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1. Introduction

Let (Xi, Yi), i = 1, 2, . . . , n be independent and identically distributed (iid) random
variables (rvs) from a continuous bivariate distribution with cumulative distribution func-
tion (cdf) F(x, y) and joint probability density function (pdf) f (x, y). Let fX(x) and fY(y) be
the marginal pdf of X and Y respectively, FX(x) and FY(y) be the marginal cdf, respectively.
We define F−1

Y (u) = in f {y; FY(y) ≥ u}, u ∈ [0, 1] as the quantile function of FY(y). If we
arrange Xs in the order X1 ≤ X2 ≤ . . . . . . ≤ Xn, then the Ys associated with these order
statistics (OS) are called concomitants of order statistics (COS). We denote Xr:n and Y[r:n]
for the rth order statistic and concomitant of rth order statistic.

If the members of a random sample are sorted according to corresponding values of an
other random sample, then the COS arise. The concept of COS has been introduced by [1].
It has important applications in various areas such as in selection problems, inference
problems etc. One may refer [2] for more details and applications of COS.

The common approach in the problems of modeling is that to select a family of
distributions and then choose the one from the family that is more appropriate to describe
the observation. The desirable feature of selecting a family is that it should be flexible.
That is, it should accommodate several models that could represent any data situations.
The most well-known parametric family from all the available parametric families is the
Farlie-Gumbel-Morgenstern (FGM) family, that is mannered by [3]. The FGM family of
distributions is constructed in such a way that it includes a joint distribution function
along with its marginals, which makes it easier for the analyst to make several assumptions
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about marginals. Ref. [4] studied about the new generalized FGM distributions and COS.
A multi-parameter Generalized FGM bivariate copula family via Bernstein polynomial has
been introduced by [5].

One of the most widely used measure of uncertainty is the entropy measure introduced
by [6], which is used to quantify the amount of uncertainty involved in a rv and has several
applications in various areas. The Shannon entropy is given by

H(X) = −
∫ ∞

0
fX(x) log fX(x)dx.

Interested readers can refer the work by [7] for the characterizations of OS and records
of entropy. Ref. [8] introduced new measure of sample entropy of continuous rv. Ref. [9]
suggested some estimators of entropy using random sampling. The idea of varentropy is
proposed by [10] as a great replacement for the kurtosis measure.

The differential extropy proposed by [11] is considered as the complementary dual of
Shannon entropy. It is appeared from a critical analysis to score the forecasting distribution.
For a non-negative rv X with pdf fX(x), differential extropy is given as follows

J(X) = −1
2

∫ ∞

0
f 2
X(x)dx. (1)

In the application perspective, one can refer to [12] for the application of extropy
in thermodynamics and [13] for the application of extropy in automatic speech recog-
nition. Ref. [14] analysed the characterization results of extropy using OS and record
values. Ref. [15] developed some results related to extropy properties of mixed systems.
Ref. [16] provided general weighted extropy of ranked set sampling (RSS). They studied
some characterization results, stochastic comparison and monotone properties of general
weighted extropy.

In order to deal with the situations where uncertainty may be confined to the past life
of an event, ref. [17] introduced past entropy for a rv tX = (t− x|X < t). The past extropy
is offered by [18,19] to measure the uncertainty in a past lifetime distribution based on
extropy. It is given as

Jt(X) = −1
2

∫ t

0

(
fX(x)
FX(t)

)2

dx. (2)

From Equation (2), it is clear that Jt(X) < 0 and Jt(X) = J(X), for t = ∞. It has several
applications in information theory, reliability theory, survival analysis etc.

Ref. [20] introduced the concept of varextropy which is a dispersion measure of extropy
for residual and past lifetimes of rvs. Ref. [21] explored RSS properties of past extropy and
negative cumulative extropy. Ref. [22] made a comparison study between past entropy and
past extropy and showed that there are situations where uncertainty related to past life is
approximately lower for past extropy measure than past entropy. Thus, it is evident that
in some situations of uncertainty, information content is more while using past extropy
measure than past entropy for rvs representing past life time.

If the properties of the residual and past lifetime depend on time, they are considered
as dynamic. This means that these characteristics vary over time and are not constant.
Ref. [23] considered dynamic weighted extropy. Ref. [24] introduced the concept of dynamic
survival extropy in the literature. Ref. [25] introduced another uncertainty measure called
Dynamic survival past extropy (DSPE) for past lifetime of a system. It is defined for a
non-negative rv X with absolutely continuous cdf FX(x) as

JDSPt(X) = −1
2

∫ t

0

(
FX(x)
FX(t)

)2

dx. (3)

It is always less than zero and for t = ∞, it became the cumulative past extropy (CPE)
which is given by [25], as
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Jt = −
1
2

∫ ∞

0
F2

X(x)dx. (4)

Some properties of Fisher information in OS and its concomitants are inspected by [26].
Ref. [27] explored information properties for COS in FGM family. [28] explored properties
of extropy for concomitants of generalized OS in FGM family. Ref. [29] explained the
concept of ordered variables and their concomitants under extropy via COVID-19 data
application. Ref. [30] developed the approach of the extropy of concomitants of generalized
OS from Huang–Kotz–Morgenstern bivariate distribution.

The concomitants are mostly used in selection problems where the individuals are
chosen according to the X values and associated characteristic is shown using the corre-
sponding the Y values. The flexible nature of the FGM family is built in such a way that once
the prior information in the form of marginals is available the bivariate distribution can be
constructed with the help of those marginals and correlation between the variables directly.
Its flexibility encouraged us to cope up the work in COS from FGM family. Ref. [31] studied
residual and past entropy for concomitants of ordered rvs from FGM family. But not any
work is available on the literature based on the COS from FGM family in the case of past
life time rvs. This motivated us to present the information content and properties of COS
for the rvs representing past lifetime.

The structure of the paper is organized as: In Section 2, we obtain the expression
for Y[r:n] based on past extropy measure as well as some results related to past extropy of
concomitant of rth order statistic are derived. In Sections 3 and 4, the properties of COS
in CPE and DSPE measures are studied. Section 5 deals with the estimation of CPE for
concomitant of rth order statistic using empirical estimators. And in Section 6, simulation
study is exhibited to support the potency of the estimator. Finally, Section 7 provides a
conclusion of main findings.

2. Past Extropy for Concomitants of Order Statistics in FGM Family

In this section, we derive measures of past extropy for COS in FGM family.
The cdf and pdf of the FGM family are given by [32] as

FX,Y(x, y) = FX(x)FY(y)[1 + α(1− FX(x))(1− FY(y))], (5)

and
fX,Y(x, y) = fX(x) fY(y)[1 + α(2FX(x)− 1)(2FY(y))− 1], (6)

where −1 ≤ α ≤ 1, fX(x) and fY(y) are the marginal pdf of X and Y, respectively. FX(x)
and FY(y) are the marginal cdf of X and Y, respectively.

The pdf and cdf of concomitant of rth order statistic Y[r:n] given by [33], respectively are

gY[r:n]
= fY(y)[1 + γr(1− 2FY(y))], (7)

and
GY[r:n]

(y) = FY(y)[1 + γr(1− FY(y))], (8)

where γr = α n−2r+1
n+1 .

Proposition 1. Let (Xi, Yi), i = 1, 2, . . . , n be a bivariate random sample from FGM family and
Y[r:n] denotes the concomitant of the rth order statistic arising from FGM family, the past extropy of
Y[r:n] denoted as Jt(Y[r:n]) is given by

Jt(Y[r:n]) =

(
1

1 + γr(1− FY(t))

)2
[
(1 + γr)

2 Jt(Y) +
2γr(1 + γr)

FY(t)
E
(

Ut fY(F−1
Y (Ut))

)
− 2γ2

r
FY(t)

E
(

U2
t fY(F−1

Y (Ut))
)]

,

(9)
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where Jt(Y) is the past extropy of rv Y, γr = α n−2r+1
n+1 and Ut is a uniformly distributed rv on

(0, FY(t)) with pdf 1
FY(t)

.

Proof. For Y[r:n], from Equation (2) we have

Jt(Y[r:n]) = −
1
2

∫ t

0

g2
Y[r:n]

(y)

G2
Y[r:n]

(t)
dy, (10)

where gY[r:n]
and GY[r:n]

are defined in Equations (7) and (8), respectively.
Then,

Jt(Y[r:n]) = −
1
2

∫ t

0

f 2
Y(y)[1 + γr(1− 2FY(y))]

2

G2
Y[r:n]

(t)
dy

= −1
2

∫ t

0

f 2
Y(y)

[
1 + 2γr(1− 2FY(y)) + γ2

r (1− 2FY(y))
2
]

G2
Y[r:n]

(t)
dy

= −1
2

∫ t

0

f 2
Y(y)[1 + 2γr(1− 2FY(y)) + γ2

r (1− 4FY(y) + 4F2
Y(y))]

G2
Y[r:n]

(t)
dy.

Expanding and rearranging, we get

Jt(Y[r:n]) = −
1

2G2
Y[r:n]

(t)

[
(1 + γr)

2
∫ t

0
f 2
Y(y)dy− 4γr(1 + γr)

∫ t

0
FY(y) f 2

Y(y)dy

+ 4γ2
r

∫ t

0
F2

Y(y) f 2
Y(y)dy

]
.

Using Equation (8) it will be

Jt(Y[r:n]) =−
1
2

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)2

F2
Y(t)

∫ t

0
f 2
Y(y)dy

− 4γr(1 + γr)

F2
Y(t)

∫ t

0
FY(y) f 2

Y(y)dy +
4γ2

r

F2
Y(t)

∫ t

0
F2

Y(y) f 2
Y(y)dy

]

=

(
1

1 + γr(1− FY(t))

)2[
− (1 + γr)2

2F2
Y(t)

∫ FY(t)

0
fY(F−1

Y (u))du

+
2γr(1 + γr)

F2
Y(t)

∫ FY(t)

0
u fY(F−1

Y (u))du− 2γ2
r

F2
Y(t)

∫ FY(t)

0
u2 fY(F−1

Y (u))du

]

=

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)

2 Jt(Y) +
2γr(1 + γr)

F2
Y(t)

∫ FY(t)

0
u fY(F−1

Y (u))du

− 2γ2
r

F2
Y(t)

∫ FY(t)

0
u2 fY(F−1

Y (u))du

]

=

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)

2 Jt(Y) +
2γr(1 + γr)

FY(t)
E
(

Ut fY(F−1
Y (Ut))

)
− 2γ2

r
FY(t)

E
(

U2
t fY(F−1

Y (Ut))
)]

.

Hence, the theorem is proved.
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Remark 1. When α = 0 in Equation (9), then γr = 0, which implies Jt(Y[r:n]) = Jt(Y).

Remark 2. If r = 1 and r = n, we get the concomitants of the 1st and nth OS of a random sample
of size n. Then, the past extropy measure for COS Y[1:n] and Y[n:n], respectively are given by

Jt(Y[1:n]) =

(
1

1 + Cn,α(1− FY(t))

)2
[
(1 + Cn,α)

2 Jt(Y)

+
2Cn,α(1− Cn,α)

FY(t)
E
(

Ut fY(F−1
Y (Ut))

)
−

2C2
n,α

FY(t)
E
(

U2
t fY(F−1

Y (Ut))
)]

,

(11)

and

Jt(Y[n:n]) =

(
1

1− Cn,α(1− FY(t))

)2
[
(1− Cn,α)

2 Jt(Y)

−2Cn,α(1− Cn,α)

FY(t)
E
(

Ut fY(F−1
Y (Ut))

)
−

2C2
n,α

FY(t)
E
(

U2
t fY(F−1

Y (Ut))
)]

,

(12)

where Ut is a rv distributed uniformly on (0, FY(t)) and Cn,α = α n−1
n+1 .

Example 1. Let (Xi, Yi), i = 1, 2, . . . , n be a bivariate random sample arising from FGM bivariate
exponential distribution with cdf

F(x, y) =
(

1− e−
x

θ1

)(
1− e−

y
θ2

)(
1 + αe−

x
θ1
− y

θ2

)
, (13)

where −1 ≤ α ≤ 1, x, y > 0, θ1, θ2 > 0. Then,

Jt(Y[r:n]) = −
−2e−

t
θ2 (−4 + γr)γr + 6γ2

r + e
2t
θ2 (3 + γr(2 + γr)) + e

3t
θ2 (3 + γr(2 + γr))

12(−1 + e
t

θ2 )θ2(e
t

θ2 + γr)2
.

(14)
Figure 1 shows some plots of Jt

(
Y[r:n]

)
for a sample of size n = 50 and the first order statistic

r = 1 with various selections of θ2 for FGM bivariate exponential distribution.

θ2 = 10

θ2 = 20

θ2 = 30

θ2 = 40

θ2 = 50

θ2 = 60

θ2 = 70

2 4 6 8

-35

-30

-25

-20

-15

-10

-5

0

t

J
t
(Y
)

(a) α = −0.7

θ2 = 1

θ2 = 2

θ2 = 3

θ2 = 4

θ2 = 5

θ2 = 6

θ2 = 7

2 4 6 8

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

t

J
t
(Y
)

(b) α = 0.9

Figure 1. The plots of Jt

(
Y[r:n]

)
for n = 50, r = 1 with various values of θ2 for FGM bivariate

exponential distribution.
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It is clear that Jt

(
Y[r:n]

)
values are negative for all cases considered in this figure. Using

Equation (14), the difference between concomitants of nth and 1st OS for past extropy measure
denoted as Dt is given by

Dt = Jt(Y[n:n])− Jt(Y[1:n])

=

e
t

θ2 (−1 + e
t

θ2 )(−1 + n2)α

[
e

t
θ2 (1 + n)2 − 2(−1 + n)2α2 − e

t
θ2 (−1 + n)2α2

]
3
[

e
2t
θ2 (1 + n)2 − (−1 + n)2α2

]2
θ2

,
(15)

which is positive when 0 < α ≤ 1, is negative when −1 ≤ α < 0, and is zero for α = 0.

Example 2. For FGM bivariate logistic distribution with cdf

F(x, y) =
(
1 + e−x)−1(1 + e−y)−1

(
1 + α

e−x−y

(1 + e−x)(1 + e−y)

)
, (16)

where −1 ≤ α ≤ 1, −∞ < x < ∞ and −∞ < y < ∞, the past extropy is given by

Jt(Y[r:n]) = −
e−2t(−1 + et)

480(1 + et)(1 + et + γ2
r )

(
20 + 120et + 200e2t + 120e3t + 20e4t + 15γr

+90etγr − 90e3tγr − 15e4tγr + 4γ2
r + 24etγ2

r − 56e2tγ2
r + 24e3tγ2

r + 4e4tγ2
r

)
.

(17)

Using Equation (17), Dt is obtained as

Dt = e−2tα

(
25(1 + n)(−1 + n)3 − 15e6t(1 + n)(−1 + n)3 − 7α2(1 + n)(−1 + n)3

−5e2t(−1 + n2)
(
−35(1 + n)2 + 2(−1 + n)2α2

)
− 10et(−1 + n2)

(
−11(1 + n)2 + 2(−1 + n)2α2

)
− 2e5t(−1 + n)2

(
65(1 + n)2 + 4(−1 + n)2α2

)
+20e3t(−1 + n2)

(
(1 + n)2 + 5(−1 + n)2α2

)
−5e4t(−1 + n)2

(
37(1 + n)2 + 11(−1 + n)2α2

))/(
240
(
(1 + n)(1 + et) + (−1 + n)α

)2

(
(1 + n)(1 + et) + α(1− n)

)2
)

.

(18)

From Equation (18), it is transparent that Dt is positive for 0 < α ≤ 1 and n > 1, is negative for
−1 ≤ α < 0 and n > 1. It is zero when α = 0 and n = 1.

Figure 2 presents plots of the Jt

(
Y[r:n]

)
for a sample of size n = 50 to the first order

statistic r = 1 with FGM bivariate logistic distribution.
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α = -0.9

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0

t

J
t
(Y
)

(a) α = −0.9

α = 0.9

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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-0.8
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t

J
t
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(b) α = 0.9

Figure 2. Plots of Jt

(
Y[r:n]

)
for n = 50, r = 1 for the FGM bivariate logistic distribution.

Figure 2 indicates that the values of Jt

(
Y[r:n]

)
are negative and its value depends on

the parameter α.

Corollary 1. Let (X1, Y1), (X2, Y2), . . . . . . , (Xn, Yn) be a bivariate sample of size n coming from
FGM family. Then, the past extropy for concomitant of rth order statistic for α > 0 is same as past
extropy for concomitant of (n− r + 1)th order statistic with α < 0.

Proof. Let us denote γr as γr,n,α and Jt(Y[r:n:α]) be the past extropy of concomitant of rth
order statistic for any α. From the definition of γr it is clear that

γr,n,α = γn−2r+1,n,−α.

Thus, Jt(Y[r:n:α]) = Jt(Y[n−2r+1:n:−α]). Hence the corollary is attained.

Corollary 2. Let (X1, Y1), (X2, Y2), . . . . . . , (Xn, Yn) be a bivariate sample of size n coming from
FGM family. If n is odd, then the concomitant of median of X observations in the case of past extropy
measure is same as past extropy of Y.

Proof. In the case, if n is odd the concomitant of median of X observations is Y[ n+1
2 :n]. Again,

we can say that γr = 0 for r = n+1
2 and n is odd. Thus, Jt(Y[ n+1

2 :n]) = Jt(Y). The corollary is
thus obtained.

Theorem 1. Let Y[r:n] be the concomitant of rth order statistic arising from FGM family, then the
upper bound for past extropy of Y[r:n] is given by

Jt(Y[r:n]) ≤
2γr(1 + γr)

FY(t)
E[Ut fY(F−1

Y (Ut))],

where Ut ∈ U(0, FY(t)).

Proof. Since Jt(Y) ≤ 0, the inequality can be obtained directly from Proposition 1.

Theorem 2. Let κ f = E
(

f 2
Y(Y)|Y < t

)
. If Y[r:n] is the concomitant of rth order statistic obtained

from FGM family, the lower bound for Jt(Y[r:n]) is

Jt(Y[r:n]) ≥ −
1

2G2
Y[r:n]

(t)
κ

1
2
f

[
(1 + γr)

5 − (1 + γr − 2FY(t)γr)

10γr

]1/2

.

Proof. From Equations (7) and (10) we have
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Jt(Y[r:n]) = −
1

2G2
Y[r:n]

(t)

∫ t

0
f 2
Y(y)[1 + γr(1− 2FY(y))]

2 dy

= − 1
2G2

Y[r:n]
(t)

∫ FY(t)

0
fY(F−1

Y (u))(1 + γr(1− 2u))2du.

Use Cauchy-Schwartz inequality to get

Jt(Y[r:n]) ≥−
1

2G2
Y[r:n]

(t)

[∫ FY(t)

0
f 2
Y(F−1

Y (u))du
] 1

2
[∫ FY(t)

0
(1 + γr(1− 2u))4du

] 1
2

= − 1
2G2

Y[r:n]
(t)

κ
1
2
f

[
(1 + γr)

5 − (1 + γr − 2FY(t)γr)
5

10γr

]1/2

,

which completes the proof.

3. Cumulative Past Extropy of Concomitants of Order Statistics in FGM Family

In this section, we introduce the concept of CPE for concomitant of rth order statistic.
The CPE can be defined only for the rvs that have bounded range of possible values since it
gives negative infinity for any rv with unbounded support. So, we limit the definition of
CPE to bounded rvs. For a non-negative rv X with bounded range of values (0, b), the CPE
is given by

Jt(X) = −1
2

∫ b

0
F2

X(x)dx.

Proposition 2. Let (Xi, Yi), i = 1, 2, . . . , n be a bivariate random sample from FGM family. Then,
the concomitant of Y[r:n] in the case of CPE is given by

Jt(Y[r:n]) = (1 + γr)
2
Jt(Y) + γr(1 + γr)E

(
U3

fY(F−1
Y (U))

)
− γ2

r
2

E

(
U4

fY(F−1
Y (U))

)
, (19)

where U is a rv uniformly distributed on (0, 1), Jt(Y) is the CPE of rv Y, and γr = α n−2r+1
n+1 .

Proof. For a rv Y bounded on (0, b) and from the definition of Jt one may have

Jt(Y[r:n]) = −
1
2

∫ b

0
G2

Y[r:n]
(y)dy

= −1
2

∫ b

0
F2

Y(y)

[
1 + γr(1− FY(y))

]2

dy

= −1
2

∫ b

0
F2

Y(y)

[
1 + 2γr(1− FY(y)) + γ2

r (1− 2FY(y) + F2
Y(y))

]
dy

= −1
2

[
(1 + γr)

2
∫ b

0
F2

Y(y)dy− 2γr(1 + γr)
∫ b

0
F3

Y(y) + γ2
r

∫ b

0
F4

Y(y)dy

]

= − (1 + γr)2

2

∫ 1

0

u2

fY(F−1
Y (u))

du + γr(1 + γr)
∫ 1

0

u3

fY(F−1
Y (u))

du

− γ2
r

2

∫ 1

0

u4

fY(F−1
Y (u))

du

= (1 + γr)
2
Jt(Y) + γr(1 + γr)E

(
U3

fY(F−1
Y (U))

)
− γ2

r
2

E

(
U4

fY(F−1
Y (U))

)
.
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Hence, attained the result.

Remark 3. In Equation (19), when α = 0 then γr = 0, which implies that Jt(Y[r:n]) = Jt(Y).

Remark 4. The CPE of concomitants of the 1st and nth OS, respectively, are given by

Jt(Y[1:n]) =

[
(1 + Cn,α)

2
Jt(Y) + Cn,α(1 + Cn,α)E

(
U3

fY(F−1
Y (U))

)
−

C2
n,α

2
E

(
U4

fY(F−1
Y (U))

)]
,

and

Jt(Y[n:n]) =

[
(1− Cn,α)

2
Jt(Y)− Cn,α(1− Cn,α)E

(
U3

fY(F−1
Y (U))

)
−

C2
n,α

2
E

(
U4

fY(F−1
Y (U))

)]
,

where U ∈ U(0, 1) and Cn,α = α n−1
n+1 .

Example 3. For FGM bivariate uniform distribution with cdf given by

F(x, y) =
x
θ1

y
θ2

[
1 + α

(
1− x

θ1

)(
1− y

θ2

)]
,

where 0 < θ1 < 1, 0 < θ2 < 1 and −1 ≤ α ≤ 1, the expression for Jt(Y[r:n]) with parameters
θ1 = θ2 = 1 is

Jt(Y[r:n]) = −
1
2

[
γ2

r + 5γr + 10
30

]
.

Figure 3 presents plots of Jt

(
Y[r:n]

)
for sample sizes n = 50, 150 selected from FGM bivariate

uniform distribution to different OS r = 1, 5, 10, 15, 25, 30, 40, 50.

r = 1

r = 5

r = 10

r = 15

r = 25

r = 30

r = 40

r = 50

-1.0 -0.5 0.0 0.5 1.0

-0.25

-0.20

-0.15

-0.10

α


t
(Y
)

(a) n = 50

r = 1

r = 5

r = 10

r = 15

r = 25

r = 30

r = 40

r = 50

-1.0 -0.5 0.0 0.5 1.0

-0.25

-0.20

-0.15

-0.10

α


t
(Y
)

(b) n = 150

Figure 3. Plots of Jt

(
Y[r:n]

)
for various selections of r based on the FGM bivariate uniform distribution.

Again, from Figure 3 it is obvious that the values of Jt

(
Y[r:n]

)
are negative and the shape of

the Jt

(
Y[r:n]

)
depends on the sample size and the rth order statistic. Let βt be the difference between

concomitant of nth order statistic and concomitant of 1st order statistic. Then,

βt =
α

6

(
1− n
1 + n

)
,

which is positive, negative or zero whenever 0 < α ≤ 1 and n > 1, −1 ≤ α < 0 and n > 1 or
α = 0 and n = 1, respectively.
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Corollary 3. For a bivariate sample from FGM family, if n is odd then the CPE for concomitant of
median of X observations is same as CPE of rv Y.

Corollary 4. For a bivariate sample obtained from FGM family, the CPE for concomitant of rth
order statistic for α > 0 is same as CPE of (n− r + 1)th order statistic for α < 0.

Theorem 3. For a bivariate sample (Xi, Yi), i = 1, 2, . . . , n, lower bound for Jt(Y[r:n]) is given by

Jt(Y[r:n]) ≥ −
1
2

[
1 + 2γ2

r +
γ4

r
5

] 1
2
[

E

(
U4

f 2
Y(F−1

Y (U))

)] 1
2

,

where U ∈ U(0, 1).

Proof.

Jt(Y[r:n]) = −
1
2

∫ b

0
G2

Y[r:n]
(y)dy

= −1
2

∫ b

0
F2

Y(y)

[
1 + γr(1− FY(y))

]2

dy

= −1
2

∫ 1

0

u2

fY(F−1
Y (u))

[
1 + γr(1− FY(y))

]2

du

By using Cauchy-Schwartz inequality, we get

Jt(Y[r:n]) ≥−
1
2

[∫ 1

0
(1 + γr(1− u))4

] 1
2
[∫ 1

0

u4

f 2
Y(F−1

Y (u))

] 1
2

= −1
2

[
1 + 2γ2

r +
γ4

r
5

] 1
2
[

E

(
U4

f 2
Y(F−1

Y (U))

)] 1
2

.

Hence the proof is attained.

4. Dynamic Survival Past Extropy for Concomitants of Order Statistics in FGM Family

Here, we derive the expression for measures of DSPE for concomitant of rth or-
der statistic.

Proposition 3. Let (X1, Y1), (X2, Y2), . . . . . . , (Xn, Yn) be a bivariate sample of size n from FGM
family. The concomitant of rth order statistic for DSPE measure, JDSPt(Y[r:n]) is

JDSPt(Y[r:n]) =

(
1

1 + γr(1− FY(t))

)2
[
(1 + γr)

2 JDSPt(Y)

+
γr(1 + γr)

FY(t)
E

(
U3

t

fY(F−1
Y (Ut))

)
− γ2

r
2FY(t)

E

(
U4

t

fY(F−1
Y (Ut))

)]
,

(20)

where JDSPt(Y) is DSPE of rv Y, Ut ∈ U(0, FY(t)) and γr = α n−2r+1
n+1 .

Proof. To prove the proposition, from Equation (3) we have

JDSPt(Y[r:n]) = −
1
2

∫ t

0

G2
Y[r:n]

(y)

G2
Y[r:n]

(t)
dy,
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where is G2
Y[r:n]

(y) defined in Equation (8). Then,

JDSPt(Y[r:n]) = −
1
2

∫ t

0

F2
Y(y)[1 + γr(1− FY(y))]

2

G2
Y[r:n]

(t)
dy

= −1
2

∫ t

0

F2
Y(y)[1 + 2γr(1− FY(y)) + γ2

r (1− 2FY(y) + F2
Y(y))]

G2
Y[r:n]

(t)
dy.

Rearranging, we get

JDSPt (Y[r:n]) = −
1

2G2
Y[r:n]

(t)

[
(1 + γr)

2
∫ t

0
F2

Y(y)dy− 2γr(1 + γr)
∫ t

0
F3

Y(y) + γ2
r

∫ t

0
F4

Y(y)dy

]
.

Using Equation (8), this equation will be

JDSPt(Y[r:n]) =−
1
2

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)2

F2
Y(t)

∫ t

0
F2

Y(y)dy

− 2γr(1 + γr)

F2
Y(t)

∫ t

0
F3

Y(y)dy +
γ2

r

F2
Y(t)

∫ t

0
F4

Y(y)dy

]

=

(
1

1 + γr(1− FY(t))

)2[
− (1 + γr)2

2F2
Y(t)

∫ FY(t)

0

u2

fY(F−1
Y (u))

du

+
γr(1 + γr)

F2
Y(t)

∫ FY(t)

0

u3

fY(F−1
Y (u))

du− γ2
r

2F2
Y(t)

∫ FY(t)

0

u4

fY(F−1
Y (u))

du

]

=

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)

2 JDSPt(Y)

+
γr(1 + γr)

F2
Y(t)

∫ FY(t)

0

u3

fY(F−1
Y (u))

du− γ2
r

2F2
Y(t)

∫ FY(t)

0

u4

fY(F−1
Y (u))

du

]

=

(
1

1 + γr(1− FY(t))

)2[
(1 + γr)

2 JDSPt(Y)

+
γr(1 + γr)

FY(t)
E

(
U3

t

fY(F−1
Y (Ut))

)
− γ2

r
2FY(t)

E

(
U4

t

fY(F−1
Y (Ut))

)]
.

Hence, the result is attained.

Remark 5. When α = 0 in Equation (20), then γr = 0, which implies JDSPt(Y[r:n]) = JDSPt(Y).

Remark 6. The concomitants of 1st and nth OS of a random sample of size n are obtained using
r = 1, r = n. Then, the DSPE measure for concomitants of the corresponding OS, respectively are

JDSPt(Y[1:n]) =

(
1

1 + Cn,α(1− FY(t))

)2
[
(1 + Cn,α)

2 JDSPt(Y)

+
Cn,α(1 + Cn,α)

FY(t)
E

(
U3

t

fY(F−1
Y (Ut))

)
−

C2
n,α

2FY(t)
E

(
U4

t

fY(F−1
Y (Ut))

)]
,

(21)
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and

JDSPt(Y[n:n]) =

(
1

1− Cn,α(1− FY(t))

)2
[
(1− Cn,α)

2 JDSPt(Y)

−Cn,α(1− Cn,α)

FY(t)
E

(
U3

t

fY(F−1
Y (Ut))

)
−

C2
n,α

2FY(t)
E

(
U4

t

fY(F−1
Y (Ut))

)]
,

(22)

where Ut is a rv distributed uniformly on (0, FY(t)) and Cn,α = α n−1
n+1 .

Example 4. If (X, Y) is a bivariate sample from FGM bivariate exponential distribution with the
cdf given in Equation (13), then

JDSPt(Y[r:n]) =

6e
2t
θ2

(
θ2 − 4e

t
θ2 θ2 + e

2t
θ2 (3θ2 − 2t)

)
−
(
−1 + e

t
θ2

)3
θ2γr

(
3γr + e

t
θ2 (8 + γr)

)
24
(
−1 + e

t
θ2

)2(
e

t
θ2 + γr

)2 . (23)

Figure 4 presents some plots of JDSPt

(
Y[r:n]

)
for a sample of size n = 50, r = 1 selected from FGM

bivariate exponential distribution with α = −1, 1.

θ2 = 1

θ2 = 2

θ2 = 3

θ2 = 4

θ2 = 5

θ2 = 6

θ2 = 7

θ2 = 8
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-6

-5

-4

-3

-2

-1

0

t

J
D
S
P
t(
Y
)

(a) α = −1

θ2 = 1

θ2 = 2

θ2 = 3

θ2 = 4

θ2 = 5

θ2 = 6

θ2 = 7

θ2 = 8
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-7
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-4
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-1

0

t

J
D
S
P
t(
Y
)

(b) α = 1

Figure 4. Plots of JDSPt

(
Y[r:n]

)
for α = −1, 1 based on the FGM bivariate exponential distribution.

From Figure 4 it is obvious that the values of JDSPt

(
Y[r:n]

)
are negative and its shape depends

on the parameter values α = −1, 1. Let δt be the difference between DSPE of concomitants of nth
and 1st OS. It is given by

δt =
e

t
θ2 (−1 + n2)α

6
(
−1 + e

t
θ2

)2(
e

t
θ2 (1 + n) + (−1 + n)α

)2(
e

t
θ2 (1 + n) + (1− n)α

)2

(
4e

5t
θ2 (1 + n)2θ2

− (1 + n)2α2θ2 + 4e
t

θ2 (−1 + n)2α2θ2 + 4e
3t
θ2

(
−3(1 + n)2 + (−1 + n)2α2

)
θ2

− 2e
2t
θ2

(
−(1 + n)2 + 3(−1 + n)2α2

)
θ2 − e

4t
θ2

(
12(1 + n)2t +

(
−6(1 + n)2 + (−1 + n)2α2

)
θ2

))
.

Hence, δt is positive when 0 < α ≤ 1 and n > 1, is negative when −1 ≤ α < 0 and n > 1, is zero
when α = 0 and n = 1.

Example 5. Let the bivariate sample is selected from FGM bivariate logistic distribution with cdf
given in Equation (16), the DSPE of Y[r:n] is given by
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JDSPt (Y[r:n]) = −
1

24(1 + et)3
(

1 +
(

1− 1
1+e−t

)
γr

)2

((
1 + e−t)2(−6(1 + e−t)

)2
(
−1 + log(4)

+ et(1 + log(4))− 2(1 + et)log(1 + et)

)
+ (−1 + et)γr

(
3 + γr + 4et(3 + γr) + e2t(9 + γr)

))
.

Next,

δt =
e−2t(1 + et)(−1 + n2)α(

12
(

1 + n + et(1 + n) + (−1 + n)α
)2(

1 + n + et(1 + n) + (1− n)α
)2
)[(−15

+ 9e4t(1 + n)2 − α2 + 24log2 + n
(
−30− 15n + 2α2 − nα2 + 24(2 + n)log2

)
+ e3t

(
24− 2α2

+ 24log2 + 2n
(

24 + 12n + 2α2 − nα2 + 12(2 + n)log2
))

+ 3e2t
(

2 + α2

+ 24log2 + n
(

4 + 2n− 2α2 + nα2 + 24(2 + n)log2
))

+ 24et(1 + n)2

(−1 + log8)− 24(1 + et)3(1 + n)2log(1 + et)

)]

is positive for n > 1 when 0 < α ≤ 1, negative in the range −1 ≤ α < 0 for n > 1 and zero when
n = 1 with α = 0.

Corollary 5. For a bivariate sample obtained from FGM family, the DSPE for concomitant of rth
order statistic for α > 0 is same as DSPE of (n− r + 1)th order statistic for α < 0.

Proof. The proof is similar to the proof of Corollary (1). Hence, JDSPt(α)
(Y[r:n]) = JDSPt(−α)

(Y[n−r+1:n]).

Corollary 6. For a bivariate sample from FGM family, if n is odd then the DSPE for concomitant
of median of X observations is same as DSPE of rv Y.

Proof. The proof is similar to the proof of Corollary (2) and hence omitted.

Theorem 4. The upper bound for DSPE of Y[r:n] is given by

JDSPt(Y[r:n]) ≤
γr(1 + γr)

FY(t)
E
[
Ut( fY(F−1

Y (Ut)))
]
,

where Ut ∈ U(0, FY(t)) and Y[r:n] is the concomitant of rth order statistic arising from FGM family.

Proof. Since the DSPE ≤ 0, by using Proposition (3) we can obtain the inequality straightly.
Hence, the theorem is attained.

Theorem 5. If Y[r:n] denotes the concomitant of rth order statistic arising from FGM family, then
the lower bound of DSPE is

JDSPt(Y[r:n]) ≥ −
1
2

(
1

1 + γr(1− FY(t))

)2
[

1
F2

Y(t)
(1 + γr)5 − (−1 + (−1 + FY(t))γr)5

5γr

] 1
2

[
1

FY(t)
E

(
U4

t

f 2
Y(F−1

Y (Ut))

)] 1
2

,

where Ut ∈ U(0, FY(t)).
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Proof. Based on Equation (3), we have

JDSPt(Y[r:n]) = −
1
2

∫ t

0

G2
Y[r:n]

(y)

G2
Y[r:n]

(t)
dy

= −1
2

(
1

F2
Y(t)(1 + γr(1− FY(t)))

)2 ∫ t

0
F2

Y(y)[1 + γr(1− FY(y))]
2dy

= −1
2

(
1

F2
Y(t)(1 + γr(1− FY(t)))

)2 ∫ FY(t)

0

u2((1 + γr(1− u))2

fY(F−1
Y (u))

du.

Using Cauchy-Schwartz inequality to get

JDSPt(Y[r:n]) ≥−
1
2

(
1

(1 + γr(1− FY(t)))

)2
[

1
F2

Y(t)

∫ FY(t)

0

u4

f 2
Y(F−1

Y (u))

] 1
2

[
1

F2
Y(t)

∫ FY(t)

0
(1 + γr(1− u))4

] 1
2

= −1
2

(
1

(1 + γr(1− FY(t)))

)2
[

1
FY(t)

E

(
U4

t

f 2
Y(F−1

Y (Ut))

)] 1
2

[
1

F2
Y(t)

(1 + γr)5 − (−1 + (−1 + FY(t))γr)5

5γr

] 1
2

.

Hence, the theorem is proved.

5. Estimation of CPE for Concomitant of rth Order Statistic

Here, the problem of estimating the CPE of rth order statistic using the empirical CPE
is considered. Let (Xi, Yi) be a sequence obtained from the FGM family. Using Equation (19),
the empirical CPE of Y[r:n] is derived as

Ĵ(Y[r:n]) = −
1
2

[
(1 + γr)

2
∫ ∞

0
F̂2

Y(y)dy− 2γr(1 + γr)
∫ ∞

0
F̂3

Y(y)dy + γ2
r

∫ ∞

0
F̂4

Y(y)dy

]

= −1
2

[
(1 + γr)

2
n−1

∑
i=1

∫ Zi+1

Zi

F̂2
Y(y)dy− 2γr(1 + γr)

n−1

∑
i=1

∫ Zi+1

Zi

F̂3
Y(y)dy

+ γ2
r

n−1

∑
i=1

∫ Zi+1

Zi

F̂4
Y(y)dy

]

= −1
2

[
(1 + γr)

2
n−1

∑
i=1

Ui

(
i
n

)2
− 2γr(1 + γr)

n−1

∑
i=1

Ui

(
i
n

)3
+ γ2

r

n−1

∑
i=1

Ui

(
i
n

)4
]

= −1
2

n−1

∑
i=1

Ui

(
i
n

)2
[
(1 + γr)

2 − 2γr(1 + γr)

(
i
n

)
+ γ2

r

(
i
n

)2
]

= −1
2

n−1

∑
i=1

Ui

(
i
n

)2
[

1 + γr

(
1− i

n

)]2

,

(24)

where Ui = Zi+1 − Zi, i = 1, 2, . . . , n− 1 are the sample spacings based on rv Y.

Example 6. For FGM bivariate uniform distribution, the spacings Ui are independent beta dis-
tributed with parameters 1 and n. Then,



Axioms 2023, 12, 792 15 of 19

E
(
Ĵ(Y[r:n])

)
= − 1

2(n + 1)

n−1

∑
i=1

(
i
n

)2
(

1 + γr

(
1− i

n

))2

, (25)

and

Var
(
Ĵ(Y[r:n])

)
=

n
4(n + 1)2(n + 2)

n−1

∑
i=1

(
i
n

)4
(

1 + γr

(
1− i

n

))4

. (26)

We figured the values of E
(
Ĵ(Y[2:n])

)
and Var

(
Ĵ(Y[2:n])

)
for different sample sizes

n = 5, 15, 25, 50 for α = −1,−0.5, 0.5, 1 in the case of FGM bivariate uniform distribution,
and the results are given in Tables 1 and 2.

Table 1. Values of E
(
Ĵ(Y[2:n])

)
for FGM bivariate uniform distribution with θ1 = θ2 = 1.

n α = −1 α = −0.5 α = 0.5 α = 1

5 −0.0793 −0.0892 −0.1114 −0.1237

15 −0.0914 −0.1140 −0.1549 −0.2080

25 −0.0945 −0.1197 −0.1723 −0.2299

50 −0.0971 −0.1243 −0.1816 −0.2476

Table 2. Values of Var
(
Ĵ(Y[2:n])

)
for FGM bivariate uniform distribution with θ1 = θ2 = 1.

n α = −1 α = −0.5 α = 0.5 α = 1

5 0.0019 0.0023 0.0033 0.0040

15 0.0012 0.0016 0.0029 0.0039

25 0.0008 0.0011 0.0021 0.0029

50 0.0004 0.0006 0.0012 0.0017

The following properties can be attained from Tables 1 and 2:

• For a fixed value of n, the values of E
(
Ĵ(Y[2:n])

)
are decreasing as the values of α

increases, whereas the values of Var
(
Ĵ(Y[2:n])

)
are increasing with α.

• For a fixed α, both the values of E
(
Ĵ(Y[2:n])

)
and Var

(
Ĵ(Y[2:n])

)
are decreasing with

the increasing value of n.
• As n tends to infinity, the value of Var

(
Ĵ(Y[2:n])

)
tends to zero.

6. Simulation

A Monte Carlo simulation study is conducted to validate the above proposed empirical
estimator of CPE. Data is obtained through random generation following the FGM bivariate
uniform distribution with parameter values of θ1 and θ2 set to 1. The study involves varying
values of α to analyze and explore different scenarios using the generated data. Empirical
CPE, theoretical CPE, bias, and mean squared error (MSE) for Y[r:n] are calculated for
different values of sample size n and specific α. These computations are performed at
various OS, allowing for an analysis between empirical and theoretical values while also
assessing bias and accuracy for different scenarios, which are showed in Table 3 and
Figure 5.

From Table 3, it is clear that as the sample size n increases, both the bias and MSE
decrease, and in the case of the MSE, it approaches zero. This trend indicates that the
estimator is performing well in this scenario. The decreasing bias implies that the estimator
tends to be more accurate as the sample size becomes larger. The diminishing MSE suggests
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that the estimator’s predictions are closer to the true values with increasing sample size,
signifying improved estimation accuracy and efficiency.

The following conclusions can be obtained from the Figure 5. They are,

• In all the cases discussed in the figure, both Jt(Y[r:n])and Ĵ(Y[r:n]) behaves alike. Both
the values are almost similar for various values of OS.

• For α < 0, both the theoretical and empirical CPE of Y[r:n] show a decreasing trend as
the value of r increases.

• On the other hand, for α > 0, both the functions Jt(Y[r:n]) and Ĵ(Y[r:n]) exhibit an
increasing pattern as r falls within this range.

Table 3. Theoretical value, Estimated value, bias and MSE of CPE of Y[r:n] for different values of r, α

and n.

r α n Jt(Y[r:n]) Ĵ(Y[r:n]) bias MSE

2

0.2 50 −0.1825 −0.1747 0.0078 0.0005

0.2 100 −0.1832 −0.1782 0.0050 0.0002

0.2 200 −0.1836 −0.1815 0.0020 0.0001

0.5 50 −0.2086 −0.1991 0.0094 0.0005

0.5 100 −0.2105 −0.2064 0.0040 0.0002

0.5 200 −0.2115 −0.2092 0.0022 0.0001

0.8 50 −0.2371 −0.2280 0.0091 0.0005

0.8 100 −0.2405 −0.2360 0.0044 0.0003

0.8 200 −0.2422 −0.2399 0.0023 0.0001

4

0.2 50 −0.1811 −0.1718 0.0093 0.0005

0.2 100 −0.1825 −0.1788 0.0037 0.0002

0.2 200 −0.1832 −0.1807 0.0025 0.0001

0.5 50 −0.2047 −0.1958 0.0089 0.0005

0.5 100 −0.2085 −0.2046 0.0039 0.0002

0.5 200 −0.2105 −0.2081 0.0023 0.0001

0.8 50 −0.2304 −0.2209 0.0095 0.0005

0.8 100 −0.2370 −0.2321 0.0049 0.0003

0.8 200 −0.2405 −0.2378 0.0026 0.0001

10

0.2 50 −0.1770 −0.1678 0.0092 0.0004

0.2 100 −0.1804 −0.1763 0.0041 0.0002

0.2 200 −0.1822 −0.1801 0.0020 0.0001

0.5 50 −0.1935 −0.1851 0.0083 0.0005

0.5 100 −0.2027 −0.1982 0.0045 0.0002

0.5 200 −0.2075 −0.2051 0.0024 0.0001

0.8 50 −0.2111 −0.2034 0.0076 0.0005

0.8 100 −0.2269 −0.2227 0.0042 0.0002

0.8 200 −0.2353 −0.2334 0.0018 0.0001
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Figure 5. CPE of Y[r:n] (red) and empirical CPE of Y[r:n] (blue) in the case of FGM bivariate uniform
distribution for n = 100.

The following conclusions can be obtained from the Figure (5). They are,

• In all the cases discussed in the figure, both Jt(Y[r:n])and Ĵ(Y[r:n]) behaves alike. Both
the values are almost similar for various values of OS.

• For α < 0, both the theoretical and empirical CPE of Y[r:n] show a decreasing trend as
the value of r increases.

Figure 5. CPE of Y[r:n] (red) and empirical CPE of Y[r:n] (blue) in the case of FGM bivariate uniform
distribution for n = 100.

7. Conclusions and Future Works

In this work, we have considered the properties of past extropy, CPE, DSPE for
concomitant of rth order statistic in FGM family. Several properties and bounds related to
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the above three measures for COS are developed. Estimation of CPE has been done using
empirical estimation. The validity of the proposed estimators has been backed through
numerical calculations on FGM uniform distribution and simulation study. From the
simulation study, it can be concluded that the empirical CPE of Y[r:n] exhibits a behavior
similar to the theoretical CPE of Y[r:n]. When α < 0, as r increases, both the theoretical and
empirical CPE of Y[r:n] decrease, whereas for α > 0, both the theoretical and empirical CPE
of Y[r:n] increase with decreasing r in this range. The proposed estimator is considered good
based on its MSE performance. This suggests that the estimator is capable of providing
reliable and satisfactory estimates, making it a favorable choice for the given scenario.

COS play a crucial role in diverse selection processes. One significant application of
COS lies in sampling procedures, including RSS, double sampling, and others. Investigating
the information content of different information measures using these sampling designs in
terms of COS could be a valuable addition to existing literature. To conduct such a study,
COS can be derived from various bivariate families like FGM and Sarmanov.
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