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Abstract: Improving the bearing design helps in reducing the negative consequences related to errors
in installation, manufacturing, deflections under severe loading conditions, progressive wear of
machine elements, and many other aspects. One of the methods of such a design improvement
effort is changing the bearing profile along the bearing width to compensate for the reduction in
the geometrical gap between the shaft and the bearing inner surface due to the aforementioned
causes. Since in all rotating machinery, unbalance usually exists at some level, this paper deals
with the response of this modified bearing to unbalanced excitation to evaluate the effectiveness of
such geometrical design on the dynamic characteristics of the rotor-bearing system. The numerical
solution is performed using the finite difference method by assuming Reynolds boundary conditions
to determine the cavitation limits, and the 4th-order Range-Kutta method is used to determine the
time responses resulting from the unbalance excitation. The time responses to this type of excitation
show that the rotor-bearing with the improved geometrical design is more stable, particularly at high
speeds. In addition, this modification leads to an improvement in the lubricant layer thickness and
the reduction in the levels of the generated pressure between the surfaces despite the presence of large
deviations from the perfectly aligned bearing system. Furthermore, the suggested geometrical design
overcomes the problem of asymmetricity in the pressure field resulting from the shaft deviation
to a large extent. The results of this work (the enhancement in the level of the film thickness and
the improvement in the dynamic response of the system as well as the reduction of the maximum
pressure value) extend the range of misalignment in which the rotor bearing systems can operate
safely which represents a significant step in designing the rotor-bearing system.

Keywords: asymmetric pressure field; rotor-bearing system; unbalanced excitation; numerical approach

MSC: 97N40; 33F05; 97N80; 62P30; 83C10; 78M20

1. Introduction

Journal bearings are used in industrial applications to support the rotors in rotating
machineries. This includes the use of this type of bearings in compressors and various

Axioms 2023, 12, 812. https://doi.org/10.3390/axioms12090812 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090812
https://doi.org/10.3390/axioms12090812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2908-3319
https://orcid.org/0000-0001-5450-021X
https://orcid.org/0000-0002-8389-6281
https://orcid.org/0000-0002-1472-8401
https://doi.org/10.3390/axioms12090812
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090812?type=check_update&version=2


Axioms 2023, 12, 812 2 of 24

types of turbines, such as gas, hydroelectric, and steam turbines, in addition to many other
applications. Such a wide range of use is attributed to their high load, damping, operating
speed, and relatively low manufacturing and maintenance cost. The industrial demand
for high-power output leads to a more increase in the rotating machinery speed. However,
operating at a high level of speed may result in large unstable oscillations related to the
self-excited vibrations. This type of instability may lead to severe damage to the bearing.
Therefore, predicting the onset of instability represents an essential step in designing this
type of bearing for a safe operation [1]. Unbalance excitation is one of the rotor-bearing
system’s most important causes of vibration. Unbalance, in fact, is a common machinery
fault that results in due to the uneven mass distribution of any rotating machine element
about its axis [2]. The vibration resulting from this type of excitation usually causes noise
and may decrease the life of the bearings as well as result in unsafe working conditions [3].
These important aspects of the unbalance in the rotor bearing system have resulted in
considerable literature being published on this topic over the last decades. One of the early
works related to the effect of unbalance on the performance of a short bearing was presented
by [4], but the results of the theory of short bearing involve significant errors when the
bearing length to diameter ratio of the bearing is larger than 0.5 [5]. Brancati et al. [6]
also analyzed an unbalanced rotor supported by journal bearings based on the use of the
short bearing theory for different values of dimensionless unbalance of the rotor. As the
unbalance is inherently present in any rotor and it is important to be considered in the
modeling, Adiletta et al. [7–9] used numerical and experimental investigations to study the
effect of unbalance on rotor response and examined the conditions for which chaotic motion
may exist. However, the analyses were limited to specific bearing and rotor conditions.
Chang-Jiang and Chen [10] used a simplified model to study the effect of rotating unbalance
on the system’s response using long journal bearings. El-Saeidy and Sticher [11] presented
a formulation for the dynamic analysis of rigid rotors subject to the mass imbalance in
addition to base excitations. Sghir and Chouchane [1] investigated a wide domain of rotor
bearing (short bearing) conditions where the effect of unbalance on the system response is
investigated in each case. Their results illustrated that, in comparison with the perfectly
balanced system, the unbalance might cause periodic oscillations at different speed ranges
at multiple periods of rotation and even chaotic motion. Recently, Eling et al. [12] presented
an interesting work on predicting the unbalance response of rotors supported on journal
bearings considering unbalance force. They explained the interaction between the rotating
shaft and the oil film that can result in unstable dynamic behavior characterized by sub-
synchronous motion, the oil whirl, where the whirl frequency in journal bearing is close to
half the rotation speed.

In addition to the problem of unbalance excitation, the system’s general performance
is also greatly influenced by the presence of misalignment. In the typical use of journal
bearing, the shaft is subjected to some degree of deviation with respect to the bearing axis
due to many causes, such as the shaft deflection and the errors resulting from inappropriate
installation or manufacturing, as well as the bearing wear. Researchers have illustrated the
negative effects of the misalignment on the journal bearing performance [13–18] in terms of
reducing the thickness of the oil layer that separates the journal and the bearing and the
increase in the level of the pressure field in addition to the possibility of reducing bearing
life as a result of the increase in the friction coefficient. These negative consequences can be
reduced by modifying the bearing profile to compensate for the reduction in the separated
clearance between the journal and the bearing. This geometrical design development is
investigated by researchers considering different aspects. Optimizing the bearing geometry,
for example, was experimentally investigated by Nacy [19] in order to control the side
leakage using chamfered bearing edges. Another attempt in this direction was performed
by [20], where they used defects in the bearing geometry in order to study its effects on
reducing misalignment consequences on the bearing performance. Instead of performing
localized modification of the bearing profile, Strzelecki [21] changed the bearing profile
over the whole length using a hyperboloidal profile in order to increase the load-carrying
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capacity under misalignment. Chasalevris and Dohnal [22] showed that the stability of the
journal-bearing system can be improved based on the use of variable geometry. Recently,
Ren et al. [23] used a numerical investigation to study the effects of profile parameters on
the bearing performance, where the results showed that the quadratic profile improves the
bearing performance significantly. Jamali et al. [24,25] showed that the bearing performance
can be improved by using a variable bearing profile. More recently, the misalignment
problem in journal bearing has also been investigated by [26–28]. However, all these works
did not consider the effect of changing the geometrical bearing profile parameters on the
system response to unbalance excitations.

This work investigates the problem of unbalanced excitation of a rotor supported on
finite-length journal bearings considering variable geometrical design parameters of the
bearing profile. The effects of varying these parameters on the system’s characteristics
in the case of 3D shaft deviation will be examined first in terms of the resulting level of
film thickness and severity of the pressure spikes resulting from this 3D form of deviation.
Then, the model will evaluate these geometrical modifications’ effectiveness on the rotor-
bearing system’s unbalance response under a wide range of unbalanced excitations and
rotational speeds. The finite difference method is considered in the discretization scheme
of the governing equations using the Reynolds boundary conditions method. On the
other hand, the 4th order Range Kutta method is used for solving the journal equations of
motion that required identifying the shaft center trajectories under different operating and
design conditions.

2. Governing Equations and the Mathematical Model

The required equations for the solution of finite length misaligned bearing with
the consideration of bearing profile modification are presented in this section, and their
numerical solution will be illustrated later. Figure 1 shows schematics drawings for the
adopted model of the solution, whereas Figure 1a illustrates two views for the ideal
case (without misalignment) of the bearing. Figure 1c shows the misaligned model, and
Figure 1c explains the geometrical modification of the bearing profile. All the variables in
this figure will be explained in more detail and the related equations.

Reynolds equation is the main equation that governs the solution of the hydrodynamic
problem of journal bearing. This equation and the film thickness equation are given
by [17,29],

∂

∂x

(
ρh3

12η

∂p
∂x

)
+

∂

∂z

(
ρh3

12η

∂p
∂z

)
= Um

∂ρh
∂x

+
∂ρh
∂t

(1)

h = c(1 + εr cos(θ −∅)) (2)

where,
η, ρ: viscosity and density of the lubricant, respectively.

Um: mean entraining velocity, which is given by Um =
Uj+Ub

2 , Uj and Ub are the
journal and bearing speed where Ub=0 and Uj = Rω.

p: pressure
h: film thickness
∅: attitude angle
t: time
c: radial clearance
εr: eccentricity ratio, which is given by, εr = e/c where e is eccentricity distance
Equation (1) is solved using Reynolds boundary conditions where the following

conditions are used [30]:
P = 0 at θ = 0

∂P
∂θ

= P = 0 at θ = θcav

where θcav is the cavitation angle which is determined using an iterative solution [30,31].
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Using the following variables, Equations (1) and (2) can be written in dimensionless forms:

P =
p− po

6ηω

(
c2

R2

)
, H =

h
c

, x = Rθ and Z =
z
L

where,
The dimensionless forms of Equations (1) and (2) are:

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
− ∂H

∂θ
= 0 (3)

H = 1 + εr cos(θ −∅) (4)

where:

α =
R2

L2 =
1

4(L/D)2

The dimensionless supported load is given by

W =

√
Wr

2
+ Wt

2 (5)

where,

Wr =
∫ 1

0

∫ θcav

0
P cos θ dθ dz (6)
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Wt =
∫ 1

0

∫ θcav

0
P sin θ dθ dz (7)

and W = w
6ηωRL

( c
R
)2

And the attitude angle is [32].

∅ = tan−1
(

Wt

Wr

)
(8)

The 3D misalignment model (Figure 1b) is adapted from the work of the first author [17],
where the following equations govern this model:

∆v(z) = ∆vo (1− 2Z) f or Z ≤ 1/2
∆v(z) = ∆vo (2Z− 1) f or Z > 1/2
∆h(z) = ∆ho (1− 2Z) f or Z ≤ 1/2
∆h(z) = ∆ho (2Z− 1) f or Z > 1/2

(9)

where, and Z = z/L and ∆ = δ/c (dimensionless variables)
This 3D misalignment model represents a more realistic model for the vertical (∆v(z))

and horizontal (∆h(z)) deviations of the shaft.
In contrast with the ideal case of the journal bearing, the attitude angle, as well as the

eccentricity in the misaligned case, are not constant along the bearing length, and they are
functions of the position Z [17],

∅(z) = tan−1 e sin∅+ δh(z)
e cos∅− δv(z)

for z ≤ L/2

e(z) =
√
(e cos∅− δv(z))2 + (e sin∅+ δh(z))2 (10)

∅(z) = tan−1 e sin∅− δh(z)
e cos∅+ δv(z)

for z > L/2

e(z) =
√
(e cos∅+ δv(z))2 + (e sin∅− δh(z))2

where,
∅: attitude angle at z = L/2
e: eccentricity at z = L/2
Using these equations, the resulting gap due to the presence of 3D misalignment can

be calculated.
The variation of the bearing profile shown previously in Figure 1c will change the

gap between the shaft’s surface and the bearing’s inner surface, which is essentially used
to compensate for the reduction in the gap due to misalignment. Detailed steps of this
method were explained in [24].

The modification of the bearing profile consists of removing material from the inner
surface of the bearing in order to overcome the negative consequences of the 3D mis-
alignment (misalignment in the vertical and horizontal directions), which mainly causes
a thinning in the gap between the shaft (journal) and the bearing. This modification is
governed by two parameters which are the length along the longitudinal bearing direction
where the modification is performed (b) and the distance in the radial direction (a). These
two parameters are illustrated in Figure 1c and will be written in a dimensionless form for
generality, as will be explained later.
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The resulting gap due to bearing profile modification (function of Z) can be given by,

G(z) = A
(

1− Z 1
B

)
for Z ≤ B

G(z) = A
(

1 + 1
B (Z− 1)

)
for Z ≥ 1− B

G(z) = 0 for B < Z < 1− B

(11)

where A and B are:
A =a/C and B = b/L (a and b are illustrated in Figure 1c)
The advantages of using a variable bearing profile can be evaluated based on the A

and B parameters. These parameters (dimensionless) are given in terms of the C (the radial
clearance) and L (the width of the bearing), which gives a more obvious understanding of
the required geometrical change of the profile to minimize the 3D deviation negative effects.

The total gap considering the misalignment and the variable bearing profile can be
determined by coupling the related equations (Equations (4), (9) and (11)).

3. The Dynamic Characteristics of the Finite Length Bearing

The stiffness and damping coefficients can be determined using linear analysis for
the system’s stability. This analysis involves linearizing the nonlinear forces around the
equilibrium position of the journal.

The Reynolds equation with time depending term is used to derive these coefficients
as follows,

∂

∂x

(
h3

12η

∂p
∂x

)
+

∂

∂z

(
h3

12η

∂p
∂z

)
=

Uj

2
∂h
∂x

+
∂h
∂t

(12)

The corresponding film thickness equation is [33]:

h = h0 + ∆x cos θ + ∆y sin θ (13)

The term ∂h
∂t in Equation (12) can therefore be written as,

∂h
∂t

= ∆
.
x cos θ + ∆

.
y sin θ (14)

Using dimensionless forms for the variables and using Equations (12) and (14) gives,

∂

∂θ

(
H3 ∂P

∂θ

)
+ α

∂

∂Z

(
H3 ∂P

∂Z

)
=

∂H
∂θ

+ 2(∆
.

Y sin θ + ∆
.

X cos θ) (15)

where,
.

X =
R

.
x

Uc
,

.
Y =

R
.
y

Uc
(16)

The hydrodynamic forces are functions of the displacement and the velocity in the x
and y directions [32,34], which are given by,

Fx = Fx (x , y,
.
x,

.
y
)

Fy = Fy (x , y,
.
x,

.
y
)

Fx =
∫ 1

0

∫ θcav

0
P cos θdθ dZ

Fy =
∫ 1

0

∫ θcav

0
P sin θdθ dZ (17)
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And the total force is
F =

√
Fx2 + Fy2

The eight dynamic coefficients are [35]

[k] =
[

kxx kxy
kyx kyy

]
=

 ∂Fx
∂X

∂Fx
∂Y

∂Fy
∂x

∂Fy
∂Y

 (18)

[c] =
[

cxx cxy
cyx cyy

]
=

 ∂Fx

∂
.

X
∂Fx

∂
.

Y
∂Fy

∂
.

X

∂Fy

∂
.

Y

 (19)

The following form of the coefficients suggested by [34] is used,

Kxx =
c kxx

F
, Kxy =

c kxy

F
, Kyx =

c kyx

F
, Kyy =

c kyy

F
(20)

Cxx =
c ω cxx

F
, Cxy =

c ω cxy

F
, Cyx =

c ω cyx

F
, Cyy =

c ω cyy

F
(21)

Using Equations (3), (18) and (19) gives,

Kxx =
∫ 1

0

∫ 2π
0 Px cos θ dθ dz

Kxy =
∫ 1

0

∫ 2π
0 Py cos θ dθ dz

Kyx =
∫ 1

0

∫ 2π
0 Px sin θ dθ dz

Kyy =
∫ 1

0

∫ 2π
0 Py sin θ dθ dz

Cxx =
∫ 1

0

∫ 2π
0 P .

x cos θ dθ dz

Cxy =
∫ 1

0

∫ 2π
0 P.

y cos θ dθ dz

Cyx =
∫ 1

0

∫ 2π
0 P .

x sin θ dθ dz

Cyy =
∫ 1

0

∫ 2π
0 P.

y sin θ dθ dz

where,

Px =
∂P
∂X

, Py =
∂P
∂Y

, P .
x =

∂P

∂
.

X
, P.

y =
∂P

∂
.

Y
The following derivatives are also required in determining the eight coefficients,

∂H
∂t = ∆

.
X cos θ + ∆

.
Y sin θ

∂H
∂X = cos θ

∂H
∂Y = sin θ

∂H
∂θ = −∆X sin θ + ∆Y cos θ

The differentiation with respect to X, Y,
.

X and
.

Y yields,

∂

∂θ

(
H3 ∂Px

∂θ

)
+ α

∂

∂Z

(
H3 ∂Px

∂Z

)
= − ∂

∂θ

(
3H2 cos θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 cos θ

∂P
∂Z

)
− sin θ (22)

∂

∂θ

(
H3 ∂Py

∂θ

)
+ α

∂

∂Z

(
H3 ∂Py

∂Z

)
= − ∂

∂θ

(
3H2 sin θ

∂P
∂θ

)
− α

∂

∂Z

(
3H2 sin θ

∂P
∂Z

)
− cos θ (23)
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∂

∂θ

(
H3 ∂P .

x
∂θ

)
+ α

∂

∂Z

(
H3 ∂P .

x
∂Z

)
= cos θ (24)

∂

∂θ

(
H3

∂P.
y

∂θ

)
+ α

∂

∂Z

(
H3

∂P.
y

∂Z

)
= sin θ (25)

These last four equations are solved using numerical solutions to determine the
pressure derivatives used in the calculations of the eight stiffness and damping coefficients.

4. Unbalance Excitation and Linear Stability Analysis

The equations of motions of the system illustrated in Figure 2 related to the unbalance
excitation can be solved after determining the dynamic coefficients. As the radial clearance
between the journal and the bearing is in the order of microns, these equations for small
perturbation around the static equilibrium position of the journal inside the bearing are
given by [36].
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m
..
x′ = −Fx − f sin Ωt (26)

m
..
y′ = −Fy − f cos Ωt + W (27)
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where [36],
Ω: journal speed
Fx, Fy: bearing forces
f : unbalance force
W: supported load and x′ and y′ are whirling axes
The dimensionless forms of Equations (26) and (27) are

M
..
X
′
= −Fx − Ru sin T (28)

M
..
Y
′
= −Fy − Ru cos T + 1 (29)

where,

Fx =
Fx

W
, FY =

FY
W

M =
m c Ω2

W
and Ru = mu r

Ω2

W
The response to the unbalance excitation is determined by solving these two equations.
The critical speed of the rotor is calculated as follows,

M
..
X
′
+ Fx = 0 (30)

M
..
Y
′
+ Fy = 0 (31)

Using linear stability analysis where the dynamic coefficients are determined after
obtaining the equilibrium position of the journal center, the bearing forces are linearized
as follows [33]:

Fx = Kxx X′ + Kxy Y′ + Cxx
.

X
′
+ Cxy

.
Y
′

(32)

Fy = Kyx X′ + Kyy Y′ + Cyx
.

X
′
+ Cyy

.
Y
′

(33)

Substitution of Equations (32) and (33) in Equations (30) and (31) and using the
following solution [33] gives,

X′ = Aeiλt , Y′ = Beiλt (34)

λ =

√
(keq− Kxx)

(
Keq− Kyy

)
− Kxy Kyx

Cxx Cyy − CxyCyx
(35)

Keq =
Kxx Cyy + KyyCxx − KyxCxy − KxyCyx

Cxx + Cyy
(36)

The critical speed (Ωcrit) is given by,

Ωcrit =

√
keq
λ

(37)

5. Numerical Solution

At first, the pressure field is obtained by discretizing the Reynolds equation, using the
finite difference method, and the related equations for determining the gap between the
two surfaces: the equations of film thickness, the 3D deviation, and the profile modification.
The method of successive over-relaxation is considered in the solution under the use of the
Gauss-Sedial method. These pressure fields are obtained by determining the stiffness and
dynamic coefficients by numerical integration. Then, the equations of motion are solved
numerically using a fourth-order Runge-Kutta method.
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Discretizing the governing equations yields,

P(i,j) =
1
β

[
Hb

3 P(i+1,j) + Ha
3 P(i−1,j) + αC2Hc

3 P(i,j+1) + αC2Hd
3 P(i,j−1) − C1H(i+1,j) + C1H(i−1,j)

]
(38)

H(i, j) =
(
1 + εr(Z) cos(θ(i,j) −∅

)
) (39)

where,
C1 = ∆θ

2 , C2 = ∆θ2

∆Z2 , β = Hb
3 + Ha

3 + α C2Hc
3 + α C2Hd

3, ∆θ and ∆Z are the
mesh steps.

More details about the discretization and the solution steps can be found in [17]. After
discretizing Equations (22)–(25), the pressure derivative required to calculate the dynamic
coefficients is given by,

P(i.j) =
1
ψ

[
(∆θ)2 RHS− Hb

3 P(i+1.j) − Ha
3 P(i−1.j) − αC2Hc

3 P(i.j+1) − αC2Hd
3 P(i.j−1) + C1H(i+1.j) − C1H(i−1.j)

]
(40)

where, ψ = −Hb
3 − Ha

3 − α C2Hc
3 − α C2Hd

3 and the other constants are as
defined previously.

The RHS of Equations (22)–(25) is calculated numerically as follows:

RHS(22) =
(3 cos θb H2

b+3 cos θa H2
a)P(i.j)

(∆θ)2 − 3 cos θb H2
b P(i+1.j)

(∆θ)2 − 3 cos θa H2
a P(i−1.j)

(∆θ)2 +

α
(3 cos θc H2

c +3 cos θd H2
d)P(i.j)

(∆Z)2 − α
3 cos θc H2

c P(i.j+1)

(∆Z)2 − α
3 cos θd H2

d P(i.j−1)

(∆Z)2 − sin θ

RHS(23) =
(3 sin θb H2

b+3 sin θa H2
a)P(i.j)

(∆θ)2 − 3 sin θb H2
b P(i+1.j)

(∆θ)2 − 3 sin θa H2
a P(i−1.j)

(∆θ)2 +

α
(3 sin θc H2

c +3 sin θd H2
d)P(i.j)

(∆Z)2 − α
3 sin θc H2

c P(i.j+1)

(∆Z)2 − α
3 sin θd H2

d P(i.j−1)

(∆Z)2 − cos θ

RHS(24) = cos θ(i.j)

RHS(25) = sin θ(i.j)

After discretizing all the related equations, the numerical solution is performed where

the converges criterion for the pressure is,
∑|P(i,j)new−P(i,j)old|

∑ P(i,j)old
< 10−7.

The hydrodynamic load is calculated by numerical integration after determining the
pressure field. This load is compared with the actual load, and the solution is accepted if
an accuracy of ∓10−5 is achieved (Wcalculated is within the range of Wactual ∓ 10−5Wactual ).
If this limit is <10−5, the solution requires a very long computational time without any
significant change in the static and dynamic results. If this accuracy is not achieved
(Wactual ∓ 10−5Wactual ), the eccentricity ratio εr is updated, and the whole process is re-
peated where the pressure distribution and the gap between the surfaces are recalculated;
this step results in new values for the dynamic coefficients. After achieving both conver-
gences (P and W), the equations of motion are solved using the 4th-order Range-Kutta
method, as explained previously. A flow chart for the main steps of the solution procedure
is illustrated in Figure 3.
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6. Results and Discussions

The results in this work are presented considering finite length journal bearing where
the length-to-diameter ratio (L/D) is 1.25, and the load is corresponding to the case of a
perfectly aligned bearing with a typical value of the eccentricity ratio (εr) as 0.6. In order
to better understand the geometrical design importance on the dynamic behavior of the
rotor-bearing system, at first, the results will be focused on the resulting film thickness
and pressure distributions due to the bearing variable geometry. Then, the investigation
will be further advanced to explain in detail the effect of geometrical design parameters on
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the shaft trajectories under different unbalanced conditions. This sequence of presenting
will give a clearer picture of the significance of the bearing profile design parameters on
the system’s static and dynamic characteristics. The first step in performing the numerical
solution, the independency of the results on the number of nodes, is examined as shown
in Figure 4. In this figure, the values of the dimensionless minimum film thickness (Hmin)
and the dimensionless critical speed (CS) are plotted against the number of nodes. It can
be seen that increasing the number of nodes (N ×M) beyond 16,471 has a trivial effect
on both results despite the narrow range of the y-axes of Hmin and CS. Therefore, this
number is adopted in this analysis. Furthermore, the current model is also verified using
the results presented by reference [22], as shown in Table 1. A relatively low and high value
of the Summerfield numbers is used in the comparison shown in this table. It can be seen
that very good agreements are found for the values of KXX and KYY for the two Summer
field numbers.
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Table 1. Comparison with the results of Ref. [22].

SF No.
Kyy Kxx

Ref. [22] Results of the Presented Model Ref. [22] Results of the Presented Model

0.319 2.10 1.99 3.35 3.34

1.220 2.30 2.21 1.62 1.69

As the ideal case of a perfectly aligned bearing rarely exists in the typical applications
of the journal bearings, as explained previously, the presence of misalignment is well known
to have negative consequences on the general system performance. The misalignment
significantly affects the film thickness, the pressure distributions, and their shape variation.
Using a variable geometry for the bearing profile has the advantage of minimizing these
negative effects on the system characteristics. Figure 5 shows the dimensionless film
thickness and the dimensionless pressure distribution for three cases of the finite-length
journal bearing. Figure 5a–c show the results for the ideal case of aligned bearing, the
misaligned bearing under 3D misalignment, and the case of misaligned bearing with a
modified geometry, respectively. Sever levels of misalignment are used in the case of
3D misalignment in order to illustrate how the modification can improve the bearing
performance. The film thickness in the aligned case is prismatic, where the value of the
film thickness at any circumferential position is constant along the bearing width. On the
other hand, the pressure distribution is symmetric about the middle of the bearing width.
The Hmin and Pmax values for this case are 0.4 and 0.645, respectively. The presence of
the misalignment increases Pmax by 63.8% to 1.057 and reduces Hmin by 85.7% to 0.0572,
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representing a significant change in the designed values of the system. In addition, the film
thickness distribution is no longer prismatic, and the pressure distribution is not symmetric
about the middle axis of the bearing. Such a level of minim film thickness reduces the
bearing life due to the expected high friction and wear ranges. In order to overcome
this problem, the load-carrying capacity of the bearing should be reduced significantly to
increase the value of the minimum film thickness. However, this is not an ideal solution
as the bearing is usually designed for a specified supported load. Therefore, any other
solution to this problem keeps the same designed load-carrying capacity without sacrificing
acceptable levels of the minimum film thickness represents an important outcome. The
values of the geometrical design parameters of the bearing profile can play a significant
role in this direction. Improving the geometry of the bearing by removing material from
the inner surface of the bearing to compensate for the reduction in the film thickness
related to the misalignment has significantly positive effects on film thickness and pressure
values. Figure 5c illustrates these effects where the dimensionless minimum film thickness
becomes 0.244, and the maximum pressure reduces to 0.724. This represents several times
improvement in the value of Hmin and a decrease of 31.5% in Pmax. The distribution shapes
have also improved, particularly the pressure distribution shape, where the pressure spikes
are reduced and shifted away from the bearing edges due to the improvement in the film
thickness levels at the zones where the misalignment has the most negative effect.

The previous paragraphs emphasize the importance of changing the bearing profile
parameters in enhancing the system performance in terms of reducing the value of Pmax
and elevating the level of the Hmin for the same designed load-carrying capacity. Therefore,
the investigation proceeded to examine the effect of the geometrical parameters on the
main dynamic characteristics and the response of the rotor-bearing system to an unbal-
anced excitation. Figure 6 shows the variation of the equivalent stiffness coefficient for
the modified and unmodified bearing geometry with a wide range of 3D misalignment
parameters. Acceding this misalignment parameter range is insufficient for practical con-
siderations as the minimum film thickness becomes extremely thin. It can be seen that
for the ideal case (without misalignment) where ∆vmax = ∆hmax = 0, the value of Keq is
1.347. As the misalignment parameters increase, the values of Keq also, increase with a
maximum value of 3.161 when ∆vmax = ∆hmax = 0.59. This increase means, in other words,
an elevation in the level of the critical speed (which will be explained later) of the rotor
bearing system, but large drawbacks accompany it in terms of Hmin and Pmax, as illustrated
in the previous figure. Therefore, it cannot be considered an enhancement of the system’s
performance. On the other hand, the geometrical modification of the profile reduces the
Keq in comparison with the misalignment case. The reduction in Keq at the extreme case
when ∆vmax = ∆hmax = 0.59 is 32.64% (Keq = 2.129). Despite this reduction in Keq as a
result of introducing the geometrical change in the bearing profile, the equivalent stiffness
values for the whole considered range of misalignment parameters remain higher than
the stiffness of the ideal case where ∆vmax = ∆hmax = 0. The improvement in Keq for the
cases of ∆vmax = ∆hmax = 0.59 is 58.1% in comparison with the ideal case. This outcome
represents a significant improvement in the system performance due to the geometrical
design changes, the previously mentioned reduction in Pmax, and the significant increase in
Hmin. The modification parameters for the results presented in this figure are A = B = 0.25.
The effect of the design parameter B on the equivalent stiffness is shown in Figure 7, and
the optimum value of the other design parameter (parameter A) was found to be 0.25. It can
be seen that increasing the length of modification along the axial direction of the bearing
(parameter B) reduces the values of Keq. However, the equivalent stiffness coefficient is not
continued to change significantly when B ≥ 0.25. This value of B (0.25) also gives the best
outcome in terms of Pmax and Hmin, which are therefore adopted for the main analysis in
this work.
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The effect of changing the geometry of the bearing on the dimensionless critical speed
is shown in Table 2. This table compares the critical speed for two levels of misalignment
which are ∆vmax = ∆hmax = 0.5 and ∆vmax = ∆hmax = 0.59 in addition to the perfectly
aligned case. The critical speed of the ideal case is 2.6789, and the misalignment increases
the critical speed by 28.28% and 50.61% (3.4366 and 4.0347) for the misalignment’s first
and last levels, respectively. Introducing the bearing profile modification reduces these
values, but in all modified cases, the dimensionless critical speed is stills greater than the
corresponding value of the unmodified ideal bearing. The dimensionless critical speed for
the misaligned and modified case when ∆vmax = ∆hmax = 0.59 is 3.4121 compared with
2.6789 for the perfectly aligned case, representing an increase of 27.37%. This is another
improvement in the dynamic performance of the rotor-bearing system.
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Table 2. Dimensionless critical speed for the modified and unmodified system.

Case As It Is Modified (A = B = 0.25)

Ideal 2.6789 2.8636

Mis. ∆vmax = ∆hmax = 0.5 3.4366 3.2539

Mis. ∆vmax = ∆hmax = 0.59 4.0347 3.4121

After illustrating the importance of the bearing geometrical design on the key results
related to the performance of the rotor-bearing system, the following results are related
to the effect of unbalance excitations on the system’s dynamic behavior considering the
bearing profile modification. Unbalance is a common machinery fault that results in due
to the uneven distribution of a rotating component mass about its axis. Reference [36]
considered a dimensionless (scaled to the load) unbalance force

(
Ru = rmuΩ2/W

)
of

0.2, corresponding to an eccentricity ratio of 0.6 and a rotational speed of 3000 rpm
(Ω = 314.159 rad/s). This means changing the rotational speed resulting in a differ-
ent unbalance force. Therefore, the following factor, Γ = rmu/W is introduced to represent
the unbalance force in terms of the rotational speed where Ru = ΓΩ2. Considering the
value of 0.2 for Ru and Ω = 314.159 rad/s as used by reference [36], results in a value of
2.026423 × 10−6 for Γ. In this work, three values for Γ are considered in the analysis, which
are 0.5 Γ, Γ, and 1.5 Γ to evaluate the effect of unbalance excitation on the response of the
system under different operating speeds. These values of Γ (0.5 Γ, Γ, and 1.5 Γ) mean that
Ru = 0.1, 0.2 and 0.3 respectively when Ω = 3000 rpm (314.159 rad/s) and give different
values for Ru as Ω changes.

Figure 8 shows the trajectories of the journal center under different rotational speeds
and unbalanced excitations (0.5 Γ, Γ, and 1.5 Γ) for unmodified bearing. Figure 8a–c
illustrate the trajectories when Ω = 3000 rpm, which is about half the critical speed,
Ω = 0.75 of the critical speed, and when Ω is equal to the critical speed, respectively. The
dimensionless critical speed of the system is 2.6789 (6540.93 rpm). It can be seen that when
Ω about half the critical speed of the system (Figure 8a), the journal centers rotate about
the steady-state position in almost the same path of rotation for each of the three values
of Γ. The rotation amplitude increases as Γ increases, but in all cases, the trajectories do
not cause the journal to be close to the bearing walls, and all the paths are uniform. As the
rotational speed is increased, the trajectories follow different paths, as shown in Figure 8b
where Ω = 0.75 of the critical speed of the system. The higher value of Γ results in a
non-safe trajectory of the journal center as the journal becomes very close to the bearing
wall, and any error related to installation or the designed operating conditions may bring
the surfaces of the shaft and the bearing much closer. This means in other words, that the
presence of the unbalance forces in relatively high levels causes unsafe operation of the
system despite that the operating speed is far from the value of the critical speed as shown
in Figure 8b where Ω = 0.75 of the critical speed. Figure 8c illustrates the trajectories when
the operating speed is equal to the critical speed. It can be seen that even for the lower
value of Γ(0.5Γ), the trajectory is not uniform, and the amplitude of rotation about the
steady state position varies with time. This variation is increased as Γ increased as can be
seen for the case of 1.0 Γ shown in blue, and the amplitude of the rotation increased rapidly
for the case of 1.5 Γ where the journal touches the bearing walls.

The trajectories of the journal center are further investigated by considering the bearing
modification under an operating speed of 3000 rpm (1.0 Γ), as shown in Figure 9. Different
values of the geometrical parameters are considered in this figure. Figure 9a shows the
trajectory for the case of unmodified bearing, and the other figures illustrate the trajectories
for the modified bearing where (Figure 9b): A = B = 0.1, (Figure 9c): A = B = 0.2,
(Figure 9d): A = B = 0.25 and (Figure 9e): A = B = 0.3. It can be seen for this operating
speed, the trajectories are uniform for all values of the modification parameters, and the
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journal is far away from the bearing wall. This means that modifying the bearing geometry
under 1.0 Γ keeps the operation of the system in the safe range.

The effect of the modification parameter in the axial direction, B on the journal trajec-
tory, is investigated for a constant value of the other modification parameter (A = 0.25).
Figure 10 shows the results of these cases when the rotational speed is 3000 rpm (1.0 Γ).
Figure 10a shows the case of the unmodified profile, which is repeated here from the
previous figure for the purpose of comparison. Figure 10b–f illustrate the trajectories for
the cases when B = 0.1, B = 0.2, B = 0.25, B = 0.3 and B = 0.4. Again changing the B
parameter also maintains the safe operation of the system under this operating speed.

Axioms 2023, 12, x FOR PEER REVIEW 18 of 26 
 

 
(a) 

 

 
(b) 

 Figure 8. Cont.



Axioms 2023, 12, 812 18 of 24Axioms 2023, 12, x FOR PEER REVIEW 19 of 26 
 

 
(c) 

Figure 8. Trajectories of the journal center under different rotational speeds and unbalanced excita-
tion. (a) About half the critical speed, (b) At 0.75 of the critical speed, and (c) At the critical speed. 
The dimensionless critical speed is 2.6789 (6540.93 rpm). 

The trajectories of the journal center are further investigated by considering the bear-
ing modification under an operating speed of 3000 rpm (1.0 Γ), as shown in Figure 9. Dif-
ferent values of the geometrical parameters are considered in this figure. Figure 9a shows 
the trajectory for the case of unmodified bearing, and the other figures illustrate the tra-
jectories for the modified bearing where (Figure 9b): 𝐴 = 𝐵 = 0.1, (Figure 9c): 𝐴 = 𝐵 =0.2, (Figure 9d): 𝐴 = 𝐵 = 0.25 and (Figure 9e): 𝐴 = 𝐵 = 0.3. It can be seen for this operat-
ing speed, the trajectories are uniform for all values of the modification parameters, and 
the journal is far away from the bearing wall. This means that modifying the bearing ge-
ometry under 1.0 Γ keeps the operation of the system in the safe range.  

The effect of the modification parameter in the axial direction, 𝐵 on the journal tra-
jectory, is investigated for a constant value of the other modification parameter (𝐴 =  0.25). 
Figure 10 shows the results of these cases when the rotational speed is 3000 rpm (1.0 Γ). 
Figure 10a shows the case of the unmodified profile, which is repeated here from the pre-
vious figure for the purpose of comparison. Figure 10b–f illustrate the trajectories for the 
cases when 𝐵 = 0.1 , 𝐵 = 0.2 , 𝐵 = 0.25, 𝐵 = 0.3  and 𝐵 = 0.4.  Again changing the 𝐵 
parameter also maintains the safe operation of the system under this operating speed.  

Figure 8. Trajectories of the journal center under different rotational speeds and unbalanced excitation.
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The previous figures show the trajectories relative to the bearing center using the X, Y
system of coordinates. To obtain a more clear comparison between the trajectories of the
modified and unmodified system, the X′, Y′ system of coordinates is used in producing the
results shown in Figure 11. This figure illustrates the journal trajectories for the unmodified
and modified bearing profile relative to the steady-state position (in terms of X′ and Y′

coordinates) when the rotational speed is 3000 rpm (1.0 Γ) and A = B = 0.25. It can be seen
that the two trajectories are very similar, with a slightly higher amplitude of the rotation in
the case of modified bearing. However, as illustrated in the previous two figures, the two
trajectories keep the journal surface away from the bearing wall.

Figure 12 illustrates another comparison between the journal trajectories for the un-
modified and modified bearing profile relative to the steady-state position (in terms of X′

and Y′ coordinates) when the rotational speed is equal to the critical speed of the modified
system, where the dimensionless critical speed is 2.8636 (6991.917 rpm) and the modifi-
cation parameters are A = B = 0.25. These results corresponding to the case when 1.0 Γ.
Despite that both trajectories are non-uniform due to the relatively high operating speed,
the journal, in the case of modified bearing, tends to rotate around the steady state position
with less amplitude for most of the time. This difference can be seen clearly in Figure 13,
which illustrates the variation of X′ and Y′ with the time T (in rad) where T = Ωt and the
units of Ω and t are rad/s and second, respectively. It can be seen that as T increased, the
values of X′ and Y′ for the modified bearing are less than the corresponding values for the
unmodified bearing for most of the duration of the response to the unbalance excitation.

It is clear from the above results that the modification helps in elevating the level of
Hmin and reducing the levels of Pmax resulting from the 3D misalignment case and also
resulting in higher critical speed in comparison with the ideally aligned bearing system.
Furthermore, analyzing the system response under an unbalance excitation showed that
the modification does not cause higher transient amplitude for the rotation around the
steady state position at the high operating speed of rotation. This important outcome
can be further advanced to consider the 3D misalignment in analyzing the response to
unbalance excitation, which is an extremely complex case as the model requires a solution
in space for the equations of motions. The authors intend to address this important issue in
the near future work as both the misalignment and the unbalance excitation are common
machinery problems.
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7. Conclusions and Remarks

This research evaluates the effectiveness of novel bearing profile geometrical design
parameters on the response of a rotor-bearing system to an unbalance excitation. A finite-
length journal bearing operating at a range of speeds and a range of unbalanced excitation is
considered in this analysis. The model considers a 3D misalignment case in evaluating the
geometrical design parameters on the pressure and film thickness levels where the Reynolds
boundary condition is used in the numerical solution to determine the cavitation zone
limits. It has been found that the unbalance excitation causes the non-uniform transient
path of the journal center trajectory around the steady state position, and the amplitude of
the excitation increases with the increase of the operating speed as well as the increasing in
the magnitude of the unbalance excitation. An improved bearing profile achieved through
the optimization of the geometrical design parameters results in lower pressure values and
higher minimum film thickness despite the high level of misalignment. Furthermore, the
dynamic behavior is also enhanced in comparison with the ideal case of the bearing, where
the equivalent stiffness is improved in addition to the improvement in the time response
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of the system to the unbalance excitation at high rotational speeds. The outcome of this
work shows the possibility of improving the dynamic behavior of the rotor bearing system
and enhancing the lubricant layer thickness, which is significantly affected by the presence
of the misalignment, by optimizing the bearing profile parameters. Such improvements
are expected to positively impact the bearing life and the design limits of the rotor bearing
system, which will be further investigated in future work.
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