈ (Uf(i−1),Uf(i)])

]

=
k

∑
i=0

πi F̄X

(
Uf(i)

η(t)

)
. (14)

The PDF of T1, the time to failure under the degradation model (10) when η(t) is
decreasing in t ≥ 0 (η′(t) ≤ 0, for all t ≥ 0), having SF (14), is revealed to be:

fT1(t) =
−η′(t)
η2(t)

k

∑
i=0

πiUf(i) fX

(
Uf(i)

η(t)

)
. (15)

The failure rate of T with the SF given in (14) is

rT1(t) =
−η′(t)∑k

i=0 πiUf(i) fX(
Uf(i)

η(t) )

η2(t)∑k
i=0 πi F̄X(

Uf(i)

η(t) )
. (16)

3. Stochastic Ordering Results

In this section, we study some stochastic ordering properties of the time-to-failure
distributions of two devices under the multiplicative degradation model. In industrial
science, it is well known that products can have different qualities, some of which are
more reliable, while others fail earlier. The extent to which each subject resists not failing
under degradation can be evaluated by pi’s and πi’s in the models (5) and (8), respectively
(see, e.g., Lemma 1). Let P = (p0, . . . , pk) and P? = (p?0 , . . . , p?n) denote two probability
vectors assigned to a couple of devices working under a multiplicative degradation model
with an increasing mean degradation path. We suppose that P and P? are associated with
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with random lifetimes T and T?, respectively, such that pi = P(Ti ≤ T < Ti+1) and also
p?i = P(Ti ≤ T? < Ti+1), where Ti := inf{t ≥ 0 | W(t) > Df(i)} for i = 0, 1, . . . , k + 1. In
a similar manner, let Π = (π0, . . . , πk) and Π? = (π?

0 , . . . , π?
k ) denote other probability

vectors related to a pair of devices working under a multiplicative degradation model
with a decreasing mean degradation path. It is assumed that Π and Π? are associated
with random lifetimes T1 and T?

1 , respectively, such that πi = P(T?
i ≤ T1 < T?

i+1) and also
π?

i = P(T?
i ≤ T?

1 < T?
i+1), where T?

i := inf{t ≥ 0|W(t) ≤ Uf(k−i+1)} for i = 0, 1, . . . , k + 1.
Suppose that W(t) = η(t)X is the underlying degradation model. We impose a partial
order condition among P and P? or/and conditions on the distribution of X (random
variation around η(t)), such that some stochastic orders between T and T? are procured.
Further, we find some conditions on Π and Π? and other conditions on the distribution of
X, such that several stochastic orders between T1 and T?

1 are fulfilled.
There are some concepts in applied probability that we need to introduce before

we develop our stochastic comparison results. The following definition can be found in
Joag-dev et al. [8].

Definition 1. The function w, as a transformation on (x, y), is said to be totally positive of order 2,
TP2, [reverse regular of order 2, RR2] in (x, y) ∈ A×B, if w(x, y) ≥ 0 and∣∣∣∣w(x1, y1) w(x1, y2)

w(x2, y1) w(x2, y2)

∣∣∣∣ ≥ [≤]0,

for all x1 ≤ x2 ∈ A and for all y1 ≤ y2 ∈ B, where A and B are two subsets of R.

It is plain to verify that the TP2 [RR2] property of w, as a transformation on (i, k),
is equivalent to w(i,k2)

w(i,k1)
being nondecreasing [nonincreasing] in i whenever k1 ≤ k2 by

considering the conventions a
0 = +∞ when a > 0 and a

0 = 0, if a = 0.
The following lemma from Joag-dev et al. [8] known as the general composition

theorem (or basic composition formula) is frequently used in this paper.

Lemma 3.

(i) (discrete case): Let g be TP2 in (j, i) ∈ {1, 2} ×Ak and also let w be TP2 (respectively, RR2)
in (i, t) ∈ Ak ×B, where Ak = {0, 1, . . . , k}. Then, the function w?, given by

w?(j, t) :=
k

∑
i=0

g(j, i)w(i, t), is TP2 (respectively, RR2) in (j, t) ∈ {1, 2} ×B.

(ii) (continuous case): Let g(j, y) be TP2 in (j, y) ∈ {1, 2} ×Y, and let w(y, x) be TP2 (respec-
tively, RR2) in (y, x) ∈ Y×B, where Y and B are two subsets of [0,+∞). Then,

w?(j, x) :=
∫ +∞

0
g(j, y)w(y, x) dy is TP2 (respectively, RR2) in (j, x) ∈ {1, 2} ×B.

The following definition proposes some class of functions.

Definition 2. Suppose that w, as a transformation of nonnegative values, is a nonnegative function.
Then, w is said to have

(i) One-sided scaled-ratio increasing (decreasing), OSSRI (OSSRD), property, if w(tx)
w(x) is increas-

ing (decreasing) in x ≥ 0 for every t ≥ 1.

(ii) Two-sided scaled-ratio increasing (decreasing), TSSRI (TSSRD), property, if w(t2x)−w(t1x)
w(s2x)−w(s1x) is

increasing (decreasing) in x ≥ 0 for every ti ≥ si ≥ 0, i = 1, 2, with t1 ≤ t2 and s1 ≤ s2

From Definition 2, it is apparent that if t1 = s1 = 0 and also w(0) = 0, then from asser-
tion (ii) the ratio w(t2x)

w(s2x) is increasing (decreasing) in x for every t2 > s2 ≥ 0. Equivalently,
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this realizes that w(tx)
w(x) is increasing (decreasing) in x for all t ≥ 1. Therefore, every w with

w(0) = 0 having the TSSRI (TSSRD) property will also fulfill the OSSRI (OSSRD) property.

Remark 1. The properties in Definition 2(i) can be applied to generate reliability classes of lifetime
distributions. One can state that X has the increasing proportional probability (IPLR) property,
if and only if fX has the OSSRD property, and X has the decreasing proportional likelihood ratio
(DPLR) property, if and only if fX has the OSSRI property (see Romero and Díaz (2001) for
definitions of IPLR and DPLR). One can also see that X has the increasing proportional hazard
rate (IPHR) property, if and only if F̄X has the OSSRD property, and in parallel, X has the
decreasing proportional hazard rate (DPHR) property, if and only if F̄X has the OSSRI property (see
Belzunce et al. [9] for IPHR and DPHR properties). It can also be shown that X has the decreasing
proportional reversed failure rate (DPRFR) property, if and only if FX has the OSSRD property,
and also X has the increasing proportional failure rate (IPRFR) property, if and only if FX has the
OSSRI property (see Oliveira and Torrado [10] for the DPRFR and IPRFR classes).

In applied probability theory, stochastic orderings between random variables are a
useful approach for comparing the reliability of systems (see, e.g., Müller and Stoyan [11],
Osaki [12], Shaked and Shanthikumar [13], and Belzunce et al. [14]). Stochastic orderings are
considered a fundamental tool for decision making under uncertainty (see, e.g., Mosler [15]
and Li and Li [16]).

Let us assume that T and T? are random variables with absolutely continuous CDFs FT
and FT? , SFs F̄T and F̄T? , and PDFs fT and fT? , respectively. We suppose that T and T? have
hazard rate functions hT and hT? and reversed hazard rate functions h̃T and h̃T? , respectively.
Then:

Definition 3. We say that T is smaller than or equal to T? in the

(i) Likelihood ratio order (denoted as T ≤lr T?), if fT? (t)
fT(t)

is increasing in t ≥ 0.

(ii) Hazard rate order (denoted as T ≤hr T?), if F̄T? (t)
F̄T(t)

is increasing in t ≥ 0, or equivalently,
hT(t) ≥ hT?(t), for all t ≥ 0.

(iii) Reversed hazard rate order (denoted as T ≤rhr T?), if FT? (t)
FT(t)

is increasing in t ≥ 0, or

equivalently, h̃T(t) ≤ h̃T?(t), for all t > 0.
(iv) Usual stochastic order (denoted as T ≤st T?) if F̄T(t) ≤ F̄T?(t), for all t ≥ 0.

As given in Shaked and Shanthikumar [13], we have:

T ≤lr T? ⇒ T ≤hr T? ⇒ T ≤st T?.

It is, furthermore, well known that

T ≤lr T? ⇒ T ≤rhr T? ⇒ T ≤st T?.

To compare T and T? according to the usual stochastic ordering, a sufficient condition
is the well-known majorization ordering as given in the next definition. Majorization is a
partial order relation of two probability vectors with the same dimension that causes the
elements in one vector to be less far apart or more equal than the elements in another vector.
The majorization order provides an elegant framework for comparing two probability
vectors (see, e.g., Marshall et al. [17]).

We take X = (x0, . . . , xk) and Y = (y0, . . . , yk) as two vectors of real numbers, such
that x(0) ≤ . . . ≤ x(k) and y(0) ≤ . . . ≤ y(k) denote the increasing arrangement of the values
of X and values of Y, respectively, where x(i) is the ith smallest value among x0, . . . , xk, and
y(i) is the ith smallest value among y0, . . . , yk, for i = 1, . . . , k.



Axioms 2023, 12, 786 10 of 18

Definition 4. It is said that X is majorized by Y, written as X � Y, whenever ∑k
i=0 xi = ∑k

i=0 yi,
and ∑

j
i=0 x(k−i) ≤ ∑

j
i=0 y(k−i), for every j = 0, . . . , k− 1.

In this part of the paper, we assume that T and T? are two random variables denoting
the time to failure under the dynamic multiplicative degradation model W(t) = Xη(t),
where η is an increasing function with SFs

F̄T(t) =
k

∑
i=0

piFX

(
Df(i)

η(t)

)
and F̄T?(t) =

k

∑
i=0

p?i FX

(
Df(i)

η(t)

)
.

The corresponding PDFs are derived as

fT(t) =
η′(t)
η2(t)

k

∑
i=0

piDf(i) fX

(
Df(i)

η(t)

)
and fT?(t) =

k

∑
i=0

p?i Df(i) fX

(
Df(i)

η(t)

)
.

We also suppose that T1 and T?
1 are two random variables denoting the time to failure

under the multiplicative degradation model W(t) = Xη(t), where η is a decreasing function
with SFs

F̄T1(t) =
k

∑
i=0

πi F̄X

(
Uf(i)

η(t)

)
and F̄T?

1
(t) =

k

∑
i=0

π?
i F̄X

(
Uf(i)

η(t)

)
.

The associated PDFs are obtained as

fT1(t) =
−η′(t)
η2(t)

k

∑
i=0

πiUf(i) fX

(
Uf(i)

η(t)

)
and fT?

1
(t) =

−η′(t)
η2(t)

k

∑
i=0

π?
i Uf(i) fX

(
Uf(i)

η(t)

)
.

We utilize the following technical lemma.

Lemma 4.

(i) Let w0, w1, . . . , wk be a set of real numbers satisfying ∑k
i=0 wi = 0. If h(i) is nondecreasing

in i = 0, 1, . . . , k, then

Wj =
k

∑
i=j

wi ≥ 0, for all j = 1, 2, . . . , k implies that
k

∑
i=0

h(i)wi ≥ 0.

(ii) Let w0, w1, . . . , wk be real numbers. If h(i) ≥ 0 is nonincreasing for i = 0, 1, . . . , k, then

Wj =
j

∑
i=0

wi ≥ 0, for all j = 0, 1, . . . , k implies that
k

∑
i=0

h(i)wi ≥ 0.

The next result discusses the sufficient conditions for the stochastic comparison of T
and T? and also the stochastic ordering of T1 and T?

1 according to the usual stochastic order.

Theorem 1.

(i) Let P = (p0, . . . , pk) and P? = (p?0 , . . . , p?k ) be two probability vectors satisfying p0 ≤ . . . ≤
pk and p?0 ≤ . . . ≤ p?k , such that P � P?. Then, T ≤st T?.

(ii) Let Π = (π0, . . . , πk) and Π? = (π?
0 , . . . , π?

k ) be two probability vectors with π0 ≥ . . . ≥
πk and π?

1 ≥ . . . ≥ π?
k , such that Π? � Π. Then, T1 ≤st T?

1 .

Proof. Firstly, we prove assertion (i). Note that for any t ≥ 0,

FX

(
Df(0)

η(t)

)
≤ FX

(
Df(1)

η(t)

)
≤ · · · ≤ FX

(
Df(k)

η(t)

)
. (17)
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By appealing to Equation (11) and since pi ≤ pj, for every i < j and also from (17),

FX

(
Df(i)

η(t)

)
≤ FX

(
Df(j)

η(t)

)
for every i < j, as i, j = 0, 1, . . . , k, thus, by rearranging the

elements in sigma in Equation (11), we conclude the following: (It is straightforward that if
a0 ≤ a1 ≤ · · · ≤ ak and also b0 ≤ b1 ≤ · · · ≤ bk, then ∑k

i=0 aibi = ∑k
i=0 ak−ibk−i =

∑k
i=0 a(k−i)bk−i in which a(0) ≤ a(1) ≤ · · · ≤ a(k) denote the ordered values of a0, a1, . . . , ak.)

F̄T(t) =
k

∑
i=0

piFX

(
Df(i)

η(t)

)
=

k

∑
i=0

p(k−i)FX

(
Df(k−i)

η(t)

)
.

Similarly,

F̄T?(t) =
k

∑
i=0

p?i FX

(
Df(i)

η(t)

)
=

k

∑
i=0

p?(k−i)FX

(
Df(k−i)

η(t)

)
.

Let us take h(i) = FX

(
Df(k−i)

η(t)

)
, which by (17), is a nonincreasing function in

i = 0, 1, . . . , k. Since P � P?, thus ∑
j
i=0(p?(k−i) − p(k−i)) ≥ 0, for all j = 0, 1, . . . , k. Therefore,

from Lemma 4(ii),

F̄T?(t)− F̄T(t) =
k

∑
i=0

(p?(k−i) − p(k−i))FX

(
Df(k−i)

η(t)

)
is nonnegative, which means that T ≤st T?. We now prove assertion (ii). For each fixed
t ≥ 0, we have:

F̄X

(
Uf(0)

η(t)

)
≥ F̄X

(
Uf(1)

η(t)

)
≥ · · · ≥ F̄X

(
Uf(k)

η(t)

)
. (18)

By applying Equation (14) and since πi ≥ πj, for every i < j and also from (18),

F̄X

(
Uf(i)

η(t)

)
≥ F̄X

(
Df(j)

η(t)

)
for every i < j, when i, j = 0, 1, . . . , k, thus, by rearranging the

elements of sigma in Equation (14), we can obtain the following: (It is plain to see if
a0 ≥ a1 ≥ · · · ≥ ak and also b0 ≥ b1 ≤ · · · ≥ bk, then ∑k

i=0 aibi = ∑k
i=0 ak−ibk−i =

∑k
i=0 a(k−i)bk−i.)

F̄T1(t) =
k

∑
i=0

πi F̄X

(
Uf(i)

η(t)

)
=

k

∑
i=0

π(k−i) F̄X

(
Uf(k−i)

η(t)

)
.

In parallel,

F̄T?
1
(t) =

k

∑
i=0

π?
i F̄X

(
Uf(i)

η(t)

)
=

k

∑
i=0

π?
(k−i) F̄X

(
Uf(k−i)

η(t)

)
.

We set h(i) = F̄X

(
Uf(k−i)

η(t)

)
, which by (18), is a nondecreasing function in i = 0, 1, . . . , k.

Since Π? � Π, thus ∑k
i=j(π

?
(k−i) − π(k−i)) ≥ 0, for all j = 1, . . . , k and ∑k

i=0(π
?
(k−i) −

π(k−i)) = 0. Hence, an application of Lemma 4(i) yields

F̄T?
1
(t)− F̄T1(t) =

k

∑
i=0

(π?
(k−i) − π(k−i))F̄X

(
Uf(k−i)

η(t)

)
,

which is nonnegative, which means that T1 ≤st T?
1 . The proof is complete.

Remark 2. The result of Theorem 1 shows that the usual stochastic ordering between T and T?

and also that of T1 and T?
1 do not depend on the distribution of the random variation X. The

conditions imposed on T ≤st T? in Theorem 1(i) consist of an order relation between the pi’s
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(i.e., p0 ≤ . . . ≤ pk) and the same order relation between the p?i ’s (i.e., p?0 ≤ . . . ≤ p?k ) and a
majorization order condition of P and P?. The probability vector (P?), which majorizes the other
probability vector (P) leads to a more reliable product under a multiplicative degradation model with
increasing η(t). The order relations p0 ≤ . . . ≤ pk and p?0 ≤ . . . ≤ p?k are valid assumptions in
practical works. This is because in a multiplicative degradation model, as η(t) increases with elapsed
time t, the amount of degradation W(t) increases, and thus the probability of failure increases
accordingly. Note that the first elements of P and P? are associated with smaller amounts of W(t).
The conditions necessary to obtain T ≤st T? in Theorem 1(ii) are, first, an order relation of πi’s (i.e.,
π0 ≥ . . . ≥ πk) and an analogous order relation of π?

i ’s (i.e., π?
0 ≥ . . . ≥ π?

k ) and, second, the
majorization order of Π? and Π. The probability vector (Π), which majorizes the other probability
vector (Π?) will lead to a less reliable product under the multiplicative degradation model with
decreasing η(t). The ordering constraints π0 ≥ . . . ≥ πk and π?

0 ≥ . . . ≥ π?
k are also valid

assumptions in practice. This is because in a multiplicative degradation model with decreasing η(t)
with time t, the factor W(t) for degradation decreases; therefore, the probability of failure of the
product increases accordingly. Note that the first elements of Π and Π? are associated with smaller
amounts W(t).

The following theorems impose some conditions to explain the order ≤lr between
time-to-failure random variables in the dynamic multiplicative degradation model with
increasing mean degradation path η(t) (Theorem 2(i)) and the dynamic multiplicative
degradation model with decreasing mean degradation path η(t) (Theorem 2(ii)).

Theorem 2.

(i) Let P = (p0, . . . , pk) and P? = (p?0 , . . . , p?k ) be two probability vectors so that p?i
pi

is nonde-
creasing in i = 0, 1, . . . , k. If fX is OSSRD (OSSRI), then T ≤lr (≥lr)T?.

(ii) Let Π = (π0, . . . , πk) and Π? = (π?
0 , . . . , π?

k ) be two probability vectors so that π?
i

πi
is

nondecreasing in i = 0, 1, . . . , k. If fX is OSSRI (OSSRD), then T1 ≤lr (≥lr)T?
1 .

Proof. To prove (i) it suffices to demonstrate that

fT?(t)
fT(t)

=
∑k

i=0 p?i Df(i) fX

(
Df(i)

η(t)

)
∑k

i=0 piDf(i) fX

(
Df(i)

η(t)

)
is nondecreasing (nonincreasing) in t > 0. Set g(j, i) = pi, for j = 1 and g(j, i) = p?i ,

for j = 2 and also w(i, t) = Df(i) fX

(
Df(i)

η(t)

)
. Therefore, T ≤lr (≥lr)T?, if and only if

w?(j, t) := ∑k
i=0 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). Note that, by assump-

tion, p?i
pi

is nondecreasing in i = 0, 1, . . . , k; hence, g(j, i) is TP2 in (j, i) ∈ {1, 2}×{0, 1, . . . , k},
and also since fX is OSSRD (OSSRI), and η(t) is nondecreasing in t ≥ 0, thus, for every
i1 < i2 ∈ {0, 1, . . . , k},

w(i2, t)
w(i1, t)

=
Df(i2) fX

(
Df(i2)

η(t)

)
Df(i1) fX

(
Df(i1)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0. This means w(i, t) is TP2 (RR2) in (i, t) ∈
{0, 1, . . . , k} × {1, 2}. By Lemma 3(i), w?(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and
this completes the proof of (i). To prove (ii) one needs to show that

fT?
1
(t)

fT1(t)
=

∑k
i=0 π?

i Uf(i) fX

(
Uf(i)

η(t)

)
∑k

i=0 πiUf(i) fX

(
Uf(i)

η(t)

)
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is nondecreasing (nonincreasing) in t > 0. We take g?(j, i) = πi, for j = 1 and g?(j, i) = π?
i ,

for j = 2 and also set w1(i, t) = Uf(i) fX

(
Uf(i)

η(t)

)
. Thus, T1 ≤lr (≥lr)T?

1 , if and only if

w2(j, t) := ∑k
i=0 g?(j, i)w1(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). From this as-

sumption, π?
i

πi
is nondecreasing in i = 0, 1, . . . , k; hence, g?(j, i) is TP2 in (j, i) ∈ {1, 2} ×

{0, 1, . . . , k}, and also since fX is OSSRI (OSSRD), and η(t) is nonincreasing in t ≥ 0, thus,
for every i1 < i2 ∈ {0, 1, . . . , k},

w1(i2, t)
w1(i1, t)

=
Uf(i2) fX

(
Uf(i2)

η(t)

)
Uf(i1) fX

(
Uf(i1)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0. This means w1(i, t) is TP2 (RR2) in (i, t) ∈
{0, 1, . . . , k}× {1, 2}. By Lemma 3(i), w2(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2}× [0,+∞), which
validates the proof of (ii).

The following theorem establishes the conditions for ordering≤hr between the time-to-
failure random variables in the dynamic multiplicative degradation model with increasing
mean degradation path η(t).

Theorem 3. Let P = (p0, . . . , pk) and P? = (p?0 , . . . , p?k ) be two probability vectors, such that

(i) p?i
pi

is nondecreasing in i = 0, 1, . . . , k. If FX is OSSRD (OSSRI), then we have T ≤hr (≥hr)T?.

(ii) s?i
si

is nondecreasing in i = 1, 2, . . . , k. If FX is TSSRD (TSSRI), then we have T ≤hr (≥hr)T?.

Proof. For assertion (i) to be proved, it is enough to show that

F̄T?(t)
F̄T(t)

=
∑k

i=0 p?i FX

(
Df(i)

η(t)

)
∑k

i=0 piFX

(
Df(i)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0. Let us take g(j, i) = pi, for j = 1, and

g(j, i) = p?i , for j = 2, and also w(i, t) = FX

(
Df(i)

η(t)

)
. Thus, T ≤hr (≥hr)T?, if and only

if w?(j, t) := ∑k
i=0 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). By assumption, p?i

pi
is nondecreasing in i; hence, g(j, i) is TP2 in (j, i), and further, since FX is OSSRD (OSSRI),
and η(t) is nondecreasing in t ≥ 0, thus, for every i1 < i2, in the domain of i,

w(i2, t)
w(i1, t)

=
FX

(
Df(i2)

η(t)

)
FX

(
Df(i1)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0. This is equivalent to saying that w(i, t) is TP2
(RR2) in (i, t). By Lemma 3(i), w?(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this
ends the proof of (i). For the proof of assertion (ii), one needs to prove that

F̄T?(t)
F̄T(t)

=
∑k

i=1 s?i
(

FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

))
∑k

i=1 si

(
FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

))
is nondecreasing (nonincreasing) in t ≥ 0. We can set g(j, i) = si, for j = 1 and

g(j, i) = s?i , for j = 2 and also take w(i, t) = FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

)
, which is non-

negative since Df(i) ≥ Df(i−1). By these notations, T ≤hr (≥hr)T?, if and only if w?(j, t) :=

∑k
i=1 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). From assumption, s?i

si
is nonde-
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creasing in i; hence, g(j, i) is TP2 in (j, i), and moreover, since FX is TSSRD (TSSRI), and
η(t) is nondecreasing in t ≥ 0, thus, for every i1 < i2,

w(i2, t)
w(i1, t)

=
FX

(
Df(i2)

η(t)

)
− FX

(
Df(i2−1)

η(t)

)
FX

(
Df(i1)

η(t)

)
− FX

(
Df(i1−1)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0. This is equivalent to w(i, t) being TP2 (RR2) in
(i, t). On applying Lemma 3(i), w?(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this
gives the required result in assertion (ii).

In the context of Theorem 3, if p?i
pi

is nondecreasing in i = 0, 1, . . . , k, then s?i
si

is also
nondecreasing in i = 1, 2, . . . , k. We can use Lemma 3(i) to prove it. Let us take g(j, i) = p?i ,
for j = 2 and g(j, i) = pi, for j = 1 when i = 0, 1, . . . , k. Set w(i, t) = I[i ≥ t], where
t = 1, 2, . . . , k and i = 0, 1, . . . , k. Since p?i

pi
is nondecreasing in i = 0, 1, . . . , k, thus g(j, i)

is TP2 in (j, i), and it is also straightforward to show that w(i, t) = I[i ≥ t] is TP2 in (i, t).
Hence, w?(j, i) = ∑k

i=0 g(j, i)w(i, t) is TP2 in (j, t), i.e., s?i
si

is nondecreasing in i = 1, 2, . . . , k.
Therefore, the condition on probabilities in Theorem 3(ii) is weaker than the condition
imposed on probabilities in Theorem 3(i). It is also plain to show that if FX is TSSRD (TSSRI)
then FX is OSSRD (OSSRI). Therefore, the condition on the random effect distribution in
Theorem 3(ii) is stronger than the condition on the random effect distribution in Theorem 3(i).

The theorem below presents conditions to make the order ≤hr between the time-to-
failure random variables in the dynamic multiplicative degradation model with decreasing
mean degradation path η(t). The proof being similar to the proof of Theorem 3 has been
omitted.

Theorem 4. Let Π = (π0, . . . , πk) and Π? = (π?
0 , . . . , π?

k ) be two probability vectors such that

(i) π?
i

πi
is nondecreasing in i = 0, 1, . . . , k. If F̄X is OSSRI (OSSRD), then we have T1 ≤hr (≥hr)T?

1 .

(ii) s?i
si

is nondecreasing in i=1, 2, . . . , k+1. If FX is TSSRI (TSSRD), then we have T1 ≤hr (≥hr)T?
1 .

The next result presents the conditions under which the order ≤rhr is fulfilled by the
time-to-failure random variables in the dynamic multiplicative degradation model with
increasing mean degradation path η(t).

Theorem 5. Let P = (p0, . . . , pk) and P? = (p?0 , . . . , p?k ) be two probability vectors such that

(i) p?i
pi

is nondecreasing in i = 0, 1, . . . , k. If F̄X is OSSRD (OSSRI), then T ≤rhr (≥rhr)T?.

(ii) 1−s?i
1−si

is nondecreasing in i = 1, 2, . . . , k + 1. If FX is TSSRD (TSSRI), then T ≤rhr (≥rhr)T?.

Proof. The assertion (i) is established if one shows that

FT?(t)
FT(t)

=
∑k

i=0 p?i F̄X

(
Df(i)

η(t)

)
∑k

i=0 pi F̄X

(
Df(i)

η(t)

)
is nondecreasing (nonincreasing) in t > 0. Let g(j, i) = pi, for j = 1 and g(j, i) = p?i ,

for j = 2, and also w(i, t) = F̄X

(
Df(i)

η(t)

)
. As a result, T ≤rhr (≥rhr)T?, if and only if

w?(j, t) := ∑k
i=0 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞). By assumption, p?i

pi
is
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nondecreasing in i; hence, g(j, i) is TP2 in (j, i), and further, since F̄X is OSSRD (OSSRI),
and η(t) is nondecreasing in t ≥ 0, thus, for every i1 < i2,

w(i2, t)
w(i1, t)

=
F̄X

(
Df(i2)

η(t)

)
F̄X

(
Df(i1)

η(t)

)
is nondecreasing (nonincreasing) in t ≥ 0, which means w(i, t) is TP2 (RR2) in (i, t). Using
Lemma 3(i), w?(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this provides the proof of
(i). For assertion (ii), we need to demonstrate that

FT?(t)
FT(t)

=
∑k+1

i=1 (1− s?i )
(

FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

))
∑k+1

i=1 (1− si)
(

FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

))
is nondecreasing (nonincreasing) in t > 0. Let us define g(j, i) = 1− si, for j = 1 and

g(j, i) = 1− s?i , for j = 2, and let us also define w(i, t) = FX

(
Df(i)

η(t)

)
− FX

(
Df(i−1)

η(t)

)
. Now,

T ≤rhr (≥rhr)T?, if and only if w?(j, t) := ∑k
i=1 g(j, i)w(i, t) is TP2 (RR2) in (j, t) ∈ {1, 2} ×

[0,+∞). By assumption, 1−s?i
1−si

is nondecreasing in i; hence, g(j, i) is TP2 in (j, i), and in
addition, since F̄X is TSSRD (TSSRI), and η(t) is nondecreasing in t ≥ 0, thus, w(i, t) is
TP2 (RR2) in (i, t). By Lemma 3(i), w?(j, t) is TP2 (RR2) in (j, t) ∈ {1, 2} × [0,+∞), and this
proves assertion (ii).

In the setting of Theorem 5, if p?i
pi

is nondecreasing in i = 0, 1, . . . , k, then 1−s?i
1−si

is
nondecreasing in i = 1, 2, . . . , k + 1. Lemma 3(i) can be used to prove it. Let us set
g(j, i) = p?i , for j = 2 and g(j, i) = pi for j = 1, when i = 0, 1, . . . , k. Set w(i, t) =

I[i ≤ t − 1], where t = 1, 2, . . . , k + 1 and i = 0, 1, . . . , k. Since p?i
pi

is nondecreasing in
i = 0, 1, . . . , k, thus g(j, i) is TP2 in (j, i), and also w(i, t) = I[i ≤ t] is TP2 in (i, t). Thus,
w?(j, i) := ∑k

i=0 g(j, i)w(i, t) is TP2 in (j, t), i.e., 1−s?i
1−si

is nondecreasing in i = 1, 2, . . . , k + 1.
Therefore, the condition on probabilities in Theorem 5(ii) is weaker than the condition on
probabilities in Theorem 5(i). Moreover, if FX is TSSRD (TSSRI), then F̄X is OSSRD (OSSRI).
This means that the random effects distribution condition in Theorem 5(ii) is stronger than
the random effect distribution condition in Theorem 5(i).

The following theorem imposes conditions on the order ≤rhr between the random
variables for the time to failure in the dynamic multiplicative degradation model with de-
creasing mean degradation path η(t). The proof, which is similar to the proof of Theorem 5,
has been omitted.

Theorem 6. Let Π = (π0, . . . , πk) and Π? = (π?
0 , . . . , π?

k ) be two probability vectors such that

(i) π?
i

πi
is nondecreasing in i = 0, 1, . . . , k. If FX is OSSRI (OSSRD), then we have T1 ≤rhr

(≥rhr)T?
1 .

(ii) 1−s?i
1−si

is nondecreasing in i = 1, 2, . . . , k + 1. If FX is TSSRI (TSSRD), then we have T1 ≤rhr

(≥rhr)T?
1 .

4. Examples

In this section, we investigate and test the random effects distribution conditions to satisfy
the ordering properties in Section 3 with some typical random effects distribution functions
listed in Bae et al. [7]. These functions are appropriate functions that arise in most practical
situations as Bae et al. [7] confirm. We prove that the applicable standard distributions for the
random variation X are within the framework of the theorems in Section 3.

Before giving the examples, we state the following lemma.
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Lemma 5. Let fX , FX , and F̄X be the PDF, CDF, and SF of random variation X around η(t). Then,

(i) If FX is TSSRD (TSSRI), then FX is OSSRD (OSSRI).
(ii) FX is TSSRD (TSSRI), if and only if F̄X is TSSRD (TSSRI).
(iii) If fX is OSSRD (OSSRI), then FX and F̄X are TSSRD (TSSRI).

Proof. The proof of (i) is obvious (see the lines after Definition 2). To prove (ii), it is enough
to observe that for all ti ≥ si ≥ 0, i = 1, 2 and t2 ≥ t1 and s2 ≥ s1, it holds that:

FX(t2x)− FX(t1x)
FX(s2x)− FX(s1x)

=
F̄X(t2x)− FX(t1x)
F̄X(s2x)− F̄X(s1x)

.

To prove assertion (iii), it suffices to establish that if fX is OSSRD (OSSRI), then FX is
TSSRD (TSSRI) because this is equivalent to F̄X being TSSRD (TSSRI) from assertion (ii).
We have

FX(t2x)− FX(t1x)
FX(s2x)− FX(s1x)

=

∫ t2x
t1x fX(u)du∫ s2x
s1x fX(u)du

=

∫ t2
t1

fX(xy)dy∫ s2
s1

fX(xy)dy
.

The ratio FX(t2x)−FX(t1x)
FX(s2x)−FX(s1x) is nonincreasing (nondecreasing) in x ≥ 0 for all ti ≥ si ≥ 0,

i = 1, 2 and t2 ≥ t1 and s2 ≥ s1, if and only if w?(j, x) :=
∫ +∞

0 g(j, y)w(y, x) dy is
RR2 (TP2) in (j, x) ∈ {1, 2} × [0,+∞), where g(j, y) = I[s1 < y ≤ s2] for j = 1, and
g(j, y) = I[t1 < y ≤ t2] for j = 2 and w(y, x) = fX(xy). It is not hard to prove that g(j, y) is
TP2 in (j, y), and also since fX is OSSRD (OSSRI), thus w(y, x) is RR2 (TP2) in (y, x). Hence,
by Lemma 3(ii) the required result follows.

The following examples show that the results of Theorems 2–5 and Theorem 6 can be
applied to several typical standard distributions for the random variation X.

Example 1. (X is Weibull-distributed). Suppose that X has SF F̄X(x) = exp(−(λx)α), where
λ > 0 and α > 0. The PDF of X is fX(x) = αλαxα−1 exp(−(λx)α). Thus,

fX(tx)
fX(x)

= tα−1 exp((λx)α(1− tα))

which is decreasing in x ≥ 0, for all t > 1; thus, fX is OSSRD, and as a result of Lemma 5(iii), FX
is TSSRD, and F̄X is TSSRD.

Example 2. (X is gamma-distributed). Assume that X has PDF fX(x) = λγxγ−1 exp(−λx)
Γ(γ) , where

γ > 0 and λ > 0. We obtain

fX(tx)
fX(x)

= tγ−1 exp((λx)(1− t)),

which is decreasing in x ≥ 0, for every t > 1, i.e., fX is OSSRD and by Lemma 5(iii), FX is TSSRD,
and F̄X is also TSSRD.

Example 3. (X is log-logistically distributed). Let us take X as a random variable with PDF

fX(x) = βeαxβ−1

(1+eαxβ)2 , for β > 0. We can derive

fX(tx)
fX(x)

= tβ−1
(

1 + eαxβ

1 + eα(tx)β

)2

,

which is decreasing in x ≥ 0, for every t > 1, and this means fX is OSSRD, which by Lemma 5(iii)
implies that FX is TSSRD, and F̄X is also TSSRD.

The following example gives an application of Theorem 1.
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Example 4. Suppose W(t) is a degradation process with an increasing mean degradation path.
Assume that T denotes the time to failure of a device and that T? denotes the time to failure after
applying a burn-in strategy. This strategy omits devices that fail before their degradation reaches
Df(1). If T1 := inf{t ≥ 0 |W(t) > Df(1)}, then

p?0 = P(0 ≤ T? < T1) = 0, p?1 = P(T1 ≤ T? < +∞) = 1,

and also we assume that

p0 = P(0 ≤ T < T1) > 0, p1 = P(T1 ≤ T < +∞) < 1.

Since, P � P?, with P = (p0, p1) and P? = (0, 1), thus, according to Theorem 1(i), T ≤st T?.
Note that p?0

p0
<

p?1
p1

; therefore, if X is OSSRD, then by Theorem 2(i), T ≤lr T?.

The novel time-to-failure degradation-based model proposed in this paper can be
adopted by experts in statistics. The model includes some parameters, including the param-
eters in η(t), the mean degradation path in the multiplicative degradation model (see, e.g.,
Bae et al. [7] for some typical shapes), the proportions p0, p1, . . . , pk, the failure probabilities
of the device subject to degradation, and the amounts Df(1),Df(2), . . . ,Df(k) as the limits
of the degradation values. The problem of estimating these parameters using sample
data on the degradation process {W(t) = Xη(t) : t ≥ 0} and also using time-to-failure
observations of devices undergoing degradation is an interesting and challenging study.
In previous degradation-based time-to-failure models, there was traditionally a threshold
for degradation that was assumed to be a predetermined value determined by empirical
experimentation on products with high reliability. However, in the context of the new
model in this work, which considers products with arbitrary reliability, it is not straight-
forward to determine the limits of degradation, i.e., the amounts of Df(1),Df(2), . . . ,Df(k).
Therefore, in such a situation, whether these parameters can be estimated is a key question.
The potentially proposed estimation methods and statistical inference procedures can be
investigated through simulation studies and also through the application of real datasets.
However, in the context of applied probability theory, which is the basis of the present work,
stochastic orderings are commonly used as a tool to make inferences about a population
in two typical states without any data about the population in these states. Therefore, the
results obtained in this work contribute to the stochastic comparison of the lifetime of two
devices under degradation in the context of a new time-to-failure degradation model to
evaluate the device with higher reliability. The properties and stochastic ordering results
are obtained from the conditions attached to the parameters of the new time-to-failure
model, so that after estimating the parameters of the model, one can choose a preferred
strategy among two existing strategies that leads to better performance.

5. Conclusions

In this work, we achieved two goals. The first was to develop a novel time-to-failure
model to fit the lifetime of devices under a typical degradation process, namely the mul-
tiplicative degradation model W(t) = Xη(t). The basic idea was that the device failure
probability is constant at successive intervals as the degradation amount is increased (de-
creased). It was shown that the time to failure according to the model follows a well-known
classical mixed model (Lemma 1). The second objective was to obtain some stochastic
ordering properties under variation of probabilities in two different settings and to find
conditions under which the device having a stochastically higher lifetime is identified.
The degradation intervals were assumed to be fixed in both cases, the mean degradation
function η(t) was also assumed to be fixed, and the random variation X around η(t) was
assumed to follow a common distribution function in both cases. The usual stochastic
ordering holds when a majorization property between the probability vectors is satisfied. It
can be concluded that the reliability of the device under degradation decreases accordingly
when the probabilities in one case are more distributed compared to the other cases. For the
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stronger stochastic orderings such as the likelihood ratio ordering, the hazard rate ordering,
and the reverse hazard rate ordering, it has been clarified that in addition to the conditions
required to classify the probability vectors from the two settings, additional conditions
must be imposed on the distribution function of X. We have shown by some examples that
the conditions on the distribution function of X are satisfied for some typical applicable
standard distributions.

In future work, we may consider other settings or frameworks to detect devices under
degradation that have more reliability. For example, the lower and upper bounds of
the degradation intervals can be chosen as (random or nonrandom) variables, and the
distribution function of X as well as the mean degradation amount around them can vary.
The aging properties of the new time-to-failure model can also be studied, which is useful
in model selection for geostrategies.
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