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Abstract: In this paper, a class of nonlinear fractional differential equations with periodic boundary
condition is investigated. Although the nonlinearity of the equation and the Green’s function are sign-
changing, the results of the existence and nonexistence of positive solutions are obtained by using the
Schaefer’s fixed-point theorem. Finally, two examples are given to illustrate the main results.
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1. Introduction

Fractional differential equations (FDEs) have attracted great interests in the past sev-
eral decades as FDEs are widely used in many fields, see [1–5]. In recent years, many
papers have investigated the existence, multiplicity and non-existence of solutions for
initial value problems (IVPs) or boundary value problems (BVPs) of various classes of
FDEs (conformable FDEs [6], impulsive FDEs [7], coupled system of FDEs [8–10], hy-
brid FDEs [11–13], fractional relaxation DEs [14], variable-order FDEs [15]); also see the
references therein.

BVPs with positive solutions have played a very important role in the study of mathe-
matical physics problems; see [16–19]. There are some very recent interesting results on
this topic; see [16,20–25], and the references therein. Bai and Lü [26] studied the existence
of positive solutions of the BVP

Dα
0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1), (1)

u(0) = u(1) = 0, (2)

where 1 < α ≤ 2, Dα
0+ is the Riemann–Liouville fractional differentiation, f : [0, 1]× [0, ∞)→

[0, ∞) is a continuous function, and u : [0, 1]→ [0,+∞) is the positive solution of (1) and (2).
By using the techniques of fixed-point theorems, they obtained some existence results
under the conditions that the nonlinearity f and the corresponding Green’s function are
non-negative. Li et al. [27] considered a class of FDEs with four point boundary condition.
By means of the Avery-Peterson theorem, they derived the existence result of positive
solutions based on the assumption that the nonlinearity is non-negative.

To the best of our knowledge, in most of the existing studies found in the literature,
the non-negative conditions of the nonlinearity or the Green’s function are fundamental to
obtaining the positive solutions [28]. Hence, a natural question is what would happen if
the nonlinearity or the Green’s function is sign-changing. Several papers have considered
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the positive solutions for BVPs with sign-changing nonlinearity and sign-changing Green’s
function [28–34]. Ma [29] studied the BVP with sign-changing Green’s function:

u′′(t) + a(t)u(t) = λb(t) f (u(t)), t ∈ (0, T), (3)

u(0) = u(T), u′(0) = u′(T), (4)

f , a and b are given functions, and λ is a parameter. Some suitable assumptions of f , a and
b are imposed, wherein they obtained the existence and nonexistence of positive solutions
for the above problem.

Motivated by the above works, this paper considers the periodic BVP with sign-
changing nonlinearity and Green’s function:

(CDα
0+u)(t)−Mu(t)− λg(t) f (u(t)) = 0, t ∈ (0, 1), (5)

u(0) = u(1), u′(0) = u′(1), (6)

where 1 < α < 2, CDα
0+ is the Caputo fractional derivative (FD), M > 0 is a constant, λ is a

parameter and g : [0, 1]→ [0, ∞) is a continuous function, f : [0, ∞)→ R is a continuous
function and f (0) > 0. In [3] (Equation (9.37)), Podlubny pointed out, with α = 1.0315,
the FDE of (5) and (6) is good at depicting the model of a re-heating furnace. The most
remarkable feature of the paper is its capability to obtain the results of the existence and
nonexistence of positive solutions under the conditions that the nonlinearity f and the
Green’s function are sign-changing.

The paper is organized as follows. In Section 2, some notations and definitions of
fractional calculus are introduced, and a lemma is proven. In Section 3, some useful criteria
of existence and nonexistence for the BVPs of (5) and (6) are established. In Section 4, two
examples are presented to illustrate the main results. Finally, a conclusion of the paper
is presented.

2. Preliminaries

Definition 1 ([2] (p. 69, Equation (2.1.1)). Let [a, b] be a finite interval on the real axis R. The
Riemann–Liouville fractional integral Iα

a+ f of order α is defined by

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a; α > 0. (7)

Definition 2 ([2] (p. 70, Equation (2.1.5))). The Riemann–Liouville fractional derivative Dα
a+y

of order α is defined by

(Dα
a+y)(x) =

( d
dx

)n
In−α
a+ y(x) =

1
Γ(n− α)

( d
dx

)n ∫ x

a
(x− t)n−α−1y(t)dt, n = [α] + 1; x > a, (8)

where [α] means the integral part of α.

Definition 3 ([2] (pp. 90–91, Equation (2.4.1))). The Caputo fractional derivative CDα
a+y(x) of

order α on [a, b] is defined via the above Riemann–Liouville fractional derivatives by

(CDα
a+y)(x) =

(
Dα

a+

[
y(t)−

n−1

∑
k=0

y(k)(a)
k!

(t− a)k
])

(x), (9)

where n = [α] + 1 for α /∈ N0; n = α for α ∈ N0, N0 = {0, 1, · · · }

Lemma 1 ([2] (p. 230)). The Cauchy problem

(CDα
a+y)(x)−My(x) = f (x) (a < x < b; n− 1 < α < n; n ∈ N; M ∈ R; f (x) ∈ C[a, b]), (10)

y(k)(a) = bk (bk ∈ R; k = 0, 1, · · · , n− 1), (11)
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has a unique solution

y(x) =
n−1

∑
j=0

bj(x− a)jEα,j+1(M(x− a)α) +
∫ x

a
(x− t)α−1Eα,α(M(x− t)α) f (t)dt, (12)

where Eα,β(z) =
∞
∑

k=0

zk

Γ(αk+β)
is the Mittag-Leffler (ML) function.

Next, we shall prove a lemma which is very useful in proving our main results.

Lemma 2. Assume that M > 0 satisfies

(1− Eα,1(M))2 6= 1
α

Eα,α(M)Eα,2(M) (13)

Then, the BVP

(CDα
0+u)(t)−Mu(t) = f (t), t ∈ (0, 1), 1 < α < 2, f (t) ∈ C[0, 1], (14)

u(0) = u(1), u′(0) = u′(1), (15)

has a unique solution

u(t) =
∫ 1

0
G(t, s) f (s)ds, t ∈ [0, 1], (16)

where

G(t, s) =



(1−Eα,1(M))Eα,1(Mtα)+ t
α Eα,α(M)Eα,2(Mtα)

z(M)
(1− s)α−1Eα,α(M(1− s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

z(M)
(1− s)α−2Eα,α−1(M(1− s)α)

+(t− s)α−1Eα,α(M(t− s)α), s ≤ t,

(1−Eα,1(M))Eα,1(Mtα)+ t
α Eα,α(M)Eα,2(Mtα)

z(M)
(1− s)α−1Eα,α(M(1− s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

z(M)
(1− s)α−2Eα,α−1(M(1− s)α), t < s,

(17)

and
z(M) = (1− Eα,1(M))2 − 1

α
Eα,α(M)Eα,2(M). (18)

Proof. By Lemma 1, we can obtain the solution for the problem of (14), subject to the
following initial conditions:

u(0) = b0, u′(0) = b1 (19)

is

u(t) = b0Eα,1(Mtα) + b1tEα,2(Mtα) +
∫ t

0
(t− s)α−1Eα,α(M(t− s)α) f (s)ds. (20)

Using the properties of the ML function (see p. 42 of [2]):

d
dt
(tβ−1Eα,β(Mtα)) = tβ−2Eα,β−1(Mtα), β = 2, α, (21)

d
dt
(Eα,1(Mtα)) = E2

α,1+α(Mtα) =
1
α

Eα,α(Mtα), (22)
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we have

u′(t) = b0
1
α

Eα,α(Mtα) + b1Eα,1(Mtα) +
∫ t

0
(t− s)α−2Eα,α−1(M(t− s)α) f (s)ds. (23)

From (15), (20) and (23), it implies that:

u(1) = b0 = b0Eα,1(M) + b1Eα,2(M) +
∫ 1

0
(1− s)α−1Eα,α(M(1− s)α) f (s)ds, (24)

u′(1) = b1 = b0
1
α

Eα,α(M) + b1Eα,1(M) +
∫ 1

0
(1− s)α−2Eα,α−1(M(1− s)α) f (s)ds. (25)

Since (13) holds, it implies z(M) 6= 0. Thus:

u(t) =
(1−Eα,1(M))Eα,1(Mtα)+ t

α Eα,α(M)Eα,2(Mtα)
z(M)

∫ 1
0 (1− s)α−1Eα,α(M(1− s)α) f (s)ds

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

z(M)

∫ 1
0 (1− s)α−2Eα,α−1(M(1− s)α) f (s)ds

+
∫ t

0 (t− s)α−1Eα,α(M(t− s)α) f (s)ds

=
∫ 1

0 G(t, s) f (s)ds.

(26)

Remark 1. If f (·) ∈ C[0, 1], then the improper integral in Lemma 2 is:∫ 1

0
(1− s)α−2Eα,α−1(M(1− s)α) f (s)ds < ∞. (27)

3. Main Results

Lemma 3. Let
Eα,1(M) > Eα,2(M) + 1, Eα,1(M) >

1
α

Eα,α(M) + 1 (28)

holds. Suppose that

(i) h : R→ R is a continuous function and |h(·)| ≤ N for some constant N > 0.
(ii) g : [0, 1]→ [0, ∞) is a continuous function.

Then, for every λ ∈ R, the BVP

(CDα
0+u)(t)−Mu(t)− λg(t)h(u(t)) = 0, t ∈ (0, 1), (29)

u(0) = u(1), u′(0) = u′(1), (30)

has a solution uλ ∈ X, where X is the Banach space C[0, 1] with the norm ‖u‖ = max
0≤t≤1

|u(t)|.

Proof. Consider the operator Λλ : X→ X defined by:

Λλu(t) = λ
∫ 1

0
G(t, s)g(s)h(u(s))ds, t ∈ [0, 1]. (31)

From Lemma 2, we can obtain and determine that the solutions of the BVPs (29) and (30)
are fixed points of Λλ. Next, we will prove that all the fixed points of Λλ are solutions of
the BVPs (29) and (30). In fact, Let u(t) = Λλu(t). Then
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u(t) = b0Eα,1(Mtα) + b1tEα,2(Mtα) +
∫ t

0
(t− s)α−1Eα,α(M(t− s)α)λg(s)h(u(s))ds, (32)

where

b0 =
(1−Eα,1(M))

∫ 1
0 (1−s)α−1Eα,α(M(1−s)α)λg(s)h(u(s))ds+Eα,2(M)

∫ 1
0 (1−s)α−2Eα,α−1(M(1−s)α)λg(s)h(u(s))ds

z(M)
, (33)

b1 =
1
α Eα,α(M)

∫ 1
0 (1−s)α−1Eα,α(M(1−s)α)λg(s)h(u(s))ds+(1−Eα,1(M))

∫ 1
0 (1−s)α−2Eα,α−1(M(1−s)α)λg(s)h(u(s))ds

z(M)
. (34)

Hence, from Lemma 1, we know that u(t) satisfies the problem of (29), subject to the
following conditions:

u(0) = b0, u′(0) = b1. (35)

Moreover, through (32)–(34), together with the properties of the ML function (21) and (22),
we can obtain u(t), which satisfies (30). Thus, u(t) is a solution of the BVPs (29) and (30).

Next, we use the Schaefer’s fixed-point theorem to consider the fixed points of Λλ.
Here, (a) we will prove that Λλ is a continuous operator. Denote {un} to be a sequence,
which satisfy un → u,

|Λλun(t)−Λλu(t)| ≤ |λ|
∫ 1

0 |G(t, s)|g(s)|h(un(s))− h(u(s))|ds

≤ |λ|
∫ 1

0
2Eα,1(M)−1
(α−1)z(M)

(
(Eα,1(M)− 1)(1− s) + Eα,2(M)(α− 1)

)
·(1− s)α−2Eα,α−1(M(1− s)α)g(s)|h(un(s))− h(u(s))|ds

≤ |λ| · 2Eα,1(M)−1
(α−1)z(M)

(Eα,1(M)− 1 + Eα,2(M))

·
∫ 1

0 (1− s)α−2Eα,α−1(M(1− s)α)g(s)|h(un(s))− h(u(s))|ds.

(36)

From the definition of the ML function, it achieves∫ 1

0
(1− s)α−2Eα,α−1(M(1− s)α)ds =

∫ 1

0
(1− s)α−2

∞

∑
k=0

Mk(1− s)αk

Γ(αk + α− 1)
ds = Eα,α(M) (37)

is bounded. Note that h and g are both continuous, and so we obtain

‖Λλun −Λλu‖ → 0, n→ ∞. (38)

Thus, Λλ is a continuous operator.
(b) We shall show that Λλ is uniformly bounded in X. For each u ∈ X,

|Λλu| ≤ |λ|
∫ 1

0 |G(t, s)|g(s)|h(u(s))|ds

≤ |λ| · (2Eα,1(M)−1)(Eα,1(M)−1+Eα,2(M))
(α−1)z(M)

‖g‖Eα,α(M)N
(39)

This implies that Λλ is uniformly bounded.
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(c) We will verify that Λλ is equicontinuous in X. For each t1, t2 ∈ [0, 1], t1 < t2:

|Λλu(t2)−Λλu(t1)|

≤ |λ
∫ 1

0 G(t2, s)g(s)h(u(s))ds− λ
∫ 1

0 G(t1, s)g(s)h(u(s))ds|

≤ |λ| (Eα,1(M)−1)(Eα,1(Mtα
2)−Eα,1(Mtα

1))+
1
α Eα,α(M)(t2Eα,2(Mtα

2)−t1Eα,2(Mtα
1))

z(M)

·
∫ 1

0 (1− s)α−1Eα,α(M(1− s)α)g(s)h(u(s))ds

+|λ| Eα,2(M)(Eα,1(Mtα
2)−Eα,1(Mtα

1))+(Eα,1(M)−1)(t2Eα,2(Mtα
2)−t1Eα,2(Mtα

1))
z(M)

·
∫ 1

0 (1− s)α−2Eα,α−1(M(1− s)α)g(s)h(u(s))ds

+|λ|
∫ t2

0 (t2 − s)α−1Eα,α(M(t2 − s)α)g(s)h(u(s))ds

−|λ|
∫ t1

0 (t1 − s)α−1Eα,α(M(t1 − s)α)g(s)h(u(s))ds.

(40)

Note that ∫ t2
0 (t2 − s)α−1Eα,α(M(t2 − s)α)ds−

∫ t1
0 (t1 − s)α−1Eα,α(M(t1 − s)α)ds

=
∫ t2

0

∞
∑

k=0

Mk(t2−s)αk+α−1

Γ(αk+α)
ds−

∫ t1
0

∞
∑

k=0

Mk(t1−s)αk+α−1

Γ(αk+α)
ds

=
∞
∑

k=0

Mk

Γ(αk+α)

∫ t2
0 (t2 − s)αk+α−1ds−

∞
∑

k=0

Mk

Γ(αk+α)

∫ t1
0 (t1 − s)αk+α−1ds

=
∞
∑

k=0

Mk

Γ(αk+α+1) tαk+α
2 −

∞
∑

k=0

Mk

Γ(αk+α+1) tαk+α
1

= tα
2 Eα,α+1(Mtα

2)− tα
1 Eα,α+1(Mtα

1).

(41)

Therefore, the right hand side of (40)→ 0 as t1 → t2. Then, Λλ is equicontinuous in X.
Due to (a), (b), (c) and the Arzela–Ascoli theorem, we can determine that Λλ is completely
continuous.

(d) It remains to show that the set Ω = {u ∈ X|u = µΛλu, 0 < µ < 1} is bounded.
Let u ∈ Ω. Then, u = µΛλu, 0 < µ < 1. For each t ∈ [0, 1], we have

|u(t)| = |µΛλu(t)| ≤ |λ| (2Eα,1(M)− 1)(Eα,1(M)− 1 + Eα,2(M))

(α− 1)z(M)
‖g‖Eα,α(M)N. (42)

Hence, Ω is bounded. Through the Schaefer’s fixed-point theorem, we can discern that Λλ

has a fixed point.

Remark 2. The function G(·, ·) defined by (17) may change sign on (0, 1)× (0, 1).

In fact, for s ≤ t:

G(t, s) =
(1−Eα,1(M))Eα,1(Mtα)+ t

α Eα,α(M)Eα,2(Mtα)
z(M)

(1− s)α−1Eα,α(M(1− s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

z(M)
(1− s)α−2Eα,α−1(M(1− s)α)

+(t− s)α−1Eα,α(M(t− s)α).
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Note that

Eα,α−1(M(1− s)α) =
∞

∑
k=0

Mk(1− s)αk

Γ(αk + α− 1)
≥ (α− 1)

∞

∑
k=0

Mk(1− s)αk

Γ(αk + α)
= (α− 1)Eα,α(M(1− s)α), (43)

we have

G(0, 0) ≤ (1− Eα,1(M)) + (α− 1)Eα,2(M)

(α− 1)z(M)
Eα,α−1(M) ≤ 0, (44)

G(1, s) =
(1−Eα,1(M))Eα,1(M)+ 1

α Eα,α(M)Eα,2(M)
z(M)

(1− s)α−1Eα,α(M(1− s)α)

+
Eα,2(M)Eα,1(M)+(1−Eα,1(M))Eα,2(M)

z(M)
(1− s)α−2Eα,α−1(M(1− s)α)

+(1− s)α−1Eα,α(M(1− s)α)

≥ (1−Eα,1(M))(1−s)+(α−1)Eα,2(M)
z(M)

(1− s)α−2Eα,α(M(1− s)α).

(45)

Therefore, G(1, s) ≥ 0 for s ≥ 1− (α−1)Eα,2(M)
Eα,1(M)−1 . Thus, we can determine that G(t, s) change

sign on (0, 1)× (0, 1).
In the following, we denote G+(t, s) = max{G(t, s), 0}, t, s ∈ [0, 1] as the positive parts

of G, and denote G−(t, s) = max{−G(t, s), 0}, t, s ∈ [0, 1] as the negative parts of G, where
G is Green’s function of the BVPs (5) and (6).

Theorem 1. Let (28) hold. Assume that g satisfies
(A1) min{

∫ 1
0 G−(t, s)g(s)ds | t ∈ (0, 1)} > 0;

(A2) There exists ε > 0, such that∫ 1

0
(G+(t, s)− (1 + ε)G−(t, s))g(s)ds > 0, t ∈ [0, 1].

Hence, there exists a constant λ0 > 0, for λ ∈ (0, λ0), and the BVPs (5)–(6) have a positive
solution.

Proof. Let K > 0 and define h : R→ R by

h(u) =



f (0), u ≤ 0,

f (u), 0 < u ≤ K,

f (K), K < u.

(46)

Then, |h(u)| ≤ N = max
0≤u≤K

f (u) is bounded. Through Lemma 3, the problem (29) and (30)

has a solution uλ ∈ X.
Let κ > 0. Then, by the continuity of h, we can deduce that there exists a σ ∈ (0, K),

and
h(0)− h(0)κ < h(u) < h(0) + h(0)κ, |u| < σ. (47)

From (39),

|uλ(t)| ≤ |λ|
∫ 1

0 |G(t, s)|g(s)|h(uλ(s))|ds

≤ |λ| · (2Eα,1(M)−1)(Eα,1(M)−1+Eα,2(M))
(α−1)z(M)

‖g‖Eα,α(M)N,
(48)
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it follows that there exists

λ0 =
(α− 1)z(M)σ

(2Eα,1(M)− 1)(Eα,1(M)− 1 + Eα,2(M))‖g‖Eα,α(M)N
> 0 (49)

such that for λ ∈ (0, λ0), we have ‖uλ‖ ≤ σ, and

uλ(t) = λ
∫ 1

0 G(t, s)g(s)h(uλ(s))ds

= λ
∫ 1

0 (G
+(t, s)− G−(t, s))g(s)h(uλ(s))ds

> λ
∫ 1

0 G+(t, s)g(s)(h(0)− h(0)κ)ds− λ
∫ 1

0 G−(t, s)g(s)(h(0) + h(0)κ)ds

= λh(0)(1−κ)
∫ 1

0 (G
+(t, s)g(s)− 1+κ

1−κ G−(t, s)g(s))ds

= λh(0)(1−κ)
∫ 1

0 (G
+(t, s)g(s)− (1 + ε)G−(t, s)g(s))ds

+λh(0)(1−κ)
∫ 1

0 ((1 + ε)G−(t, s)g(s)− 1+κ
1−κ G−(t, s)g(s))ds

> λh(0)(1−κ)
∫ 1

0 G−(t, s)g(s)ds
(
(1 + ε)− 1+κ

1−κ

)
> 0.

(50)

Consequently, 0 < uλ ≤ K, for t ∈ [0, 1]. Therefore, the BVPs (5) and (6) have a positive
solution.

Denote

β(t) =
∫ 1

0
G(t, s)g(s)ds, β1(t) =

∫ 1

0
G(t, s)g(s)β(s)ds, t ∈ [0, 1]. (51)

Theorem 2. Let (28) and (A1) hold. Furthermore, assume f is bounded and f is C2 in some
neighborhood of 0, and:

(A3) There exits t0 ∈ [0, 1] such that β(t0) = 0.
(A4) β1(t0) f ′(0) < 0.
Then, the BVPs (5) and (6) have no positive solutions for λ→ 0+.

Proof. As f is bounded, the BVPs (5) and (6) have a solution uλ(t) via Lemma 3. Let
uλ(t) = λ$(t). Then, $(t) satisfies

(CDα
0+$)(t)−M$(t)− g(t) f (λ$(t)) = 0, t ∈ (0, 1), (52)

$(0) = $(1), $′(0) = $′(1), (53)

and $(t) =
∫ 1

0 G(t, s)g(s) f (λ$(s))ds. Through the Lebesgue dominated convergence theo-
rem, it implies that

$(t)→ f (0)β(t), λ→ 0+. (54)

First, we consider that there exists a constant t∗ ∈ [0, 1], and β(t∗) < 0. Thus,
uλ(t∗) = λ$(t∗) < 0, λ→ 0+.
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Next, we consider β(t) ≥ 0, t ∈ [0, 1]. Since (A3), (A4) and f are continuous in 0,
we have

$(t0) =
∫ 1

0 G(t0, s)g(s) f (λ$(s))ds

=
∫ 1

0 G(t0, s)g(s)
(

f (0) + λ f ′(0)$(s) + λ2 f ′′(ξ)
2 $2(s)

)
ds

= f (0)β(t0) + λ f ′(0)
∫ 1

0 G(t0, s)g(s)$(s)ds + λ2 f ′′(ξ)
2

∫ 1
0 G(t0, s)g(s)$2(s)ds

= λ f ′(0)
∫ 1

0 G(t0, s)g(s)$(s)ds + λ2 f ′′(ξ)
2

∫ 1
0 G(t0, s)g(s)$2(s)ds, ξ > 0,

(55)

and it implies that

$(t0)

λ
→ f ′(0)

∫ 1

0
G(t0, s)g(s) f (0)β(s)ds = f (0) f ′(0)β1(t0) < 0, for λ→ 0+. (56)

Thus, uλ(t0) = λ$(t0) < 0, λ→ 0+.
Therefore, the BVPs (5) and (6) have no positive solutions for λ→ 0+.

4. Examples

Example 1. Consider

(CD1.5
0+u)(t)− 2u(t)− λ(sin u(t) + 1) = 0, t ∈ (0, 1), (57)

u(0) = u(1), u′(0) = u′(1), (58)

with λ as a parameter, M = 2, α = 1.5, g(t) = 1 and f (u(t)) = sin u(t) + 1. Then, g and f are
continuous functions and g(t) > 0, t ∈ [0, 1], f (0) = 1 > 0.

Through computing, we have

E1.5,1(2) = 3.3487, E1.5,2(2) = 1.7997, E1.5,1.5(2) = 2.5483, (59)

z(2) = (1− E1.5,1(2))2 − 2
3

E1.5,1.5(2)E1.5,2(2) = 2.4589 > 0, (60)

and
E1.5,1(2) > E1.5,2(2) + 1, E1.5,1(2) >

2
3

E1.5,1.5(2) + 1. (61)

Then, (28) and (A1) are satisfied, and

G(t, s) =



(−2.3487)E1.5,1(2t1.5)+ 2t
3 ×2.5483E1.5,2(2t1.5)

2.4589 (1− s)0.5E1.5,1.5(2(1− s)1.5)

+
1.7997E1.5,1(2t1.5)+t(−2.3487)E1.5,2(2t1.5)

2.4589 (1− s)−0.5E1.5,0.5(2(1− s)1.5)

+(t− s)0.5E1.5,1.5(2(t− s)1.5), s ≤ t,

(−2.3487)E1.5,1(2t1.5)+ 2t
3 ×2.5483E1.5,2(2t1.5)

2.4589 (1− s)0.5E1.5,1.5(2(1− s)1.5)

+
1.7997E1.5,1(2t1.5)+t(−2.3487)E1.5,2(2t1.5)

2.4589 (1− s)−0.5E1.5,0.5(2(1− s)1.5), t < s.

(62)

Let
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β(t) =
∫ 1

0
G(t, s)ds = 0.743E1.5,1(2t1.5)− 1.624tE1.5,2(2t1.5) + t1.5E1.5,2.5(2t1.5), t ∈ [0, 1]. (63)

From Figure 1, we can obtain β(t) > 0. It implies that there exists ε > 0, and (A2) holds.
Thus, all conditions of Theorem 1 are satisfied.

Let K = π
2 > 0. From Theorem 1, we have

h(u) =



1, u ≤ 0,

sin u + 1, 0 < u ≤ π
2 ,

2, π
2 < u.

Then, |h(u)| ≤ N = 2. Let κ = 0.01. Through (47), we can choose σ = 0.005. Thus, there
exists a constant λ0 = 5.1× 10−5 defined by (49), and the BVPs (57) and (58) have a positive
solution for λ ∈ (0, λ0).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

χ

0.5

0.55

0.6

0.65

0.7

0.75

β
(χ

)

Figure 1. Image of β(t) in Example 4.1.

Example 2. Consider

(CD1.5
0+u)(t)− 5u(t)− λ f (u(t)) = 0, t ∈ (0, 1), (64)

u(0) = u(1), u′(0) = u′(1), (65)

with λ as a parameter, M = 5, α = 1.5, g(t) = 1, f : [0, ∞) → R is a continuous function and
f (0) > 0.

By computing, we have

E1.5,1(5) = 12.4573, E1.5,2(5) = 4.1355, E1.5,1.5(5) = 7.2468, (66)

z(5) = (1− E1.5,1(5))2 − 2
3

E1.5,1.5(5)E1.5,2(5) = 111.2903 > 0, (67)

and
E1.5,1(5) > E1.5,2(5) + 1, E1.5,1(5) >

2
3

E1.5,1.5(5) + 1. (68)

Then, (28) and (A1) are satisfied, and
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G(t, s) =



(−11.4573)E1.5,1(5t1.5)+ 2t
3 ×7.2468E1.5,2(5t1.5)

111.2903 (1− s)0.5E1.5,1.5(5(1− s)1.5)

+
4.1355E1.5,1(5t1.5)+t(−11.4573)E1.5,2(5t1.5)

111.2903 (1− s)−0.5E1.5,0.5(5(1− s)1.5)

+(t− s)0.5E1.5,1.5(5(t− s)1.5), s ≤ t,

(−11.4573)E1.5,1(5t1.5)+ 2t
3 ×7.2468E1.5,2(5t1.5)

111.2903 (1− s)0.5E1.5,1.5(5(1− s)1.5)

+
4.1355E1.5,1(5t1.5)+t(−11.4573)E1.5,2(5t1.5)

111.2903 (1− s)−0.5E1.5,0.5(5(1− s)1.5), t < s.

(69)

From Theorem 2, it results in

β(t) =
∫ 1

0
G(t, s)ds = 0.0338E1.5,1(5t1.5)− 0.6462tE1.5,2(5t1.5) + t1.5E1.5,2.5(5t1.5), t ∈ [0, 1]. (70)

It is easy to achieve β(0) = 0.0338 and β(0.1) = −0.0052. As β(t) is continuous with
respect to t, we can conclude that there exists t0 ∈ (0, 0.1) ⊆ [0, 1], such that β(t0) = 0. Via
MATLAb, we know that t0 = 0.082333631804161. Thus, (A3) is satisfied. Figure 2 is the
visual representation of β(t). In fact, there is another t0 = 0.884554959489226 ∈ [0, 1], such
that β(t0) = 0.

Since

β1(t0) =
∫ 1

0
G(t0, s)β(s)ds, (71)

we take f (u) = − sin u + 1 if β1(t0) > 0, and take f (u) = sin u + 1 if β1(t0) < 0. Then f is
bounded and f is C2 in some neighborhood of 0. Hence, (A4) is satisfied.

Thus, all conditions of Theorem 2 are satisfied. Consequently, the BVPs (64) and (65)
have no positive solutions for λ→ 0+.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

χ

-0.05
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-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

β
(χ

)

Figure 2. Image of β(t) in Example 4.2.

5. Conclusions

In this paper, the existence and nonexistence of the positive solutions of periodic
boundary conditions for FDEs are studied. The most remarkable feature of the paper is
that the main results are obtained under the conditions that the nonlinearity f and the
Green’s function are sign-changing. Some sufficient conditions are established to ensure
the existence of positive solutions for small values of λ. The paper also provides some
sufficient conditions to determine ranges of λ for which no positive solution exists. At
the foundation of this paper, one can consider the positive solutions for FDEs involving
a p-Laplacian operator, and can also conduct further research on eigenvalue problems
of FDEs.
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