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Abstract: In this paper, we investigate the geometrical axioms of Riemannian submersions in the
context of the η-Ricci–Yamabe soliton (η-RY soliton) with a potential field. We give the categorization
of each fiber of Riemannian submersion as an η-RY soliton, an η-Ricci soliton, and an η-Yamabe soliton.
Additionally, we consider the many circumstances under which a target manifold of Riemannian
submersion is an η-RY soliton, an η-Ricci soliton, an η-Yamabe soliton, or a quasi-Yamabe soliton.
We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential
vector field ω of the soliton is of gradient type =:grad(γ) and provide some examples of an η-RY
soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian
submersion with totally geodesic fibers.
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1. Introduction

Since Riemannian geometry’s inception, the idea of Riemannian immersion has been
the subject of extensive study. In fact, the Riemannian manifolds that were initially intended
to be examined were surfaces embedded in R3 [1].

Initially, Gray and O’Neill were the first to discuss the “dual” concept of Riemannian
submersion and investigated it further. Because of their applications in supergravity,
the theory of relativity, and other physical theories, Riemannian submersions have received
considerable attention in both mathematics and theoretical physics (see [2–7]). Studies on
Riemannian submersion are reported in [8–12].

A soliton, which is related to the geometrical flow of Riemannian (semi-Riemannian)
geometry, is a significant symmetry.

However, the theory of geometric flows has emerged as one of the most important
geometrical theories for illuminating Riemannian geometric structures. The study of
singularities of the flows involves a certain section of solutions when the metric evolves via
dilations and diffeomorphisms because they appear as potential singularity models. They
are frequently referred to as solitons.

In 1988, Hamilton [13] presented the ideas of Ricci flow and Yamabe flow for the first
time. The limit of the solutions for the Ricci flow and the Yamabe flow, respectively, is
shown to be the soliton of Ricci and the soliton of Yamabe. Geometric flow theory, including
the Ricci flow and Yamabe flow, has drawn the attention of many mathematicians over the
past two decades.

Under the term Ricci–Yamabe map, geometers [14] initiated research concerning a
novel geometric flow that is a generalization of the Ricci and Yamabe flows. Ricci–Yamabe
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flow of the type (σ, ρ) is another name for this. The metrics on the Riemannian manifold
defined by Guler and Crasmareanu evolve into the Ricci–Yamabe flow [14].

1
2

∂

∂t
g(t) = −σS(t)− ρ

2
R(t)g(t), g0 = g(0). (1)

An interpolation of solitons between the Ricci and Yamabe soliton is considered in the Ricci–
Bourguignon soliton corresponding to Ricci–Bourguignon flow but it depends on a single
scalar. Ricci–Yamabe flow can either be a Riemannian flow, a semi-Riemannian flow, or a
singular Riemannian flow, depending on the sign of the associated scalars σ and ρ. Such a
range of options may be beneficial in various geometrical or physical models, such as the
general theory of relativity.

Consequently, the Ricci–Yamabe soliton inevitably appears as the limit of the soliton
of the Ricci–Yamabe flow. Ricci–Yamabe solitons are solitons to the Ricci–Yamabe flow that
move only by one parameter group of diffeomorphism and scaling. Specifically, a Ricci–
Yamabe soliton on the Riemannian manifold, (M, g), is a data (g, ω, τ, σ, ρ) satisfying

1
2
Lωg + σS +

(
τ − ρ

2
R
)

g = 0, (2)

where the Ricci tensor is S, the scalar curvature is R, and the Lie-derivative along the
vector field ω is Lω. The manifold (M, g, ω, τ, ν) is referred to as a Ricci–Yamabe shrinker,
expander, or stable soliton depending on the constant τ, whether τ < 0, τ > 0 or τ = 0.

As an extension of Ricci and Yamabe solitons, Equation (2) is referred to as a Ricci–
Yamabe soliton of kind (σ, ρ). We see that the Ricci–Yamabe solitons of kind (σ, 0) and
(0, ρ) are, respectively, the σ-Ricci solitons and the ρ-Yamabe solitons.

The idea of an η-Ricci soliton described in [15], is an evolutionary abstraction of
the Ricci soliton. As a result, we can define the new concept similarly by amending the
expression (2) that explains the type of soliton by a multiple of a specific (0, 2)-tensor field
η ⊗ η. These findings result in a significantly more comprehensive concept, termed an
η-Ricci–Yamabe soliton (briefly an η-RY soliton) of kind (σ, ρ) defined as:

1
2
Lωg + σS +

(
τ − ρ

2
R
)

g + νη ⊗ η = 0, (3)

where ν is a constant. Let us reiterate that η-RY solitons of kinds (σ, 0) or (1, 0), (0, ρ),
or (0, 1)-type are an η-Ricci soliton and an η-Yamabe soliton, respectively. For more infor-
mation about these specific cases, see [16–22].

According to [23], if τ in (3) is replaced with the soliton function, then we may
claim that the manifold (M, g) is an almost η-RY soliton [24]. It is important to note that
they originate from the Ricci–Bourguignon flow and conformal Ricci flow, which Cantino,
Mazzieri and Siddiqi recently examined [25–28]. We refer to (3) as the core equation of an
approximately η-RY soliton in this more extended context.

In [22], the authors proved that the total manifold of a Riemannian submersion admits
a Ricci soliton. In fact, the η-Ricci–Yamabe soliton is a generalization of the η-Ricci soliton
from the proceedings of the η-Yamabe soliton, Yamabe soliton, and Einstein soliton. There-
fore, motivated by the previous studies, in this paper, we discuss Riemannian submersions
in terms of an η-Ricci–Yamabe soliton.

Example 1. Let us look at the instance of an Einstein soliton, which produces solutions to Einstein
flow that are self-similar (for more details see [26]), so that

∂

∂t
g(t) = −2

(
S− R

2
g
)

.

As a result, an Einstein soliton appears as the limit of the Einstein flow solution, such that

Lωg + 2S + (τ − R
2
)g = 0. (4)
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When comparing Equations (3) and (4) in this situation, we find that σ = 1 and ρ = 1, or its
type (1, 1), are RY solitons.

Moreover, we note a useful definition:

Definition 1. A smooth vector field ζ on a Riemannian manifold (N , g) is said to be a conformal
vector field if there exists a smooth function ϕ on N that satisfies [29]

Lζ g = 2ϕg, (5)

where Lζ g is the Lie derivative of ζ with respect to g. If ϕ = 0, then ζ is called a Killing vector field.

2. Riemannian Submersions

We present the additional context for Riemannian submersions (briefly RS) in this part.
Let (N n, g) and (Bm, gB) be two Riemannian manifolds (briefly RS), endowed with

metrics g and gB, wherein dim(N ) > dim(B).
A surjective mapping π : (N , g)→ (B, gB) is called a Riemannian submersion [30] if:
(A1)

dim(B) = Rank(π).

In this instance, π−1(s) = π−1
s is a submanifold N (dim(N ) = t) and is referred to as a

fiber for all s ∈ B, wherein
dim(N )− t = dim(B).

If a vector field on N is always tangent (resp. orthogonal) to fibers, it is said to be vertical
(resp. horizontal). If a vector field P on N is horizontal and π-related to a vector field P∗ on
B, then π∗(Pp) = E∗π(p) is the basis for all s ∈ N and E ∈ B, wherein π∗ is the differential
map of π.

The projections on the vertical distribution Kerπ∗ and the horizontal distribution
Kerπ⊥∗ will be indicated by the symbols V (briefly vdV) and H (briefly hdH), respectively.

The manifold (N , g) is regarded as the total manifold, and the manifold (B, gB) is
regarded as the base manifold, as is customary.
(A2) The size of the horizontal vectors are preserved by π∗.

These requirements are similar to claiming that the differential map of π∗, restricted
to Kerπ⊥∗ , is a linear isometry. We obtain the following information if P and Q are the
fundamental vector fields, connected to PB and QB by π:

1. g(P, Q) = gB(PB , QB) ◦ π,
2. h[P, Q] is the basic vector field π-connected to [PB , QB ],
3. h(∇PQ) is the basic vector field π-connected to ∇BPBQB .

In the case of each vertical vector field {V, [I, J]} is vertical.
O’Neill’s tensors T and A, which are described below:

TIJ = V∇VIHJ + H∇VIVJ, (6)

AIJ = V∇HIHJ + H∇HIVJ (7)

if any vector fields I and J exist on N , where ∇ denotes the Levi–Civita connection of g.
The skew-symmetric operators on the tangent bundle of N that project the vdV and the
hdH are evidently TI and AJ .
If G, K are vertical vector fields on N and P, Q are horizontal vector fields, then we obtain

TGK = TKG, (8)

APQ = −AQP =
1
2

V[P, Q]. (9)
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Alternatively, we discover from (6) and (7)

∇GK = TGK + ∇̂GK, (10)

∇GP = TGP + H∇GP, (11)

∇PG = APG + V∇PG, (12)

∇PQ = H∇PQ +APQ, (13)

wherein ∇̂GK = V∇GK. Additionally, we have

H∇GP = APG

where P is basic. It is not hard to see that A acts on the hdH and estimates of the resistance
to the integrability of this distribution while T operates on the fibers as the second basic
form. We refer to the book [8] as well as the paper by O’Neill [30] for more information
about the RS.

3. Characteristics of Curvatures on Riemannian Submersions

The following useful Riemannian submersion (RS) curvature properties are covered
in this section:

Proposition 1. For an RS π, the Riemannian curvatures of the total manifold, the base manifold,
and each fiber of π denoted by RT , RB and R̂, respectively, then we have

RT(I, J, G, H) = R̂(I, J, G, H) + g(TJH, TIG)− g(TIH, TJG), (14)

RT(P, Q, R, L) = RB(PB , QB , RB , LB) ◦ π + 2g(APQ,ARL) (15)

−g(AQR,APL) + g(APR,ARL).

for any I, J, G, H ∈ ΓV(N ) and P, Q, R, L ∈ ΓH(N ).

Proposition 2. For an RS π, Ricci curvatures of (N , g), (B, gB) and any fiber of π are denoted
by S, SN and Ŝ, respectively. Then, we have

S(I, J) = Ŝ(I, J) + g(N, TIJ)−
n

∑
i=1

g
((
∇PiT

)
(I, J), Pi

)
− g
(
AP1I,AP1 J

)
(16)

S(P, Q) = SB(PB , QB) ◦ π − 1
2
{

g(∇PN, Q) + g(∇QN, P)
}

, (17)

+2
n

∑
i=1

g(APPi,AQPi) +
r

∑
j=1

g(TPi P, TPi Q),

S(I, P) = −g(∇IN, P) + ∑
j

g((∇IiT )(Ij, E), P) (18)

−
n

∑
i=1

{
g((∇PiA)(Pi, P), I) + 2g(APi P, TIPi)

}
where {Ii} and {Pi} are the orthonormal basis of vdV and hdH, respectively, and I, E ∈ ΓV(N ),
P, Q ∈ ΓH(N ).

Using (16) and (17), we derive the following:
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Proposition 3. In an RS π , the vertical scalar curvature RV and the horizontal scalar curvature
RH are provided as

RV = ∑s
k=1S(Ik, Ik) = ∑s

k=1Ŝ(Ik, Ik) + g(N, TIk Ik)

−
n

∑
i=1

d((∇PiT )(Ik, Ik), Pi)− g(APi Ik,APi Ik), (19)

RH =
r

∑
i=1

S(Pi, Pi) =
n

∑
i=1

{
SB(PBi , PBi ) ◦ π − 1

2
{

g(∇Pi N, Pi) + g(∇Pi N, Pi)
}

,

+2
n

∑
i=1

g(APPi,AQPi) +
r

∑
j=1

g(TPi P, TPi Q). (20)

Now, Equations (19) and (20) entail that

RV = R̂ + ‖N‖2 − div(N)− ‖A‖2, (21)

RH = (RB ◦ π) + ‖T ‖2 + 2‖A‖2 − div(N), (22)

Adopting (21) and (22), we turn up the scalar curvature R of the base manifold (B, gB)

R = R̂ + (RB ◦ π) + ‖N‖2 + ‖A‖2 + ‖T ‖2 − 2div(N). (23)

In addition, the mean curvature vector field H for every fiber of RS is given by rH = N,
where N is a horizontal vector field, such that

N =
r

∑
j=1
TIj Ij. (24)

Additionally, any fiber π dimension is indicated by the prefix r, and the orthonormal basis
for vdV is {E1, E2, · · · , Er}. We emphasize that all fibers of RS must be minimal, if, and
only if, the horizontal vector field N vanishes. From (24), we obtain

g(∇Z N, P) =
r

∑
j=1

g((∇ZT )(Ij, Ij), P) (25)

for any Z ∈ Γ(TN ) and P ∈ ΓH(N ).
Any horizontal vector field P divergence on ΓH(N ), and denoted by div(P), is deter-

mined by

div(P) =
n

∑
i=1

g(∇Pi P, Pi), (26)

where the orthonormal basis of the horizontal space ΓH(N ) is {P1, P2, · · · , Pn}. Thus,
taking into account (26), we have

div(N) =
n

∑
i=1

r

∑
j=1

g(∇PiT )(Ij, Ij), Pi). (27)

4. η-Ricci–Yamabe Solitons in Riemannian Submersions

This section discusses the η-RY soliton of kind- (σ, ρ) on RS π : (N , g) −→ (B, gB)
from Riemannian manifolds and the characteristics of fiber of such RS with target manifold
(B, gB). Throughout the study, RS stands for a Riemannian submersion between Rieman-
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nian manifolds. We discover the following conclusions as a result of Equations (10) to (13)
in the case of an RS:

Theorem 1. If π : (N , g) −→ (B, gB) is an RS. Then, the
1. vdV is parallel with respect to the connection ∇, if the horizontal components TIJ and API are
eliminated, identically.
2. hdH is parallel with respect to the connection ∇, if the vertical components TIP and APQ are
eliminated, identically,
for any P, Q ∈ ΓH(N ) and I, J ∈ ΓV(N ).

Since (N , g) is an η-RY soliton, then, by (3), we find

2σS(I, J) + (2τ − ρR)g(I, J) + 2νη(I)η(J) + (Lωg)(I, J) = 0 (28)

for each I, I ∈ ΓV(N ). Adopting (16), we have

2σŜ(I, J) + g(N, TIJ) +
{

g(∇Iω, J) + g(∇Jω, I)
}

(29)

−
n

∑
i=1

g((∇PtT )(I, F), Pi)− g(APt I,APt J) + (2τ − ρR)g(I, J) + 2vη(I)η(J) = 0

wherein∇ is a Levi–Civita connection onN and {Pi} denotes an orthonormal basis of the
hdH. The following equation is then obtained by using Theorem 1, the Equations (7) and (10),

2σŜ(I, J) + [d̂(∇̂Iω, J) + ĝ(∇̂Iω, I)] (30)

+(2τ − ρ ˆR|V)ĝ(I, J) + 2νη(I)η(J) = 0,

for every I, J ∈ ΓV(N ). Using (21), we find

2σŜ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)] (31)

+(2τ − ρR̂ + ‖N‖2 − ‖A‖2 − div(N))ĝ(I, J) + 2νη(I)η(J) = 0.

Defining R = R̂ + ‖N‖2 − ‖A‖2 − div(N), then, the Equation (31) follows;

2σŜ(I, J) + (2τ − ρR)ĝ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)] + 2νη(I)η(J) = 0. (32)

Let us mention here the “vertical potential vector field” (in brief VPVF) and the “horizontal
potential vector field” (HPVF). Hence, we generate the following results:

Theorem 2. Let (N , g, ω, τ, ν, σ, ρ) be an η-RY soliton of kind-(σ, ρ) with a VPVF ω and π be
an RS from the Riemannian manifolds. If the vdV is parallel, then every fiber in an RS is an η-RY
soliton.

Remark 1. Now, for σ = 1, ρ = 0 and ν 6= 0, then, from (30), we find

2Ŝ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Iω, J)] + 2τĝ(I, J) + 2νη(I)η(J) = 0. (33)

Therefore, one can obtain the following

Theorem 3. Let (N , g, ω, τ, ν, σ) be an η-Ricci soliton of kind-(1, 0) with VPVF ω and π be a
RS. If the vdV is parallel, then every fiber in an RS is an η-Ricci soliton.

Remark 2. Next, setting σ = 0, ρ = 1 and ν 6= 0, so (30) entails that

[ĝ(∇̂Iω, J) + ĝ(∇̂Iω, J)] + (2τ − R)ĝ(I, J) + 2νη(I)η(J) = 0, (34)
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Therefore, one can obtain the following outcome:

Theorem 4. Let (N , g, ω, τ, ν, ρ) be an η-RY soliton of kind-(0, 1) with a VPVF ω and π be a
RS. If the vdV is parallel, then every fiber in an RS is a η-Yamabe soliton.

So, if the total space (N , g) of RS π : (N , g) −→ (B, gB) admits, an η-RY soliton of
kind-(σ, ρ), now, in view of (3) and (16), we obtain

{
g(∇Iω, J) + g(∇Jω, I)

}
+ 2σŜ(I, J) +

r

∑
j=1

g(TIj Ij, TIJ) (35)

−
n

∑
i=1

d((∇PiT )(I, J), Pi)− g(APi I,APi J) + (2τ − ρR̂)d̂(I, J) + 2νη(I)η(J) = 0

where I, J ∈ ΓV(N ). In addition, an η-RY soliton (N , g, ω, τ, ν) of kind- (σ, ρ) admits totally
umbilical fibers and adopting (10) in (35), we obtain

{
g(∇̂Iω, G) + g(∇̂Gω, I)

}
+ 2σŜ(I, G) +

r

∑
j=1

g(TIj Ij, TIG) (36)

−
n

∑
i=1

{
(∇Pi g)(I, G)g(K, Pi)− g(∇Pi K, Pi)ĝ(I, G)

}
−

n

∑
i=1

g(APi I,APi G) + (2τ − ρR|H)ĝ(I, G) + 2νη(I)η(G) = 0.

Since with integrable hdH, we derive,

(Lω ĝ)(I, G) + 2σŜ(I, G)−
n

∑
i=1

g(∇Pi K, Pi)ĝ(I, G) (37)

+r‖W‖2 ĝ(I, G) + (2τ − ρR̂)ĝ(I, G) + 2νη(I)η(G) = 0

wherein K is the mean curvature vector of any fiber of π. By (26), we derive

(Lω ĝ)(I, G) + 2σŜ(I, G) + [2τ − ρ(R̂− div(N) + r‖N‖2]ĝ(I, G) + 2νη(I)η(G) = 0. (38)

We observe, that every fiber for π is an almost η-RY soliton. As a result, one can state the
following outcome:

Theorem 5. If (N , g, ω, τ, ν, σ, ρ) be an η-RY soliton of kind-(σ, ρ) with a VPF ω and π be an
RS with totally umbilical fibers and the hdH is integrable, then every fiber in an RS is an almost
η-RY soliton.

Furthermore, the following results are obtained:

Theorem 6. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(1, 0) with a VPF, ω and π are an
RS with totally umbilical fibers, and the hdH is integrable, then every fiber in a RS is an almost
η-Ricci soliton.

Proof. Fix σ = 1, ρ = 0, ν 6= 0 and from (38) we derive the required outcomes.

Theorem 7. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(0, 1) with a VPF ω and π is an
RS with totally umbilical fibers and the hdH is integrable, then every fiber in an RS is an almost
η-quasi Yamabe soliton.

Proof. Putting σ = 0, ρ = 1, ν 6= 0 and using (38), we gain the following:
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Assuming once more the Theorem 5, we arrive at the following corollaries:

Corollary 1. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) and π is an RS, and the hdH
is integrable, and if every fiber of π is totally umbilical and admits constant mean curvature, then
any fiber in RS is an almost η-RY soliton,

Corollary 2. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) and π is an RS, such that
the hdH is integrable, and if every fiber of π is totally geodesic, then any fiber of an RS is an almost
η-RY soliton,

Remark 3. In light of Corollaries 1 and 2, we can derive identical results for an almost η-Ricci
soliton and an almost η-quasi Yamabe soliton.

Next, we obtain the following:

Theorem 8. If (N , g, Z, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) with a VPF Z ∈ Γ(TM) and
π is an RS and the hdH is parallel, then the following holds:

1. (B, gB) is an η-Einstein if Z is a VVF,
2. (B, gB) is an η-RY soliton with VPF ZB if U is HVF, such that π∗Z = ZB .

Proof. As far as (N , g), the total space of RS π admits an η-RY soliton of kind- (σ, ρ) with
a VPF Z ∈ Γ(TN ); then, utilizing (3) and (17), we gain

[g(∇PU, Q) + g(∇QU, P)] + 2σSB(PB,QB) ◦ π − (d(∇PN,Q) + d(∇QN,P)) (39)

+2
n

∑
i=1

d(APPi,AQPi) +
r

∑
j=1

g(TIj P, TIj Q) + (2τ − ρR)g(P, Q) + 2νη(P)η(Q) = 0

wherein PB and QB are π-connected to P and Q, respectively, for any P, Q ∈ ΓH(N ).
Utilizing Theorems (1) to (39), we derive

[g(∇PZ, Q) + g(∇QZ, P)] + 2σSB(PB , QB) ◦ π (40)

+(2τ − ρR)g(P, Q) + 2νη(P)η(Q) = 0.

1. If Z is a VVF, from (12), it follows

[g(APZ, Q) + g(AQZ, P)] + 2σSB(PB , QB) ◦ π (41)

+(2τ − ρR|V )g(P, Q) + 2νη(P)η(Q) = 0.

Since H is parallel, we obtain

SB(PB , QB) ◦ π = ag(P, Q) + bη(P)η(Q) = 0. (42)

This proves that (B, gB) is an η-Einstein, wherein a = −(τ − R|V
2 ) and b = −ν.

2. If Z is a horizontal vector field, from (40), we obtain

(LZg)(P, Q) + 2σSB(PB , QB) ◦ π + (2τ − ρRH)g(P, Q) + 2νη(P)η(Q) = 0. (43)

It is observed that the total space (B, gB) is an η-RY soliton with the PVF EB lying horizontally.

Now, from (43) and assuming that the vector field Z is horizontal, we can state the
following:
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Theorem 9. Let (N , g, Z, τ, ν, ρ) be an η-RY soliton of kind-(0, ρ), which admits the PVF Z ∈
Γ(TN ), and π be an RS. If the hdH is parallel and the vector field Z is horizontal, then (B, gB) is
an η-quasi-Yamabe soliton with HPVF PB , such that

(LZg)(P, Q) + (2τ − ρ
{
(RN ◦ π) + ‖T ‖2 + 2‖A‖2 − div(N)

}
)g(P, Q) + 2νη(P)η(Q) = 0. (44)

Once more combining Theorem (1) and (17), we arrive at the following result:

Lemma 1. If (N , g, ζ, τ, ν, σ, ρ) is an η-RY soliton on RS π that admits HPVF ζ, such that H is
parallel, then the vector field N on hdH is Killing.

Since (N , g, ζ, τ, ν) is an η-RY soliton of kind-(σ, ρ), and again using (17) in (3), we
find that

(Lζ g)(P, Q) + 2σSB(PB , QB) ◦ π − {g(∇PN, Q) + g(∇QN,P)} (45)

+2 ∑
i

g(APPi,AQPi) + ∑
j

g(TZj P, TZj Q) + (2τ − ρR|H)g(P, Q) + 2νη(P)η(Q) = 0.

For any P, Q ∈ ΓH(N ), where {Pi} denotes an orthonormal basis of H. Equation (45) is
derived from Theorem 1 as follows:

(Lζ d)(P ,Q) + 2σSB(PB ,QB) ◦ π + (2τ − ρR|H)d(P ,Q) + 2νη(P)η(Q) = 0. (46)

We may determine that ζ is a conformal Killing vector field (CKVF) because the Riemannian
manifold (B, dN ) is an η-Einstein. As a result, we can state the following outcome:

Theorem 10. Let (B, d, ζ, τ, ν, σ, ρ) be an η-RY soliton of kind (σ, ρ) on RS to an η-Einstein
which admits HPVF ζ, such that hdH is parallel. Then, the vector field ζ on hdH is CKVF.

5. Examples

Example 2. Let N 6 = {(θ1, θ2, θ3, θ4, θ5, θ6)|θ6 6= 0} be a 6-dimensional differentiable manifold
where (θi) signifies the standard coordinates of a point in R6, and i = 1, 2, 3, 4, 5, 6.

Let
δ1 = ∂θ1, δ2 = ∂θ2, δ3 = ∂θ3,

δ4 = ∂θ4, δ5 = ∂θ5, δ6 = ∂θ6

be the basis for the tangent space T(N 6) since it consists of a set of linearly independent
vector fields at each point of the manifoldN 6. A definite positive metric d onN 6 is defined
as follows: with i, j = 1, 2, 3, 4, 5, 6, and it is defined as

d =
6

∑
i.j=1

dxθi ⊗ dθj.

Let γ be a 1-form such that γ(U) = d(U, P) where δ]6 = P. Thus, (N 6, d) is a Riemannian
manifold. In addition, ∇̄ is the Levi–Civita connection with respect to d. Then, we have

[δ1, δ2] = 0, [δ1, δ6] = δ1, [δ2, δ6] = δ2, [δ3, δ6] = δ3,

[δ4, δ6] = δ4, [δ5, δ6] = δ6, [δi, δj] = 0,
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where 1 ≤ i 6= j ≤ 5.
The induced connection ∇̂ for the metric ĝ is described as

2g(∇̂UV,W) = Ug(V, W) + Vg(W, U)−Wg(U, V)

− g(U, [V, W])− g(V, [U, W]) + g(W, [U, V]),

where the metric g corresponds to the Levi–Civita connection denoted by the symbol ∇.
The following equations are obtained by combining Koszul’s formula with (10).

∇̂δ1 δ1 = δ6, ∇̂δ2 δ2 = δ6, ∇̂δ3 δ3 = δ6, ∇̂δ4 δ4 = δ6, ∇̂δ5 δ5 = δ6 (47)

∇̂δ6 δ6 = 0, δ̂δ6 δi = 0, ∇̂δi δ6 = δi, 1 ≤ i ≤ 5

wherein 1 ≤ i, j ≤ 5, we have ∇̂δi δi = 0.
The non-vanishing components of R̂, Ŝ, and R̂ of the fiber may now be computed

from Equations (14) and (47).

R̂(δ1, δ2)δ1 = δ2, R̂(δ1, δ2)δ2 = −δ1, R̂(δ1, δ3)δ1 = −δ3, R̂(δ1, δ3)δ3 = δ1 (48)

R̂(δ1, δ4)δ1 = −δ4, R̂(δ1, δ4)δ4 = δ1, R̂(δ1, δδ5)δ1 = −δ5, R̂(δ1, δ5)δ5 = δ1

R̂(δ1, δ6)δ1 = −δ6, R̂(δ1, δ6)δ6 = −δ1, R̂(δ2, δ3)δ2 = −δ3, R̂(δ2, δ3)δ3 = δ2

R̂(δ2, δ4)δ2 = δ4, R̂(δ2, δ4)δ4 = −δ2, R̂(δ2, δ5)δ2 = δ5, R̂(δ2, δ5)δ5 = −δδ2

R̂(δ2, δ6)δ2 = δ6, R̂(δ2, δ6)δ6 = −δ2, R̂(δ3, δ4)δ3 = δ4, R̂(δ3, δ4)δ4 = δ5

R̂(δ3, δ5)δ5 = −δ3, R̂(δ3, δ6)δ3 = −δ6, R̂(δ3, δ6)δ3 = −δ6, R̂(δ3, δ6)δ6 = −δ3

R̂(δ4, δ5)δ4 = δ5, R̂(δ4, δ5)δ5 = −δ4, R̂(δ4, δ6)δ4 = −δ6,

R̂(δ4, δ6)δ6 = −δ4, R̂(δ5, δ6)δ5 = −δ6, R̂(δ5, δ6)δ6 = −δ5.

Ŝ(δi, δj) =



−3 0 0 0 0 0
0 −3 0 0 0 0
0 0 −3 0 0 0
0 0 0 −3 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

.

R̂ = Trace(Ŝ) = −20. (49)

From Equation (16), we have

1
2
[ĝ(∇̂δi δ6, δi) + ĝ(∇̂δi δ6, δi)] + σŜ(δi, δi) + (τ − 1

2
ρR̂)ĝ(δi, δi) + 2νΩi

j = 0 (50)

wherein, for all i ∈ {1, 2, 3, 4, 5, 6}. Thus, τ = 10ρ − 3σ − 1 and ν = 23σ − 30ρ − 1, and
the data (ĝ, δ6, τ, ν, σ, ρ) is an η-RY soliton, verified by Equation (16). Therefore, the data
(ω, d̂, τ, ν, σ, ρ) admits increasing, decreasing and stable η-RY solitons referring to (3σ + 1) >
10ρ, (3α + 1) < 10ρ or (3σ + 1) = 10ρ, respectively

The two basic instances for a specific value of σ and ρ are as follows:
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Case 1. For an η-Ricci–Yamabe soliton of type (σ, ρ), if σ = 1, ρ = 0, we gain τ = −4
and ν = 22. Then, we say (d̂, δ6, τ, ν, 1, 0) is an η-Ricci soliton which is shrinking. This case
illustrates Theorem 3.
Case 2. For an η-RY soliton of kind (σ, ρ) if σ = 0, ρ = 0, we derive τ = 9 and ν = −31;
then, we have the data (ĝ, δ6, τ, ν, 0, 1) is an η-Yamabe soliton is expanding. This illustrates
Theorem 4.

Example 3. Let π : R6 → R3 be a submersion defined by

π(x1, x2, ...x6) = (y1, y2, y3),

where
y1 =

x1 + x2√
2

, y2 =
x3 + x4√

2
and y3 =

x5 + x6√
2

.

The Jacobi matrix of π has rank 3 at that point. This indicates that π is a submersion.
Simple calculations produce

(Kerπ∗) = Span{V1 =
1√
2
(−∂x1 + ∂x2), V2 =

1√
2
(−∂x3 + ∂x4),

V3 =
1√
2
(−∂x5 + ∂x6)},

and

(Kerπ∗)
⊥ = Span{H1 =

1√
2
(∂x1 + ∂x2), H2 =

1√
2
(∂x3 + ∂x4),

H3 =
1√
2
(∂x5 + ∂x6)},

Also, direct computation yields

π∗(H1) = ∂y1, π∗(H2) = ∂y2 and π∗(H3) = ∂y3.

It is easy to observe that

gR6(Hi, Hi) = gR3(π∗(Hi), π∗(Hi)), i = 1, 2, 3

Hence, ψ is a RS.

Next, we estimate the components of R̂, Ŝ and R̂ for Kerπ∗ and Kerπ⊥∗ , respectively.
For the vertical space, we gain

R̂(V1, V2)V1 = −2V2, R̂(V1, V2)V2 = 2V1, R̂(V1, V3)V1 = −2V3 (51)

R̂(V1, V2)V3 = V1, R̂(V2, V3)V3 = V2, R̂(V2, V3)V2 = V2.

Ŝ(V]
i , V]

j ) =

2 0 0
0 2 0
0 0 1

.

R̂ = Trace(Ŝ) = 5. (52)

Using (3), we find τ = 5ρ
2 − σ and ν = α. Therefore, (Kerψ∗, g) admits the increasing,

decreasing and stable η-RY solitons referring to 5ρ
2 < σ, 5ρ

2 > σ or 5ρ
2 = σ, respectively.
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Moreover, we also have the following cases for particular values of α and β, such as:
Case 1 . In an η-RY soliton of type (σ, ρ) for σ = 1, σ = 0, we find τ = −2 and ν = 1, then
(Kerψ∗, d) admitting a shrinking η-Ricci soliton.
Case 2. In an η-RY soliton of type (σ, τ) for σ = 0, ρ = 1, we find τ = 5

2 and ν = 0; then,
we have (Kerπ∗, g) admitting an expanding Yamabe soliton.

In a similar way, for the horizontal space, we derive

RB(π∗(H1), π∗(H2))π∗(H1) =
1
2
(∂x3 + ∂x4), RB(π∗(H1), π∗(H3))π∗(H3) =

1√
2
(∂x6 − ∂x5),

RB(π∗(H1), π∗(H3))π∗(H1) =
1
2

∂x6, RB(π∗(H2), π∗(H3))π∗(H2) = (
1√
2
− 1)∂x6,

RB(π∗(H2), π∗(H3))π∗(H3) = −
1
2
(∂x3 + ∂x4),

RB(π∗(H1), π∗(H2))π∗(H2) =
1

2
√

2
(∂x1 + ∂x2).

and

SB(π∗Hi, π∗Hj) =

−
3

2
√

2
0 0

0 − 3
2
√

2
0

0 0 − 1√
2

.

RB = Trace(SB) = −2
√

2. (53)

Again using (3), we derive τ = 3σ
2
√

2
−
√
(2)ρ and ν = − σ

2
√

2
. Therefore, ((Kerπ⊥∗ ), g)

admits the expanding, shrinking and steady η-RY solitons referring to 53σ
2
√

2
>
√
(2)ρ,

3σ
2
√

2
<
√
(2)ρ or 3σ

2
√

2
=
√
(2)ρ, respectively.

Also, we have obtained the following cases for particular values of σ and ρ, such as:
Case 1. In an η-RY soliton of type (σ, ρ) for σ = 1, ρ = 0, we find τ = 3

2
√

2
and

ν = − 1
2
√

2
; then, ((Kerπ⊥∗ ), g) is admitting an expanding η-Ricci soliton.

Case 2. In an η-RY soliton of type (σ, ρ) for σ = 0, ρ = 1, we find τ = −
√

2 and
ν = 0; then, we have ((Kerπ⊥∗ ), g) is admitting a shrinking Yamabe soliton.

6. η-Ricci–Yamabe Soliton with a Potential Vector Field ω = grad(γ)

Let the potential vector field ω = grad(γ) on N ; then, (N , g, ω, τ, ν, σ, ρ) is said to be
a gradient η-RY soliton, which is indicated by (N , g, ω, τ, ν, σ, ρ).

Now, consider the equation η-Ricci–Yamabe soliton for an r-dimensional fiber in RS.

2σŜ(I, J) = −[ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)]− (2τ − ρR)d̂(I, J)− 2νη(I)η(J). (54)

Contracting the Equation (54), we obtain

div(ω) = −rτ + R
(ρ

2
− σ

)
− ν. (55)

As a result, the following theorems exist:

Theorem 11. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind (σ, ρ) with gradient PVF
ω = grad(γ), and the vdV is parallel, then every fiber in RS is an η-RY soliton, and the Poisson
equation satisfied by γ becomes

∆(γ) = −rτ + R
(ρ

2
− σ

)
− ν. (56)
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Theorem 12. Let (N , g, ω, τ, ν, ρ) be an η-RY soliton of kind (0, ρ) with gradient PVF
ω = grad(γ) and the vdV is parallel, then every fiber in RS is an η-Yamabe soliton, and the
Poisson equation satisfied by γ becomes

∆(γ) = −rτ + R
(ρ

2

)
− ν. (57)

Remark 4. If ν = 0 in (56) and (57), we can easily obtain similar types of results for the RY soliton
and Yamabe soliton from Theorems (11) and (12), respectively.

7. Physical Applications of Solitons

As far as a physically relevant model having a solitonic solution is concerned, the theory
of collapse condensates with the inter-atomic attraction and spin-orbit coupling (SOC) [31],
which is a fundamentally important effect in physical models, chiefly, Bose–Einstein con-
densates (BEC) [32]. The SOC emulation proceeds by mapping the spinor wave function
of electrons into a pseudo-spinor mean-field wave function in BEC, whose components
represent two atomic states in the condensate. While SOC in bosonic gases is a linear
effect, there is interplay with the intrinsic BEC non-linearity, including several types of one
dimensional (1D) solitons [33]. An experimental realization of SOC in two-dimensional
(2D) geometry has been reported too [34], which suggests, in particular, the possibility
of creation of a 2D gap soliton [35], supported by a combination of SOC and a spatially
periodic field.

A fundamental problem that impedes the creation of 2D and 3D solitons in BES,
nonlinear optics, and other nonlinear settings, is that the ubiquitous cubic self-attraction,
which usually rise to solitons, simultaneously derives the critical and supercritical collapse
in the 2D and 3D cases, respectively [36]. Although SOC modifies the conditions of the
existence of the solutions and of the blow-up, it does not arrest the collapse completely [33].
The collapse destabilizes formally existing solitons, which results in stabilization of 2D and
3D solitons [32].

In the presence of SOC, the evolution of the wave function is described by a system-
coupled nonlinear PDE in the Schrödinger form [37]

ih̄
∂Ψ
∂

=

[
− h̄2

2M
∆ + Ĥso +

1
2
(B.σ̂)− g2|Ψ|2

]
Ψ, (58)

where M is the mass of the particle, Ĥso is the SOC Hamiltonian, B is the effective magnetic
field, σ̂ is the spin operator and g2 is the coupling constant.

The key point in understanding the role of the SOC in the collapse process is the
modified velocity

v = k +∇k Ĥso, (59)

where k = −i ∂
∂r , including the velocity and ∇k Ĥso (∇k ≡ ∂

∂k ), are directly related to the
particle spin.

Let the first form Rashaba spin-orbit coupling

Ĥso ≡ ĤR = α(kxσ̂y − kyσ̂x), (60)

with coupling constant α and k = (kx, ky). The corresponding spin-dependent term in the
velocity operators in Equation (59) becomes (for more details see [33])

∂ĤR
∂kx

= ασ̂y,
∂ĤR
∂ky

= −ασ̂x. (61)

In particular, in the 2D case, the nonlinear Schrödinger equation with cubic self-
attraction term gives rise to degenerate families of the fundamental Townes solitons [38]
with vorticity S = 0, which means decaying solutions. Hence, Townes solitons, that play
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the role of separation between the type of dynamical behavior, are the completable unstable
and total norm of the spinor wave function that does not exceed a critical value. Further,
it also produces stable dipole and quadrupole bound states of fundamental solitons with
opposite signs.

8. Application of Riemannian Submersions to Number Theory

The Hopf fibration [39] is a Riemannian submersion π : (N n, g) → (Bb, gB) with
totally geodesic fibers. In addition, a large class of Riemannian submersions are Riemannian
submersions between spheres of higher dimensions, such as

π : Sr+m −→ Sm

whose fibers have dimension m. The Hopf fibration asserts that the fibration generalizes
the idea of a fiber bundle and plays a significant role in algebraic topology, number theory
and groups theory [40].

Every fiber in a fibration is closely connected to the homotopy group and satisfies
the homotopy property [41]. The homotopy group of spheres Sn essentially describes
how several spheres of different dimensions may twist around one another. For the j-th
homotopy group Φj(Sr), the j-dimensional sphere Sj can be mapped continuously to the
r-dimensional sphere Sr.

Now, we can make the following remark :

Remark 5. To determine the homotopy groups for positive k using the formula πr+k(Sr). The ho-
motopy groups πr+k(Sr) with r > k + 1 are known as stable homotopy groups of spheres and
are denoted by πS

k ; they are finite abelian groups for k 6= 0. In view of Freudenthal’s suspension
theorem [42], the groups are known as unstable homotopy groups of spheres for r ≤ k + 1.

Now, in the light of Corollary 2 and using the above facts (5), we gain the following
outcomes.

Theorem 13. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind (σ, ρ) and π is an RS , such that
the hdH is integrable, if every fiber of π is totally geodesic and any fiber of RS is an almost η-RY
soliton, then the homotopy group of RS is πn(Bb).

Example 4. Let us adopt the example (3); we have Riemannian submersion ,

π : R6 ∼= S6 → R3 ∼= S3

defined in (3).
Then, according to Hopf-fibration of the fiber bundle, we have homotopy groups

π6(S3) = π3+3S3. (62)

Therefore, the above remark entails that r ≤ k + 1 i.e., 3 ≤ 3 + 1. Thus, the homotopy groups
π6(S3) are unstable homotopy groups.

Remark 6. For a prime number p, the homotopy p-exponent of a topological space T , denoted by
Expp(U), is defined to be a largest e ∈ N = {0, 1, 2, · · · } such that some homotopy group Φj(T )
has an element of order pe. Cohen et al. [43] proved that the

Expp(S2n+1) = n i f p 6= 2.

For a prime number p and an integer z, the p-adic order of z is given by
Ordp(z) = sup{z ∈ N : pz|z}.
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Through the above observation, in 2007, Davis and Sun proved an interesting inequal-
ity in terms of homotopy groups. For more details see ([44] Theorem 1.1 Page 2). According
to these authors, for any prime p and z = 2, 3, · · · some homotopy group πi(SU(n)) con-
tains an element of order pn−1+Ordp(bn/pc!), i.e., then the strong and elegant lower bound
for the homotopy p-exponent of a homotopy group is

Expp(SU(n)) ≥ n− 1 + Ordp

(⌊
n
p

⌋
!
)

, (63)

where S(U)(n) is a special unitary group of degree n.
Therefore, using Davis and Sun’s result (Theorem 1.1 [44]) with Theorem 13, we gain

an interesting inequality

Theorem 14. For any prime number p and s = 2, 3, · · · , some homotopy group πn(Bb) of
Riemannian submersion π with totally geodesic fiber where the fiber is an almost η-RY-soliton of π,
contains an element of order ps−1+Ordp(bs/pc!), we derive the inequality

Expp(πn(Bb)) ≥ n− 1 + Ordp

(⌊
b
p

⌋
!
)

. (64)

Example 5. Again considering the case of example (4), we have that a homotopy group of Rieman-
nian submersion π with totally geodesic fiber is π6(R3). Equation (14) also holds for homotopy
group π6(R3) of Riemannian submersion π such that

Expp(π6(R3)) ≥ 2 + Ordp

(⌊
3
p

⌋
!
)

. (65)

The geometric interpretation of the Hopf fibration can be obtained considering rota-
tions of the 2-sphere in 3-dimensional space. Therefore, the rotation group SO(3), spin
group Spin(3), diffeomorphic to the 3-sphere and Spin(3), can be identified with the special
unitary group SU(2). Indeed, there are p-local equivalences

SO(3) ∼= Spin(3) ∼= SU(2).

Thus, in view (65), we obtain

Expp(SU(2)) ≥ 2 + Ordp

(⌊
2
p

⌋
!
)

. (66)

Expp(Spin(3)) ≥ 2 + Ordp

(⌊
3
p

⌋
!
)

. (67)

Remark 7. Each homotopy group is the product of cyclic groups of order p. In [45] Hirsi, a
useful classification of homotopy groups of spheres is provided. Again, in light of example (4)
π6(R3) = π3+3(R3) = 12 = 22.3 = Z12 = Z4 ×Z2 ×Z3 or Z4 ×Z3.

Remark 8. In [46], Herstien noted the following facts about any group of order type p2q:
1. If G is a group of order p2q, p, q are primes, then group G has a non-trivial normal subgroup.
2. If G is a group of order p2q, p, q are primes, then either a p-Sylow subgroup or a q-Sylow
subgroup of G must be normal.

Therefore, in light of the above remarks, we can make the following remark:

Remark 9. The order of a homotopy group π6(R3) of Riemanian submersion ψ can be expressed as
22.3. Therefore, The homotopy group π6(R3) of Riemanian submersion π has a non-trivial normal
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subgroup. In addition, the homotopy group π6(R3) of Riemanian submersion π with a 2-Sylow
subgroup or a 3-Sylow subgroup of π6(R3) must be normal.

Remark 10. In light of Remark 9, we can also find some results for the p-Sylow subgroup of the
group of spin of Riemannian submersion and the unitary group of Riemannian submersion. These
facts distinguish this manuscript from previously published works based on submersion.
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η-RY soliton η-Ricci–Yamabe soliton
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vdV vertical distribution vector field
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PVF potential vector field
HPVF horizontal potential vector field
CKVF conformal Killing vector field
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